

-~ MapStore

MapStore

: &» GeoSolutions

MapStore

MapStore is an highly modular Open Source WebGIS framework developed by
GeoSolutions to create, manage and securely share maps and mashups. This
simple and intuitive framework is able to mix map contents provided by Google
Maps, OpenStreetMap, Bing or other servers compliant to OGC standards like
WFS, CSW, WMC, WMS, WMTS and TMS. MapStore is used to find, view and
query published geospatial data and to integrate multiple remote sources into a
single map; the resultis an high quality and user friendly framework that allows
different kind of use cases by harmonizing remote data with smart and advanced
functionalities (like chart widgets, dashboards, timelines and others). MapStore
resources are not only related to Maps but also Dashboards and Stories; in
MapStore you can create your own innovative and fascinating Application Context
where users can save, manage and share its own resources by also managing
access permissions to other groups of users.

MapStore is not only a product but also a WebGIS framework. As a standard
geoportal product, it is a web-based product that allows to provide a powerful and
interactive geospatial WebGIS, it provides a direct and real-time access to
geospatial data warehouses and it supports the most common standards formats
available for geospatial data. MapStore also provides advanced spatial analysis
capabilities that can be used to build WebGIS solutions through a powerful,
dynamic and open geospatial application. Since MapStore is also a framework, you
can use it to build your own WebGIS applications by using its plugins and modules.

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://www.geosolutionsgroup.com/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/user-guide/exploring-dashboards/
https://mapstore.readthedocs.io/en/latest/user-guide/exploring-stories/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/user-guide/managing-contexts/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Last but not the least, MapStore is map agnostic and ensures the greatest
flexibility: its abstraction tier allows to work with different web mapping libraries.
The mapping engines currently supported by MapStore are OpenLayers (used by
default for desktops), Leaflet]S (used by default for mobile devices) and Cesium 3D

viewer.

MapStore has been designed from the beginning to provide a coherent and
comprehensive experience across different devices types.

MapStore is based on OpenLayers, Leaflet and React]S, and is licensed
under the Simplified BSD license.

Supported Browsers

The browsers supported by MapStore are Google Chrome, Microsoft Edge, Mozilla
Firefox and Safari. Ensure to have the latest version installed.

Quick Start

You can either choose to download a standalone binary package or a WAR file to
quickly start playing with MapStore. See the Quick Start documentation for more
details.

Documentation

e Users Guide

* Developers Guide

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://openlayers.org/
https://leafletjs.com/
https://cesium.com/platform/cesiumjs/
https://cesium.com/platform/cesiumjs/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Quick Start

You can either choose to download a standalone binary package or a WAR file to
quickly start playing with MapStore.

Binary package

The easiest way to try out MapStore is to download and extract the binary package
available on MapStore release page. Here you can find some preconfigured maps
as well users and groups. The goal for this package is to ease all the requirements
needed for you to take MapStore for a test-drive.

We hope you enjoy MapStore!

How to run

Go to the location where you saved the zip file, unzip the contents and run:
Windows: mapstore2 startup.bat

Linux: ./mapstore2 startup.sh

Point your browser to: http://localhost:8082/mapstore

To stop MapStore simply do:

Windows: mapstore2 shutdown.bat

Linux: ./mapstore2 shutdown.sh

Package Contents

* MapStore
* Tomcat8

e Java JRE (Win and Linux)

Demo Maps

* Aerial Imagery - Simple map demo showing some aerial imagery data

https://github.com/geosolutions-it/MapStore2/releases/latest
http://localhost:8082/mapstore
https://github.com/geosolutions-it/MapStore2/releases/latest
http://tomcat.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/index.html

* WFS Query Map - Demo map configured with MapStore built-in ability to
query feature over WFS

* User Map and Userl Map - Map only visible to user and userl respectively,
to demonstrate MapStore capabilities on user/group management and
permissions.

Demo accounts/groups

Users Groups

admin/admin MyGroupAdmin,everyone
guest everyone

user/user everyone

userl/userl everyone, MyGroup

WAR file

Download the WAR file from the latest release here.
All the releases

After downloading the MapStore war file, install it in your java web container (e.g.
Tomcat), with usual procedures for the container (normally you only need to copy
the war file in the webapps subfolder).

If you don't have a java web container you can download Apache Tomcat from
here and install it. You will also need a Java7 JRE.

Then you can access MapStore using the following URL (assuming the web
container is on the standard 8080 port):

http://localhost:8080/mapstore

Use the default credentials (admin / admin) to login and start creating your maps!

https://github.com/geosolutions-it/MapStore2/releases/latest
https://github.com/geosolutions-it/MapStore2/releases
https://tomcat.apache.org/download-80.cgi
https://www.oracle.com/it/java/technologies/javase-jre8-downloads.html
http://localhost:8080/mapstore

Home Page

In order to get started, let's take a look at the portal interface and get an idea of
how to navigate around it. First of all it's necessary to specify that the user can
take advantage of different tools and sections according to his authentication in
MapStore. In particular, a user can access the MapStore application by:

* Anonymous user

e Normal user

e Administrator user

Anonymous user

Accessing MapStore as anonymous user, the Homepage shows up as in the figure

below:

/ Modern webmapping with OpenLayers, Leaflet and React)S.

Visit the documentation page

Featured

Contents

11map (3D Tesz) Online Chart IFR Austria - CLIENT COPY

v bAGQ £ Agnmayea/S s Yty ire ity bisyfiisye CLIENT COPY

The anonymous user is allowed to:

* Access GeoSolutions website with a click on the (w icon

* Navigate through the Featured and Contents sections

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://www.geosolutionsgroup.com/

Featured Contents

» Set the application language, with the Language switcher:

I. v

m2 ENGLISH
Il FRANCAIS
DEUTSCH

ESPANOL

* Login E (more information about Login can be found in Managing Users
and Groups section)

* Perform a search for resources, through the Search bar:

MapStore

Modern webmapping with OpenlLayers, Leaflet and React]S.
Visit the documentation page

-

search... Q

* Open the Advanced Filters, through the Y button, to select one or more

Contexts from the dropdown menu and find all maps created from them

../managing-contexts/

MapStore

Modern webmapping with OpenlLayers, Leaflet and React]S.
Visit the documentation page

search... O\

Advanced search filters Y«

Context

hrency

Select...

parency inside a 3D

* Share a resource

* Take a look at map Details when available

* Open resources and navigate inside them according to their Permissions

Normal user

With a login as normal user, the Homepage displays as below:

_MapStore

Modern webmapping with OpenLayers, Leaflet and React)s.
Visit the documentation page

Featured

Demo Dashbosrd

FTeres Copateires

Contents

Maps

The normal user, in addition to what the anonymous user can do, is allowed to:

* Create new resources like Map, Dashboard and GeoStory:

https://mapstore.geosolutionsgroup.com/mapstore/#/
../exploring-maps/
../exploring-dashboards/
../exploring-stories/

®* View, edit and remove resources according to their Permissions

Administrator user

Once logged in as Administrator, the Homepage it's like the following:

- _ -
MapStore
Modern webmapping with OpenlLayers, Leaflet and Reacys.
Visit the documentation page
Y
Featured

Demo Dashboard

1errg Capuabites

Contents

Maps

The admin can see and edit everything. In particular, in addition to what normal
user can do, an administrator can also:

® Access the Manager button E for Manage Accounts and Manage Contexts

* Manage the resources by including or excluding them from

Featured section

* View, edit and remove any resource

https://mapstore.geosolutionsgroup.com/mapstore/#/

Managing Users and Groups

Accessing MapStore as anonymous user the Login button in Homepage is blue
E. With a click on it, the following window appears:

Username

Isermame

Password

Once the login is made, the same button displays in green E and a click on it

ADMIN

2 ACCOUNTINFO
X CHANGE PASSWORD

opens a list of options:

(= LOGOUT

Through these options it is possible to:

* Get the following Account info: Name, Role, E-mail, Company, Notes and
Groups (in order to understand how these info are set see the Managing Users
section)

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

2 User Details X

-

Name: admin
Role Admin
E-mail info@geo-solutions.it
Company GeoSolutions
Notes note

v

* Change Password

Change Password

New Password

New Pass
Retype Password
* Logout

Once logged as Admin, become possible to manage users and groups and the
Manage Accounts option appears in Homepage:

MANAGER
& MANAGE ACCOUNTS

% MANAGE CONTEXTS

Selecting Manage Accounts options, the Account Manager opens:

search for users...

.
Manage Groups

aaime

acolapic

B aaime E acolapic
Role Groups: Role Groups:
USER geosolutions USER everyone
everyone
status status

s X

B admin
Role Groups:
ADMIN geosolutions
everyone

status

alab

E Role

USER

Groups:
everyone

3 E

ale-cristofori alertxundi

E ale-cristofori E alertxundi
Role Groups: Role Groups:
ADMIN geosolutions USER everyone
everyone
status

B alex-fed
Role Groups:
ADMIN geosolutions
everyone
status

allyoucanmap

E allyoucanmap

Role Groups:
USER geosolutions.

everyone

In this page it is possible to switch between Manage Users or Manage Groups

sections:

23Manage Users

2iManage Groups

Managing Users

Switching to Users Manager, the page displayed is the following:

o Mg Users

)+
{
|
)- |
af
=
3}
i1
=
i
.ga

of
B
of
B
of
>~

)
of
| 41

In this page the Admin can:

* Perform a search among the existing users

* Create a new user with the New User button

* Edit or remove an existing one, through the Edit user and Delete user
E buttons on each user card:

tester
tester
Role Groups:
USER everyone

©

Both the New User and the Edit user buttons, open the User

editor window that is composed of three sections:

» User ID
e Other information

* Group membership

User ID

As soon as the New User window opens, the User ID section is displayed:

Username *

Password * @

Retype Password *

USER v

Enabled ¥

Fields marked with asterisk () are
required

In this section the Admin is allowed to:

e Set the Username

e Set the Password

. Select the User role (Normal user or Admin)

* Choose if an user is Enabled or not. Enabled users will have a green status icon

under their profile, otherwise disabled users will have a red status and will not
be able to log in.

User-1

User-1
Role Groups: Role Groups:
USER Group-1 USER Group-1
everyone everyone
o Iy
. Warning

Username and Password are the only mandatory fields. The password must
contain at least 6 characters.

Other information

Switching to Other information section, it display the following:

email

company

notes

Here the Admin can set:

e Email
* Company
* Notes

Group membership

Through the last section of the window it is possible to manage the groups in
which the user belongs to:

. Note

The everyone group, set by default, it is impossible to remove since it must be
attributed to all users.

Managing Groups

The Groups Manager section displays like the following:

sManageusers Groups

-
p——

collaborators E earthi EMSA Star Services Eumetsat
Description: Description: Description: Description:
(No description) (No description) (No description) (No description)

) o o o

E geosolutions MapStand Neftex E new-resources
Description: Description: Description: Description:
geosolutions team (No description) (No description) new people hired that needs write access to a lays

geoserver stable

2 2 X3 T 3

Similar to what happens for the Users Manager, in this page the Admin can:

* Perform a search among the existing groups

* Create a new group with the New Group button

* Edit or remove an existing one, through the Edit group and Delete

group @ buttons on each group card:

testers

testers
Description:
Testers group

©

Both the New Group and the Edit group

buttons, open the Group editor window that is composed of two sections:

» Group ID
* Members manager

e >Attributes

Group ID

As soon as the New Group window opens, the Group ID section is displayed:

New Group

Group Name *

Description

Fields marked with asterisk (*) are
required

In this section the Admin is allowed to:

* Set the Group Name
* Set the group Description

. Warning

The Group Name is the only mandatory field.

Members manager

Through the Members manager section it is possible to choose which users are
part of the group:

Attributes

On the Attributes tab the admin can associate some attributes to user groups. By
default MapStore allows to enter a "notes" attribute for each group. The attributes
list can be configured by editing the plugin configuration in localConfig.json .

geosolutions X

s '
cd_— a_—

notes

This is an example of group
attributes.

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.GroupManager

Managing Contexts

In MapStore the Application Context Manager is an administrative tool
designed to build and configure MapStore's viewers: the administrator is able to
configure a custom MapStore viewer by choosing:

* The name of the context (the viewer will have its own specific URL)

* The default map configuration and map contents (like layers, backgrounds,
catalogs, CRSs etc)

* The set of plugins available for the viewer

The Admin can access the Application Context Manager through the

9, MANAGE CONTEXTS button available in the Manager option menu E in
Homepage.
K v“ Y
Contexts

New Context

my-new-context IdentifyWithFullscreenWithLayer all-plugins newcontext

teststyle gstest all-extensions

atest context with a lot of &xtensions to enable/disable

leContext MapConfigTest nali-templates identify-extension

In this page the administrator can:

* Perform a search among the existing contexts

ALY
~

®* Create an Application context through the BRNENXelsi=y4a button

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

In each context's card the administrator can:

first-context

$ &

e

* Remove the context through the Delete button

* Edit the context through the Edit context button

* Open the Edit properties through the Edit properties button

® Sharing the context through the Share button

Application Context

In order to create a context, the Admin can click on the New Context button
NEWAeeaiioum in the Contexts page and he will be addressed directly to a wizard.

The wizard is composed by the following four steps:

D General Settings EJ Configure Map E) Configure Plugins 4 I

You can move through the steps of the wizard with the dedicated buttons located
at the bottom right of the page.

=

.

Create new app context
Name

Enter app context name

Window title

Enter window title.

e

[ED General Settings B3 Configure Map E) Configure Plugins o

In this way the admin can:
* Move forward on the different steps through the Next button
* Go back to the previous step through the Back button Back

* Closed the context wizard through the Close button Close

General Settings

This first step allows to configure the Name and the Window title of the new
context.

“

Create new app context

Name

l my-context ‘

Window title

‘ first context

Show o | impor | von cose o |

(B General Settings B Configure Map [E) Configure Plugins o

. Warning

The name and the window title are both mandatory fields. Note that it is not
allowed to choose a name that has already been assigned to another MapStore's
resource (like maps, dashboards, stories): a warning message appears in this case
to notify the user.

V . Note

The Window title is the name of the browser window.

MapStore allows the user to Import an application context by selecting the
button. The import screen appears so that it is possible to drag and drop

a previously exported context file there or select it from the local machine through

the BEEEEIHESSN button.

Once a valid context name is specified in General settings, it is possible to Export
the context with all the configurations introduced up to that point; this is possible

through the button. The export screen appears and the user exports the
context, in JSON format, by clicking the button.

https://mapstore.geosolutionsgroup.com/mapstore/#/

. Note

The button is only available on the first step of the application context

wizard (the General settings) while the button is always available with

the only condition that a valid context name has been specified.

Configure Map

To create the context viewer, the map configuration like the one described here
opens so that the admin can set the initial state of the context map.

X L 2 sverig
w
5
Mockea
P Kasa
- WSgsmamn
- Oizbekiston
o
Tiirkiy iy Turkmenistan
G
(-
el
| Maroc / o 3
Y ol v <3
L
/
Open Street b i
Map e pn | 1 O ol
et wane] Pkt | |
% i | 2 | Nig
5 R 2 Tehad 5L oyl AEYG E)
© OpenstreetMap contributors.

B Configure Map [E) Configure Plugins

B General Settings

In particular the admin can configure the context map using the following
MapStore tools:

* Catalog, present in Burger Menu E to configure the supported remote
services (like CSW, TMS, WMS and WMTS) and add layers to the map.

* Import, present in Burger Menu E to import map files and import vector
file.

* Annotations, present in Burger Menu E button, to add annotations to the
map.

* Table of Contents, through the button where the admin can use all the

available functionalities to manage context layers.

b5 Ahmedabad

#l

BURGER MENU

,,,,,,

IMPORT
EXPORT
CATALOG
ANNOTATI

sa%

NAVIGATI
TOOLBAR

8hopal ateary

India

Mo o A N
quﬁﬂe’r
L swin | sco: 1536978589] [

Close Back I

g

. Background Selector, at the bottom left of the viewer, allows the user to add,
manage and remove map backgrounds

® CRS Selector, through the button at the bottom right of the Footer, to
switch the Coordinate Reference System of the map
» The Navigation Toolbar, at the bottom right of the viewer, is useful to the admin

to explore the map.

An example of a context viewer with a new background and a layer, added to the
map, can be the following:

B General Settings B configure Map Configure Plugins The

Configure Plugins

This wizard step allows to select the extensions that will be available in the context
viewer: the user of a context will use only the plugins enabled by the
administrator. Within this wizard step, all the available plugins in MapStore are
present in the left side list ready to be selected for the context . The right side list
contains the list of plugins selected by the administrator for the context.

../navigation-toolbar/

Available Plugins

l
@

About
Tool that shows the About window

Annotations
Tool to draw annotations on map

Background Selector

o select map background

CRS Selector
Allow:

witch map projection

(WMS/WMTS/CSW) to add laye

Documentation Link
on to access to Ma

O N & =« 1 O

e documentation

A
]

FullScreen

plugin name: FullScreen

L3
3

Home
Link to the home page

Identify

Query the objects on map

Import
s to iImport data (SHP, KML/KMZ, GeoJSON. GPX) or rel.

List of layers

lb@o:)

Enabled Plugins

-
T

by name

-

Through the central vertical bar the administrator can select the plugins to

include in the context viewer by moving them from the Available Plugins list to

the Enabled Plugins list.

Available Plugins

About
Tool that shows the About window

Annotations
Tool to draw annot:

ns on map

Background Selector

Allows to select map background

CRS Selector
Allows t

tch map projection

N ® =« 1 Q

ces (WMS/WMTS/CSW) to add layers to them

o Documentation Link

A button to access to MapStore documentation
K, 7 FullScreen
"]

plugin name: FullScreen

Home
Link to the ho

Identify

Query the objects on map

Import

Allows to import data (SHP, KML/KMZ, GeoJSON. GPX) or rel

*» ® ©o D

/
N\

List of layers

Enabled Plugins

W A

plugin name: Map

-

In particular, the admin can:
* Add an extension from the Available Plugins list to the Enabled Plugins list,
using the Add Extension button . Instead, remove an extension from the

Enabled Plugins list using the Remove Extension button , as follows:

* Bring all extensions from one list to another using the Add all extensions

button or remove all extensions using the Remove all extensions button

, as follows:

To search for an extension listed, the admin can use the Search bar.

Available Plugins E Enabled Plugins

o About “i Map R 7]

Tool that shows the About window plugin name: Map

- Annotations

Tool to draw annotations on map

l Background Selector

Allows to select map background

Add extensions to MapStore

The MapStore administrator can also install a custom plugin by using the Add
extension to MapStore button , at the top right of the Available Plugins list.

Here the admin, in order to upload the plugin's package, can drag and drop it
inside the import screen or select it from the folders of the local machine through

the BSEEEIHESSN button.

. Warning

A plugins package must be provided as .zip archives that contains:

* An indexjson file with a plugin definition
¢ A plugin file with the extension code in JavaScript
¢ All mandatory translations files in MapStore.

A sample extension for testing purposes is available here. More extensions will be
available in the future versions of MapStore.

Through the Add button the plugin is inserted in the Available Plugins list.

https://github.com/geosolutions-it/mapstore-playground/raw/master/samples/SampleMapStoreExtension.zip

Available Plugins E Enabled Plugins

y Filter plug

-

QueryPanel “i Map 9,

. @
plugin name: QueryPanel plugin name: Map

Redo
plugin name: Redo

|

SampleExtension
plugin name: SampleExtension

*w

=)

A plugin so installed can be included in the context viewer by moving it in the

Enabled Plugins list or uninstalled through the Delete button ﬁ .

Available Plugins E Enabled Plugins
F Y Filter plugins Y
¥ QueryPanel “°‘ Map %X @
Y plugin name: QueryPanel plugin name: Map
Redo ; SampleExtension a3 @
D plugin name: Redo plugin name: SampleExtension

Save

Allows to save the changes to the map on the server

*®

Optional tools for enabled plugins

In the Enabled Plugins list, the following buttons are displayed for each extension:

Available Plugins E Enabled Plugins
— 4 Fitterp Y
9% Map 9,
Q, SearchBar I" plugin name: Map N
N Textual search tool (GeoCoder) =
Zoom In 9 @
" ~
a Setting + Button that increase zoom level of the map -
Allows t gs for the map (language. default in
Zoom Out % @
— =N
Version Button that decr

om level of the map
Shows the version of MapStore in m.

* The Enable selection of current plugin for user button 2* allows the

admin to configure which extensions will be present in the Extension Library
and not activated by default.

. Note

Once a plugin has been included in a context, it is active by default and available
inside the viewer. The administrator can click on Enable loading this plugin on

startup button (] to make that plugin not active by default: clicking on this

button the plugin will not be available in the context viewer until explicitly
activated by the end user through the Extension Library.

* The Edit Plugin Configuration button Y, allows the admin to interact with

a text area to specify the plugin configuration and to override the default one.

O Search Bar 29 @
S Textual search tool (GeoCoder)

refgiend
"withToggle™: [
“"max-width: 768px",
"min-width: 768px"
]
¥
“override”: {}

3

* The Open plugin configuration documentation button @ opens the

Plugins Documentation in another page.

How to update extensions
Extension can be updated using two steps:

¢ Old extension removal.

* Uploading and installation of the new version of extension.

As previously stated, extension can be removed on "Configure Plugins" step of

wizard using Delete button T .

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins

Available Plugins E Enabled Plugins

y

-

¥ QueryPanel “i Map %X @
Y plugin name: QueryPanel plugin name: Map
C Redo SampLeExtef\sion - 2 lu
plugin name: Redo plugin name: SampleExtension
l Save
Allows to save the changes to the map on the server

At this point extension will be removed from application completely. Save context
after extension removal only if you want to be sure that extension will not be
activated for the context if it's reinstalled at some point.

Do not save context and upload new version of extension right away after old
version removal. Context don't need to be saved after new version installation.

With all stated above, complete workflow is:
* Open context editing and jump to the "Configure Plugins" step of the wizard.
* Delete old version of extension using Delete button T .

* Upload and install new version of extension using the Add extension to

MapStore button E

* Do not save context, close wizard.

Existing configuration of extension (default or customized) will be preserved for all
the contexts using extension.

Configure Theme

The last wizard steps allows to configure the theme to use for a context. A
dropdown allows to select one of the available themes (see the Styling and
Theming section of the online documentation to know how to create and include
additional themes to MapStore). By default in MapStore a default and a dark
themes are available.

https://mapstore.geosolutionsgroup.com/mapstore/#/

)
Configure Theme
Choose a theme
Select... A ‘
Custom Variables @ clear all El
MainTextolr @ c
Main Background Color @ P @
Primary Text Color @ P @
primaryColor @ c
Secondary Text Color @ 7 @
secondaryColor © ! I [C
Make sure to not use a secondary color too similar with the primary one
and obviously the primary text color with its counterpart (the same applies
for the other couples of colors: main, secondary)
Attiva Windows Close Back I
Passa a Impostazioni per attivare Windows.
General Settings Configure Map Configure Plugins T

Default Theme

The default theme is always available for a context and it is the MapStore default
one. This theme is automatically applied to the context if the Configure Theme
wizard step is skipped during the context creation or when the theme selection
drop-down is cleared. An example of a default context can be the following:

. v Lo oo e
- ALK

7 SRR o
-\.‘ ! e =
% s S

(o 2 - P

Dark Theme

MapStore also provides by default an additional theme, the dark one, that can be
selected from the drop-down menu to be used as an alternative theme for
application contexts.

Configure Theme

Choose a theme

Select... -

Dark

Main Text Color @

Q

Main Background Color @

Q

Primary Text Color @

Q

Primary Color @ C
Secondary Text Color @ (&
Secondary Color @ ! C

Make sure to not use a secondary color too similar with the primary one
and obviously the primary text color with its counterpart (the same applies
for the other couples of colors: main, secondary)

An example of the dark theme applied to a context is the following one:

Custom Theme

After selecting a theme from the drop-down, it is also possible to customize it from
Ul by enabling Custom Variables.

Configure Theme

Choose a theme

Select... -
Custom Variables @ clear all n
Main Text Color @ (¢]
Main Background Color @ 2|
Primary Text Color @ /7| €
Primary Color @ c
Secondary Text Color @ Vil -
secondrycolr @ ! I C

Make sure to not use a secondary color too similar with the primary one
and obviously the primary text color with its counterpart (the same applies
for the other couples of colors: main, secondary)

Once Custom Variables is enabled, the context editor can modify main, primary
and secondary colors for both backgrounds and texts (an helper clarifies the Ul

elements involved for each field in the form). Clicking on the Change Color button

/ a color picker is displayed to allow the selection of the desire color, as follows:

The colors that can be customized are the following ones:

* Main Text Color to choose the color used in panel or dialog texts

* Main Background Color to choose the color used in panel or dialog
backgrounds

* Primary Text Color to choose the color used for icons inside toolbar, header
and button texts

* Primary Color to choose the color used for icons inside toolbar, header and
button backgrounds

* Secondary Text Color to choose the color used as button text when a button
is active or selected

* Secondary Color to choose the color used as button background when a
button is active or selected

Warning

To ensure a good and well readable color contrast between each Ul component,
make sure to not use a secondary color too similar to the primary one and
obviously the primary text color with its counterpart (the same applies for the
other couples of colors: main, secondary).

An example of a custom context can be the following:

|
i

Extension Library

The & button, present in the Side Toolbar, provide to the user the list of

extensions ready to be activated for the viewer: that list of available extensions for
the user has been defined by the the administrator during the Application Context

creation.

User Extensions X

-«

ZoomIn
Button that increase zoom level of the map

%

Zoom Out
Button that decrease zoom level of the map

%

2000 km Scale: | 1:73957339

The User Extensions panel opens allows the user to choose which extension to add

to the viewer through the Add Extension button «¥ , as follows:

. Note

The User Extensions is enabled by the admin in the Application Context wizard.

Map Catalog

The Map Catalog is an extension that can be included in the step #3 of the
application context wizard to allow the end user to browse the existing MapStore

maps directly inside the viewer itself. The Jjj button, present in the Side Toolbar,

provides to the user the list of the MapStore maps that are also available in

Homepage.

Catalogo mappe
fJGVC T'erslibed L’;V— Dfraa
savecontexttest
Balvenie and Durham
CRS Test Genova

" NaturalEarth CloudSDI

Dummy map_2

OSM Planet from Maps @ GeoSolutions - Domain Shardi..

The Map Catalog panel allows the user to select a map and loaded it in the same
browser page, as follows:

. Note

Selecting a map card in the Map Catalog list, the map currently in use will be
replaced. In addition, if the selected map has been created in a context, also the
viewer will be replaced with the one of the related map context.

For each map in the Map Catalog list the following buttons are displayed:

https://mapstore.geosolutionsgroup.com/mapstore/#/

Map Catalog X

Owner Gnafu (second try as the first one gives an error) ﬁ A B
B -/C'/{.\ OSM Planet from Maps @ GeoSolutions - Domain Shardi..
= T A8

* The Delete button allows the user to remove the map
* The Edit Properties button allows the user to Edit Properties of the map

* The Share button allows the user to Share the map

Map Templates

This extension allows to browse Map Templates in a MapStore's viewer.
Supported Map Templates formats in MapStore are WMC and MapStore's native

JSON. The P} button, present in the Side Toolbar, provides to the user the list of

the available templates.

For each template in the Map Templates list the following buttons are displayed:

https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#web-map-context
https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#map-options
https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#map-options

0 Map Templates X

er map template Y
Meteorite Landing
MapStore JSON m
NY Roads
MapStore JSON y
MapStore JSON e

* The Replace button allows the user to entirely replace the current map

with the one defined in the template, as follows:

* The Add Template button allows the user to add the map template

contents (layers) to current map without replacing it (by default a new group is
created in that case in TOC, on top of the other ones, to contains layers coming
from the template to better identify them), as follows:

* The Add to favorites button Yy allows the user to add the template to

favorites on top of the list

Enabling the Map templates in a context

The Map templates extension is enabled by the admin in the Application Context
wizard. In particular, this is possible in the third step of the wizard and after the
extension is added to the Enabled Plugins list.

Available Plugins E Enabled Plugins

-
@
-

o About “i Map ° @
Tool that shows the About window

plugin name: Map

- Annotations /‘ Map Templates T 2)

Tool to draw annotations on map plugin name: MapTemplates

; Background Selector

Allows to select map background

As soon as the Configure templates button |§j is selected the Configure

templates modal window opens, it allows the admin to manage the map templates.

Configure Templates 14

Available Templates E Enabled Templates
Filter templates by name. Y Filter templates by name ¥
3, Meteorite Landing
MapStore JSON N i
>>
NY Roads >
MapStore JSON N i <

US states
Add templates to configuration from list of available templates

WMC format N\

=l

Velo

WMC N

Through the Configure Template tool, the administrator can browse existing
templates in MapStore and enable them for the context simply by moving the
desired ones from the Available Templates list to the Enabled Templates list: this is
possible with the central bar, as follows:

Configure Templates I X
Available Templates E Enabled Templates
Fi name. Y Filter templates by name. b ¢
MapStore Exported 2 Meteorite Landing
variant 2 N MapStore JSON N
>>
Velo S NY Roads
WMC N i p MapStore JSON N i
<<
cadastre template W Us states
N i WMC format N W
cceeee
N T

Uploading the template

It is possible for the administrator to create new Map Templates in MapStore by
uploading new template files. In order to upload a new template the admin can

select the Upload new template button to open the Upload new template

window:

Upload Map Template X

Template
Drop or click to select a map template
file {exported JSON MapStore maps or
WMC files are supported)
Thumbnail
Drop or click to import an image
{best 300px X 180px. max 500kb)
Name Type a name
Description Type a description

Permissions Groups
No rules

Addarule..

v canview

Here the admin, in order to import a template file, can drag and drop it inside the
import area or simply click on that area to select it from the folders of the local

machine.
Template
Drop or click to select a map template
file (exported JSON MapStore maps or
WMC files are supported)
. Warning

The file that the admin can upload are:

¢ The MapStore native map definition json format

e The WMC (Web Map Context) file in xml format

The admin can also add Thumbnail, Name, Description and Groups
permissions as describe here

https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#map-options
https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#web-map-context

Customize the template

The admin can also delete or modify an existing template through the buttons that
are available on the left side of each templates item inside the Configure templates

UL

Configure Templates 3¢
Available Templates E Enabled Templates
Filter templates by name Y Fitter templates by name Y
Dimensions Meteorite Landing
a widgets sample template to use for test N MapStore JSON N
>>
Cadastre Rennes = NY Roads
WMC template N MapStore. /50N \NTW
<

In particular, the admin can:

* Modify the template using the Edit properties that opens by clicking on the
Edit properties button

* Delete the template through the Delete button “:]i

Resource Properties

In order to customize the properties of a resource, the Admin or a normal user
with permission can access the Edit properties window from the Edit properties

button in Homepage or from the Save and the Save as buttons inside the

resource viewer.

Edit properties X

Thumbnail
Drop or click to import an image
(best 300px X 180px. max 500kb)
Name Type a name
Description Type a description

Permissions Groups
No rules

Add arule..

Select a group v can view ¥

Close Save

Through the Edit properties window the user can perform the following
operations:

¢ Add a Thumbnail

* Add a Name and a Description

e Add a Permission rule

https://mapstore.geosolutionsgroup.com/mapstore/#/

Warning

The name of a resource is the only mandatory field. Note that is not allowed to
choose a name that has already been assigned to another resource.

Thumbnail

It is possible to add an image as thumbnail dropping it or clicking inside the

following box:

Thumbnail

Drop or click to import an image

(best 300px X 180px. max 500kb)

Warning

The image to be added must not be larger than 500 kb and its best dimensions are
300x180 px. The supported formats are jpg (or jpeg) and png.

Permission rules

In the Add a rule... section you can set one ore more permission rules in order to
allow a group to access the resource. In particular it is possible to choose between
a particular group of authenticated users or the everyone group that includes all
authenticated users but also anonymous users (more information about different
user types can be found in Homepage section).

Moreover it is possible to choose between two different ways with which the
selected group can approach the resource:

* View the map and save a copy

» Edit the map and re-save it

In order to add a rule, the user can select the group and set permissions inside the
Add a rule... section. Once the rule is set, with the Add button it is possible to

add it to the Permissions Groups list.

For example, a resource that can be seen by everyone, should have a rule like the
following:

Permissions Groups

everyone
" can view v

Add arule...

Once a rule is set, the user can always remove it through the Remove button

x|

How to manage users and groups is a topic present in the Managing Users and
Managing Groups sections.

Details

Only for resources of type map, it is possible to add details to the map. This is
useful to associate some information to the map or an overview description of its
content. In this case the Edit properties window is the following:

Edit Map Properties X

Thumbnail
Drop or click to import an image
(best 300px X 180px, max 500kb)
Name My Map
Description My Map Description
Add New Details &

Permissions Groups

No rules

Add a rule...

Select a group... v can view -

Close | Save

With a click on the Add new details button & it opens a panel where the user

can write the details of the map.

Details Sheet - My map

Font ¥ Normal v B I

i
P

il
11l
AN
i

i

The text can be edited and some links and images can be added through the Text

Editor Toolbar. Once the editing is done, the map details can be saved with the
Save button | save

and other buttons appear on the Edit properties panel.

Edit properties

Thumbnail
Drop or click to import an image
(best 300 px X 180 px, max 500 kb)
Name My map
Description My map description
Details sheet o\ O 1]

Groups permissions
No rules

Add arule..

Select a group v can view v

Close | Save

Here, the user is allowed to:
* Show the details preview ¢%
* Edit the details

* Enable the Show as modal C’J' button, to show the details on a modal when

the user clicks on [ABOUTTHIS MAP button, which is listed in the Side

Toolbar options

About this map

his map contains several layers:
« Observatories:

his is a list of astronomical observatories ordered by name, along with initial dates of operation (where an accurate date is available) and location. The list also
includes a final year of operation for many observatories that are no longer in operation. While other sciences, such as volcanology and meteorology. also use
acilities called observatories for research and observations, this list is limited to observatories that are used to observe celestial objects.

oo

o

Colorado Speings

Ao

. Note

If the Show as modal button is not activated once the user opens the About this
map button, the details are displayed on a panel.

>

o) Great Britain \ e 7 &
’ Y A Wig = 4 BAbout this map
. Isle‘of Man { .«.- lenburg:
< Yo Leeds " Vorpomimerny \
Eire / Ireland Manchm‘-" oSheffield,_ / Groningen * Hamburg Szczecin
Englond ¢ i
éngland AT Berlin My map destails
(’ m) Niedersachser
\)'\'.m‘/ Cigem Nederland =
o This map contains several layers:
// cardit tongon Magdeburg
41, Dusseldorf- - peytschland « Observatories:
Belgié / Frankfurt Dresdén’
k B;g‘;:: D) am Main W = This is a list of astronomical observatories ordered by name, along with initial dates of oper:
/‘- Guemsey ot Nurnberg 4 Cesl (where an accurate date is available) and location. The list also includes a final year of oper:
Pans L“"e"“m“’g 4 e many observatories that are no longer in operation. While other sciences, such as volcanols
ond Est2 P i o Bayern M~ i
R Srond “stuttgart N4 | meteorology, also use facilities called observatories for research and observations, this list
ennes ¢
BT Mdnchen limited to observatories that are used to observe celestial objects
entre;Vo Bz UNNED S Osterreic
Nantes de Loire > oraelE,
E France| Suisse/Svizzerd/s Grai T i
{~ re | -
@ "f\’ 1 LR WRL Slovenija @
Coscooncy L% Auvergne-' § Milano S £ 2
Golfo de Nouvelle. Rhone-Alpes’__J Venezia| oo Coloradospengs
Vizcaya Aquitaine Torino {
/Qﬂova ’BDVQD"‘ Hrvatsk e
Monaco o Moo
- Occltanie 2 G2 - ity di san @ 5 G
o <ng
itoria-Gastéiz., | Marseille
T e
Costifla la Vella / va

y Ledn

(Portugal

Aragén.

Esdina Mor Balear =
U valép(k-a{ Paima \

@ Aeueaue

o o
Uisbia 3) \J @
s oo Mg :;";?;;;5 Mj w®
=\ yﬁ"‘@ga Oran Us moa-lrﬂgﬁx FHOCY - Laauby S ot
5""‘"2’_,‘9_\ obs Syt e

Batna 1©.+#1+

256

Rabat 06.€ Djelfa X4HX. Fii
) aalal
Fés .0 C2'g
6
q 4 £ Boyoch
Marrakech ©FHE A
CQQ.RGo ¢ Draa-Tafilalet Ouargla
i O L XAI U.O%H,
5 = 7 ali Dyll
L\ L PRV, Béni Abbes \

fap contributors

500 km ﬂ Scale: 1:18480335 v

. Warning

The About this map button is visible in the Side Toolbar only when the details are
present on the map.

* Enable the Show at startup } button. If active, as soon as the user opens

the map, the details panel is visualized.

* Delete the details sheet T

Once the details are saved, the Show details button appears also on the map

card in Homepage

My Map

My map description

Through this, it is possible to open the details panel also from the home page.

Details Sheet - My map

My map destails
This map contains several layers:

* Observatories:

This is a list of astronomical observatories ordered by name, along with initial dates of operation (where an accurate date is available) and location. The list also
includes a final year of operation for many observatories that are no longer in operation. While other sciences, such as volcanology and meteorology, also use
facilities called observatories for research and observations, this list is limited to observatories that are used to observe celestial objects.

Fort Comers
frove

N CR

Cnan

e @
R

Colorado Springs
Puadio

@ J m\n@m R ~ A\

https://mapstore.geosolutionsgroup.com/mapstore/#/

Sharing Resources

MapStore provides the possibility to share resources (maps, dashboards and
geostories) through two different ways:

* Directly from the MapStore Homepage by clicking on the Share button

present in the toolbar of each resource card

Meteorite Landings
from NASA Open Data Portal

iFARBD

* Inside the resource by selecting the option from the Side Toolbar

From the Share panel the user is allowed to share a resource in different ways:

* With a Direct Link
* Through a Social Network

* Through a Permalink to shares current user session (only available from the
Side Toolbar)

* With Embedded code or APIs (only available for maps)

Link

As soon as the Share panel opens, the Link section is the one visible by default:

https://mapstore.geosolutionsgroup.com/mapstore/#/

Link Social Permalink Embed

Via a direct link

Advanced options
Here, the user can copy the resource URL link or share it through the QR code.

Social

The Social section allows the user to share the resource on the most common
social networks like Facebook, Twitter and LinkedIn simply by clicking on the

Link Social Permalink Embed

social icon.

In your favourite social network

000

Advanced options

Permalink

The Permalink section allows to save the current overall viewer state of the
resource and share it as a permalink.

Link Social Permalink Embed

Title*

Enter a title

Description
Enter a description

Public

Generate permalink

A permalink is a new resource belonging to a dedicated category in MapStore for
which the user must enter the Title and Description (the last one is not
mandatory) and choose whether the resource will be public by checking the
Public option (this will generate a public map permalink so that everyone can
access it).

. Warning

Map Details as well as other resources connected to a map or context, if present,
will not be available in the final permalink resource.

When all options are filled, the user can Generate permalink through the

(@ CEICE R EUEE G ENLTE button to get the Permalink URL or the QR code to

share it.

https://mapstore.geosolutionsgroup.com/mapstore/#/

Link Social Permalink Embed

Permalink generated

Create a new permalink

Embed

The Embed section provides to the user the needed snippets, embedded code or
the MS APIs (only available for maps) to embed MapStore in a third party web

page.

Link Social Permalink Embed
Via the embedded code
(J Show TOC

Small v

<iframe allowFullScreen style="border: none;" height="50@0" width
="608" src="https://dev-mapstore.geosolutionsgroup.com/mapstore/
#/viewer/45511"></iframe>

Using APIs 3

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta http-equiv="Content-Type" content="text/html;cha

rset=UTF-8">
<meta name="viewport™ content="width=device-width, ini

12T mmmTaaM

Advanced options

In addition, MapStore provides options to customize a bit the embedded code:

* The user can configure height and width of the embedded resource by
choosing Small (600x500), Medium (800x600), Large (1000x800) and Custom
(it is possible to choose the desired size).

https://mapstore.geosolutionsgroup.com/mapstore/#/

Link Social Permalink Embed

Via the embedded code
(J Show TOC

'Small -

Small reen style="border: none;" height="500" width

) /dev-mapstore.geosolutionsgroup.com/mapstore/
Medium f
rame>
Large

>
Custom

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta http-equiv="Content-Type" content="text/html;cha
rset=UTF-8">
<meta name="viewport" content="width=device-width, ini

+3aT ,mmTaaMs

Advanced options

* For maps, the user can choose to show the TOC in the embedded map by
enabling the Shown TOC option

Link Social Permalink Embed
Via the embedded code
E Show TOC

Small v

<iframe allowFullScreen style="border: none;" height="500" width
="60@" src="https://dev-mapstore.geosolutionsgroup.com/mapstor
e/?forceDrawer=true#/viewer/45511"></iframe>

Using APIs

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta http-equiv="Content-Type" content="text/html;cha
rset=UTF-8">
<meta name="viewport"” content="width=device-width, ini

+32T memTaAaaM

Advanced options

* For dashboards, the user can show the connections between widgets on the
embedded dashboard by enabling the Show connections

Link Social Permalink Embed

Via the embedded code

I Show connections

Small v

<iframe style="border: none;" height="500" width="600" src="htt
ps://dev-mapstore.geosolutionsgroup.com/mapstore/dashboard-embed
ded.html?connections=true#/21694"></iframe>

Advanced options

Some Advanced options are available for maps and geostories inside the Share

tool.

. Note

Some Advanced options are available only opening Share tool from the Side
Toolbar and not from the MapStore home page.

Advanced options for sharing maps

In case of maps, enabling the Advanced options in the Share tool the user can
include the following to the share URL.:

Link Social Permalink Embed

Via a direct link

https://dev-mapstore.geosolutionsgroup.com/mapstore/#/viewer/45511

Advanced options W

(J Add bounding box param to sharing link

(J Add center and zoom to sharing link

* The bounding box parameter to share the current viewport of the map
visualized by the user

* The desired center and zoom of the map by enabling the Add center and
zoom

Link Social Permalink Embed

Via a direct link

Add center and zoom to sharing link
Coordinate ©@

Lat 38.218540208076¢ - Lon -97.20384096734: © &

-

Zoom ©
5

(J Add marker on loaded map

The related available options allow the user to:

* Center the shared map to specific coordinates by typing them in two different
formats (Decimal or Aeronautical that can be chosen through the # button)
or by clicking on the map to set automatically the coordinate fields.

* Share the map at a specific Zoom level (Min:1 and Max:35)

* Add marker on loaded map to show the center point in the shared map

Advanced options for sharing 3D maps

Once the 3D Navigation is active on map, the user can include the following to the
share URL by enabling the Advanced options in the Share tool:

Link Social Permalink Embed

Via a direct link

Advanced options .j

(J Add center and zoom to sharing link

* The desired center and zoom of the map by enabling the Add center and
zoom to sharing link

Link Social Embed

Via a direct link

https://dev-mapstor

Advanced options [W

Add center and zoom to sharing link

Coordinate @

Lat 38.175554833046:: Lon -102.4424323750¢ o &

-

Zoom ©
5,000000000000001

Heading ©
360

Roll ©®
0

Pitch ©
-90

The related available options allow the user to:

* Center the shared map to specific coordinates by typing them in two different

formats (Decimal or Aeronautical that can be chosen through the # button)
or by clicking on the map to set automatically the coordinate fields.

* Share the map at a specific Zoom level (Min:1 and Max:35), Heading (Min:0°
and Max:360°), Roll (Min:-90° and Max:90°) and Pitch (Min:-90° and Max:90°)

Advanced options for sharing GeoStories

In case of GeoStories, enabling the Advanced options in the Share tool the user

can include the following to the share URL:

Link Social Permalink Embed

Via a direct link

Advanced options

(J Link to MapStore home

(J Include scroll position

* The Home button to allow the possibility to bring the user to the MapStore
Home Page if needed: that button will be automatically included in view mode
inside the story toolbar just beside the navigation bar.

[A]

L of Maghaost Astronomacal Otmervadones

List of Highest Astronomical Observatories

From Wikipedia, the free encyclopedia

* The scroll position allows to share the URL of the current section of the story

visualized by the user

C 0 @& d

mapstore2. I

aoaaaosle

C 0 ad

mapstore2.geo-solut ps /9

History of high altitude astronomical obser

Prior to the late 19th century. almost all ast

observatories throughout history were l0G& i3 3 direct link

elevations. often close to cities and educal
for the simple reason of convenience.[1] As
from industrialization and light pollution fr¢
lighting increased during the Industrial Rey
astronomers sought observatory sites in re
with clear and dark skies, naturally drawing
the mountains. The first permanent mount
astronomical observatory was the Lick Ob¢
constructed from 1876 to 1887. at the mod
1,283 m (4.209 ft) atop Mount Hamilton in €
first high altitude observatory was constru¢
2,877 m (9.439 ft) Pic du Midi de Bigorre in
Pyrenees starting in 1878, with its first teles
installed in 1004.[3] Astronomical observati

made from Mont Blanc in the late 1800s.[4 i
high altitude observatories (such as the Lo
in Arizona and Sphinx Observatory in SwitzETERGIwEra I

constructed through the first half of the 20th century.

https://dev.mapstore2.geo-solutions. it/mapstore/#/geostory/shared/11t

QR code

Advanced options

O Link to MapStore home

However, the two most important and prominent of the P’
early 20th century observatories. Mount Wilson
Observatory and Palomar Observatory, were both located

Poto:

Tupl

i

RNl History of high altitude

H

~

onomical obs > v they >

|
{

History of high altitude astronomi rvatori

Prior to the late 19th century. almost all astronomical
observatories throughout history were located at modest
elevations, often close to cities and educational institutions
for the simple reason of convenience.[1] As air pollution
from industrialization and light pollution from artificial
lighting increased during the Industrial Revolution,
astronomers sought observatory sites in remote locations
with clear and dark skies, naturally drawing them towards
the mountains. The first permanent mountaintop
astronomical observatory was the Lick Observatory
constructed from 1876 to 1887. at the modest elevation of
1,283 m (4,209 ft) atop Mount Hamilton in California.l2] The
first high altitude observatory was constructed atop the
2,877 m (9.439 ft) Pic du Midi de Bigorre in the French
Pyrenees starting in 1878, with its first telescope and dome
installed in 1004.[3] Astronomical observations were also
made from Mont Blanc in the late 1800s.[4] A few other
high altitude observatories (such as the Lowell Observatory
in Arizona and Sphinx Observatory in Switzerland) were
constructed through the first half of the 20th century.
However, the two most important and prominent of the
early 20th century observatories, Mount Wilson
Observatory and Palomar Observatory, were both located
on mid-elevation mountaintops of about 1.700 m (5,600 ft)
in southern California.[5] The stunning successes and
discoveries made there using the world's largest

talacranac tha 1aninch Hanbar Talacrana and 200 inch

Region’de

pita

sta

D)

Aiay oy Parinacota \

Calama

Demo Observatories

Uallagua

Oruro

Challapata

Exploring Maps

In cartography, a map is any two-dimensional graphic representation of the spatial
relationships of the whole or a part of the earth. In digital cartography as in
MapStore, a map consists in overlaying various layers of geographic data and
their styles in data frames, and it contains various map elements such as a legend
and a scale bar.

In order to create a map, the user can click on the New Map button in

Homepage and will be addressed directly to the map viewer (by default only
Administrators and Normal Users can create a new map, as explained before in
Homepage section):

7 i % % e,) 3 .
< ", h Search by location name

Syl B
(ORI TR

| scale: [1: 18489335 _v] I

© OpenStreetMap contributors. 500 km

Once a map is created and saved, it will be available in Homepage content section.

MapStore WebGIS Portal Interface

The Mapstore WebGIS Portal interface is composed by the following main blocks:

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Search by location name

i , o " SEARCH BAR |

o

Filter layers

=™
© Default R
= © statesof US
TABLEOFCONTENTS § .
(Toc)
L3 w ; v
A d A § A # 0) Maragaivo 2 ..‘4
l—- |‘—AP‘-A||7 4‘ ':\7‘*'. .
© OpenStreetMap contributors. -~ —c .

In particular:
* The Table of Contents (TOC) shows the layers and the layers groups on the
map and allows to remove or edit them, and add some new ones

* The MapStore Toolbars includes the Search Bar and the Side Toolbar, an
important list of options that contains several functions and information

* The Navigation Toolbar that is mainly a navigation panel
* The Background Selector allows to add, remove or edit map's background

e The Footer includes the CRS selector, the coordinates, the scale and the credits
of the layer

» The Data Frame is the space where the layers are displayed

../mapstore-toolbars/
../navigation-toolbar/

Table of Contents

The Table of Contents, briefly TOC from now on, is a space where all the layers and
the layers groups are listed. Through this panel it is also possible to carry out the
following operations:

* Add and remove layers and groups

* Perform a search between layers

* Change the position (and consequently the display order in map) of layers and
groups

* Set some display options directly from the panel

* Manage layers and groups and query layers through the toolbar actions

Add and remove layers and groups

The user can access the TOC with the Layers button on the top-left corner of

the map viewer. For example, in a new map, the following panel appears:

The Add Layer button opens the Catalog, a panel where it is possible to

choose the desired layer and add it to the map with the Add to Map button :

i~ Catalog X
Service
GeoSolutions GeoServer CSW x w | KN [=

DE_USNG_UTM18
" d
Avalial mapstore DE_USNG_UTM18
Meteorite_Landings_from_NASA_Open_Data_Portal

mapstore Meteorite_Landings_from_NASA_Open_Data_Portal

A simple layer with all the existing supported attriute types

mapstore Types

states

mapstorestates

Once the layer is added to the map, the result should be like the following:

X

Filter layers

© Default

= © states of US

Republica
==\ oC2.Dominicana==s

. Note

When a layer is added for the first time to the TOC, without any group present, the
Default group is created. This group host all the layers that don't belong to a
specific group and can also host sub-groups within it.

In order to add a new group, clicking on the Add Group button the following

Group name

Imagery|

window opens:

Cancel -

button the new group is

Once the name of the group is typed, with the
added to the TOC.

X S 4
[
Filter layers Y
s =™
© Default -

= © States of US

In order to add a new layer to a specific group, it is possible to select that group
and click on Add layer to selected group :

X 9

Filter layers) 4
© Default -
= @ States of US <

100 %

= © Test group

In order to add a subgroup inside a specific group selected, the user can click on

the Add sub group to the selected group button (maximum 4 subgroup

levels are allowed):

X ®

Filter layers Y
¢ m ANT
© Default -
= © States of US <

8

= © Test group

Layers and groups can be removed selecting them and clicking on the Remove

button present in the toolbar of each selected layer and group.

. Warning

When a group is removed, also all the layers and subgroups associated with it will

be removed.

Search for layers

With the TOC it is also possible to perform a search between the added layers. This
operation can be done simply by typing the name (o part of it) of the layer in the

search bar:

X 2

| streams y 4

© Default 4
© streams <
100 %

Choose layers and groups position

With the drag and drop it is possible to change layers position inside the same
group, but also moving them between different groups. Once the Default group is
created, all the layers without a specific group are automatically added to this one.
Changing layers position with the drag and drop, for example, it can display like
the following:

Groups and sub-groups, no matter their level, can be nested inside other groups
and sub-groups, or can be separated from their parent-level to create new main
groups. These operation can be performed, again, with the drag and drop
function.

. Warning

The only constraints applied to the groups manager refer to the Default group
(each layer added to the map the first time is included in that group). Drag and
Drop operations are not allowed for the Default, but it's allowed to rename it or to
nest groups or sub-groups inside it.

Layers position can also be determined through the Selected layer settings
button available in the toolbar that appears once a layer is selected. This

button opens a panel where the user can choose the destination group (or
subgroup):

X North America sample imagery

Title

North America sample imagery

Title translations

il

Name

nurcimg_Sample

Description

Group

America A

Default
America
America/North America

Europe

Display options in panel

Directly from the TOC panel, it is possible to set different types of display options.
In particular, for layers, it is possible to:

= © USA Population v

= 2ZM
0O2M - 4aM
B o= 4aM
/ Boundary

* Toggle layers visibility by switching on © and off % the "eye"icon to the

left of the layer name

. Expand or collapse the legend by clicking on the (icon. The width and
height property of the legend can be overridden via Legend options under
Display tab.

* Control the transparency in map by scrolling the opacity slider

. Note

When the user switch off the visibility of a layer, also the group where that layer is

nested change the "eye" iconin ¢z (no matter if other visible layers are present

in that group)

With groups there's the possibility to:
= © Europe =

* Expand gy or collapse [jj the list of layers or subgroups nested inside it

* Toggle groups visibility by switching on) and off ¢z the "eye"icon to

the left of the group name

. Note

When the user switch off the visibility of a group, also the visibility of all the layers
and subgroups nested inside it will be automatically switched off.

Toolbar options

Once a group is selected the following toolbar appears:

X

(g

S
| 1

|

Filter layers

= © test group

= @ Linea_costa

Through this toolbar it is possible to:

* Add layer to selected group : it is possible to add one or more layers to
the group
* Add sub group to the selected group : it is possible to add one or more

sub-groups to the selected group

* Zoom to selected layers extent E: in order to zoom the map to all layers

belonging to the group

® Open the Selected group settings where it is possible to change the

group's title, the title translations and see the group name (its ID). It is also
possible to add/customize the description of the group and configure the
tooltips placement in the Ul (more information can be found in Layer Settings
section)

X Default ‘)\

Title
Default
Title translations

m

e
£l
Deutsch

Name

Default

Description

Tooltip Placement

Title - Top -

* Remove selected group and its content

Once the changes have been made, it's possible to save them through the Save

button E

. Note

The information thus modified will be kept only within the current user session. In
order to make these kinds of changes persistent across different user session, the
map needs to be saved.

Selecting a layer, the toolbar is the following one:

X @

¥ Unesco italian items

:L,__ avers 7

NS EHEHIT NO -

]}

© Default

= @ Unesco ltems

In this case the user is allowed to:

* Zoom to selected layer extent : in order to zoom the map to the layer's

extent

® Access the selected Layer Settings

* Set a Filter for that layer

* Access the Attribute Table

* Remove the selected layer

* Create Widgets for the selected layer m
* Export the data of the selected layer

* Open the Layer Metadata u (if configured), to retrieve layer metadata from

the remote catalog source.

Layer metadata X

-

Identifier 68b88c6h-a65b-4107-b4d8-b3ae7ce9b9e4d
Property="date" 2020-02-26T10:12:38
Title Pontons d'attente présents sur les canaux appartenant a la

région Bretagne
Type dataset

Subject * ponton d'attente
e infrastructures
e données ouvertes
e espace public : mobilier urbain
e Services d'utilité publique et services publics
¢ inlandWaters

Property="format" e ESRI Shapefile
e ESRI Shapefile

Mvmem mvds s Wi m ALE A AT ANAN N4 N

. Note

The Metadata Tool is not configured by default in MapStore. A complete
documentation to configure it is available as part of the TOC Plugins
documentation (see metadataOptions). Once the Metadata Tool has been
configured, MapStore is able to load the layer metadata from the remote CSW
service and parse it to be presented to the user according to the provided plugin
configuration. This functionality automatically works in case of WMS layers coming
from a CSW catalog source, while for layers coming directly from a WMS catalog
source the Metadata Link must be present in the WMS Layer GetCapabilities.

* Open the Compare tool where it is possible to Swipe or
Spy the selected layer .

From the dropdown menu I of the Compare tool it is possible to click on
Swipe button so that the Swipe tool is enabled on the map for the selected

layer: to activate the Swipe it is also possible to simply click on the Compare tool
button.

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.TOC
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.TOC
https://docs.geoserver.org/latest/en/user/data/webadmin/layers.html#basic-info

Filter layers

_-{qvergne- 2
Rhbne-Alp s X

© Default

m

© Unesco ltems

= © Regioni ltaliane

From the Compare tool dropdown I it is also possible to click on
Q Configure . Doing this a configuration modal opens for the selected

Compare tool (Swipe or Spy glass) so that, in case of Swipe, the user can change
the orientation of the swipe from Vertical to Horizontal.

The user can also activate the O, Spy glass from the same dropdown menu I

in order to switch the Compare tool in Spy glass mode. If the Spy glass is active,
clicking on the a Configure option, the configuration modal opens so that it
is possible to change the size of the spy glass (the radius).

w
Filter layers
© Default
© Unesco ltems

"

© Regioni Italiane

Palermo

Layer Settings

In this section, you will learn how to manage the layer settings in terms of general
information, display mode, style and feature Info.
Since a layer is added to the TOC it is possible to access its settings with the

dedicated button that appears selecting a layer:

X @
[}
Filter layers) 4
TASEE MO 2-

© Default 4

= @ States of US

The layer settings panel is composed of four sections:

X States of US "\

»
0
il
S
©

* General information
* Display

* Fields

* Style

e Feature Info

. Warning

For WMTS layers the Fields, the Style and the Feature Info sections are not
implemented. Moreover the Display section is limited to the Transparency layer
parameter.

General information

By default, as soon as the user opens the layer settings panel the General
information section appears:

X States of US N
RN © = /A U
Title
States of US |
Name
gs:us_states AN
Description
7z
Group
New York v
Tooltip Placement
Title v Top v

() Disable editing on Attribute table

In this page it is possible to:

* Change the Title

. Set the translation of the layer title by opening the Localize Text popup
through the |® button. This way the language of the title changes according

to the current language setting in MapStore

» Take a look at the Name of the layer
* Edit the layer's Description
* Set the layer Group

* Configure the Tooltip that appears moving the cursor over the layer's item in
TOC. In this case the user can decide that the Title, the Description, both or
nothing will be displayed. Moreover you can set the Placement of the tooltip,
choosing between Top, Right or Bottom:

Title

Description Top

Title and Description m
No Tooltip Bottom

Title | - ‘ Top v

Setting a tooltip that shows the Title and the Description on the Right, for example,
it can be similar to the following:

https://mapstore.geosolutionsgroup.com/mapstore/#/

[H
i
Filler ' Y ® " £
[- — R -,'i-‘
CHRNE 2 | i
= © Default =

= © States of US

* Disable editing on attribute table. This option allows to disable the editing
function in Attribute Table. In case a layer has been set as read-only through

this option, the icon will not be available in the Attribute Table and in

theldentify panel for the selected layer. This option is unchecked by default and
it can be controlled only by users with editing permissions on the map.

Display

Through the second section of the layer settings panel it is possible to change the
display settings:

X States of US ‘)\

N © = / 9

Format

image/png v &
Tile size (WMS)

256 v
Opacity %

100 -
Visibility limits = n

Max value (excluded)

Select max value v

Min value (included)

Select min value v
Limits type
Scale v

Transparent

(J Single Tile

(J Enable localized style @
(J Force proxy

Q
0

Use cache options

Legend
Width Height v

In particular, the user is allowed to:

* Set the image format: choosing between png, png8, jpeg, vnd.jpeg-png,
vnd.jpeg-png8 and gif

. Note

The list of available format is the same of the related catalog source. Therefore,
for WMS services, the updated list of formats supported by the WMS server is
used.

* Set the size of layer tiles: choosing between 256 or 512

Warning

The Format and Layer tile size options are available only for the layers added from
CSW and WMS catalog sources.

* Set the opacity value of the layer (in %)

* Enable/disable the Visibility limits to display the layer only within certain
scale limits. The user is allowed to request the MinScaleDenominator and
MaxScaleDenominator value present on the WMS GetCapabilities of the layer

though the G button or set the Max value and the Min value and select the
Limits type choosing between Scale or Resolution .

* Enable/disable the transparency for that layer

* Decide to display the image as a single tile or as multiple tiles

* Enable/disable the localized style. If enabled allows to include the MapStore's
locale in each GetMap, GetLegendGraphic and GetFeaturelnfo requests to
the server, as explained in the WMS Catalog Settings

* Enable/disable the Force proxy layer option. If enabled, forces the application
to check the source and applies proxy if needed.

* Enable/disable the use of the layer cached tiles. If checked, the Tiled=true URL
parameter will be added to the WMS request to use tiles cached with
GeoWebCache. When the Use cache options is enabled, more controls are
enabled so that it is possible for the user to check if the current map settings
match any GWC standard Gridset defined on the server side for the given

WMS layer (Check available tile grids information {3). Atthe same time,
it is also possible to change the setting strategy (based on the WMTS service

response) to strictly adapt layer settings on the client side to the ones matching
any remote custom Gridset defined for the current map settings (Use remote

custom tile grids button).

https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms
https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms

. Note

When the Check available tile grids information

3 Dbutton is clicked, an info

icon @ appears to inform the user if the current map settings (Projection, Tile

size, Image Format) are properly matching the ones of the given Tile Grids defined

on the server side configuration for the layer.

Tile grids information

The following checklist shows some possible compatibility
issues between the current gridset and the remote
information. It is still possible that the tile grid does not hit
the cache even if all the checks listed are successful

@ Projection
Q@ Tile size

@ Format

Available Tile Grids

Id Projection

P EPSG:4326 EPSG:4326
EPSG:4326x2 EPSG:4326
EPSG:900913 EPSG:900913
EPSG:900913x2 EPSG:900913

Supported formats
image/png
image/vnd.jpeg-png
image/jpeg
image/vnd.jpeg-png8

image/png8

Tile size
256
512
256

512

When the Use remote custom tile grids button is enabled, it turns green

and a WMTS request is performed by MapStore to fetch precise information to
more finely adapt the layer settings on the client side to the ones of the matching

Tile Grid defined on the server. The scope of the info icon € in this case is still

the same but through this strategy MapStore provides a finer tuning of the client
side layer settings to better fit the tile grid defined on the server side and so

provide better accuracy of cache matching.

Tile grids information

The tile grid 'EPSG:900913x2' matches the current map
projection and the tile size selected for this layer

Available Tile Grids

Id Projection Tile size
EPSG:4326 EPSG:4326 256
EPSG:4326x2 EPSG:4326 512
EPSG:900913 EPSG:900913 256

o EPSG:900913x2 EPSG:900913 512

Supported formats
image/png
image/vnd.jpeg-png
image/jpeg
image/vnd.jpeg-png8

image/png8

In case the current map/layer settings (Projection, Tile size, Image Format) do not
match any of the server-side defined Tile Grids for the given layer the Info panel
shows a warning message to indicate the reason for the mismatch so that it is
possible for the user to change the needed setting accordingly (for example
changing the map projection or selecting a different tile size and/or tile format).

Tile grids information

Available Tile Grids

Id Projection Tile size
EPSG:4326 EPSG:4326 256
EPSG:4326x2 EPSG:4326 512
EPSG:900913 EPSG:900913 256
EPSG:900913x2 EPSG:900913 512

Supported formats
image/png
image/vnd.jpeg-png
image/jpeg
image/vnd.jpeg-png8

image/png8

The selected format is not supported by the cache.

Warning

The Gridset compatibility check made by MapStore whose result is shown by the
Info tooltip, is usually quite reliable but should be considered anyway only to
provide general matching indicators aimed at highlighting possible compatibility
issues between the current layer/map settings and the remote Tile Grid. Due to the
cache tolerance considered on the server side by GWC, it might even happen in
some cases that the settings available on the client side don't HIT the tile cache
even if all the checks listed are successful. At the same time, when the standard
gridset is used, gridsets check may fail even if all WMS request are effectively
HITTING the cache (e.g. because the WMTS reports a list of origins).

* Set the layer Legend with custom Width and Height options. Both of these field
values if greater than the default legend's size of 12, then the custom values
gets applied on the legend width and height display property

» A preview of the legend is shown with the applied custom values from Legend
fields above.

Warning

The Format and Layer tile size options are available only for the layers added from
CSW and WMS catalog sources.

. Warning

On the Display tab, only the following options are available for a 3D Tile layer:

N © P

Visibility limits m|

Max value (excluded)

Select max value v

Min value (included)

Select min value v
Limits type

Scale v
Format 3D Model v
Height offset (m) 0 m

* The Visibility limits to display the layer only within certain scale limits, as
reported above.

* The Height Offset above the ground.

* The Format choosing between 3D Model and Point Cloud . The Point Cloud
option allows the user to customize the Maximum Attenuation of the points based
on the distance from the current viewpoint and customize the Lighting strength
and the Lighting radius to improve visualization of the point cloud.

Format Point Cloud v

Height offset (m) 0 m

Visualization options

Enable attenuation @

Maximum attenuation 4 px
Enable lighting @

Lighting strength 1

Lighting radius 1

Fields

From this section of the Settings panel, MapStore allows the user to add aliases to

layer fields.
X United States N
N © = Va)
0

Name Alias Type
STATE_NAME % | string .
STATE_FIPS % | string
SUB_REGION I® | string
STATE_ABBR % | string
LAND KM [| number
WATER_KM I® number
PERSONS * nhumber
FAMILIES ® number
HOUSHOLD [* number
MALE ™ | number

The panel shows the fields (feature attributes) of the layer. For each field the
following are specified:

¢ the Name of the field

https://mapstore.geosolutionsgroup.com/mapstore/#/

* the Alias of the field, which by default is empty
* the Type of field

The Name and the Type of the field cannot be modified, while the alias can be
specified by the user.

Using the Localize |® button, a popup opens so that it is possible to configure

the alias of the field as well as its translations.

Localize text

|® States

nome

il

name

[]
=

prénom

vorname

[

nombre

F

Close

Setting the aliases, it is possible to configure the desired attribute names to be
shown in all supported MapStore tools for this functionality and manage related
translations accordingly.

The aliases configured in Layers Settings will be used for the following supported
MapStore tools:

* Attribute Table

* Filter layer

* Identify (only properties output format)
* Visual Style Editor

* Charts Widget and Table Widget

Through the toolbar available on the top-center of the Fields panel, it is possible to:

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
../attributes-table/

X United States "\

N © = /.)
© m
Name Alias Type
STATE_NAME States |™ string
STATE_FIPS | | string

* Reload the list of fields from the data source using the button

* Clear all customization in the Ul by using the E button

Style

The third section, dedicated to the layer style, displays like the following:

X States of US N

N © = v)
Filter styles by name, title or abstract Y
) Pophatch

N FOSS4G Style
Style created for FOSS4G

A boring default style

A sample style that just prints out a transparent red interior with a ...

SLD

Ccss Base CSS1

In this case the user is allowed to:

» Search through the available layer styles and select the desired one
* Create a new style
» Edit an existing style

* Delete an existing style

. Note

By the default service security rules the GeoServer's REST APIs are available only
for the GeoServer administrators, so a basic authentication form will appears in
MapStore to enter the Admin credentials. Without Admin rights, the editing
capabilities on styles are not available and only the list of available styles will
appear to allow the user to select one of them to the layer.

Take a look at the User Integration with GeoServer section of Developer Guide in
order to understand how to configure the way MapStore and GeoServer share
users, groups and roles. If the users integration between GeoServer and MapStore
is configured, the editing functionalities of the styles will be available according to
the role of the authenticated user in MapStore in a more transparent way.

https://docs.geoserver.org/stable/en/user/security/service.html#service-security

Create a new style

It is possible to create a new style with a click on the n button. At this stage the
user can choose between different types of template from which the customization
will start:
* CSS - Cascading Style Sheet (a language used for describing the presentation
of a document written in a markup language like the HTML)

* SLD - Styled Layer Descriptor (an XML schema specified by the Open
Geospatial Consortium OGC for describing the appearance of map layers)

®
-

Select a template to create a new style

CSS § SLD

Solid fill Forest fill Base CSS Base SLD

. Note

The availability of the style formats depends, firstly, from the GeoServer.
MapStore, by default, will add all the supported format that the server provides. To
edit or create styles using the CSS format the CSS extension must be installed in
GeoServer

Once the new style is chosen, with a click on the button the following window

opens:

http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://geoserver.org/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://docs.geoserver.org/latest/en/user/styling/css/install.html

Create new style

Title

My Custom CSS
Abstract

Base CSS Customization

Save

Here the user can set the Title and the Abstract (optional), and through the Save
button the new style will be automatically added to the styles list.

Edit an existing style

Existing styles can be edited clicking on the E4}¥ button. The page that opens

allows the user to customize the style in the related format:
The editor is easy to approach thanks also to the following functions:

» The sintax control highlights any possible error with a red underline (if error

are detected an icon with a red exclamation point m will be shown in the

top-right side of the editor)

‘ Validation Error

Invalid styleinvalid input I’ expected

NN\, \n', AndSelector,
BasicSelecter, .. 'I' or Colon (line g,
column 1)

: symbol(square);
:mark { B #1f(
foo

* The autocomplete function suggests the possible style's properties in order to

prevents syntax errors:

‘My Custom C55°;
'Base (€SS Customization';

* {

symbol (square) ;
:mark { fillE#ff0000; };
J
stroke
stroke-composite
stroke-geometry
stroke-offset
stroke-mime
stroke-opacity
stroke-width
stroke-size
stroke-rotation
stroke-linecap
stroke-linejoin
stroke-dasharray
stroke-dashoffset
stroke-reneat

* The color picker, that can be activated through the square filled icon ([l
near the color code, helps in choosing colors directly from the editor, showing
an interface like the following:

Warning

The autocomplete and the color picker functions are available only in the CSS
editor.

Visual Editor Style

MapStore also allows to edit the layers style using a Visual editor with a most user
friendly UI.Clicking on the \/isual editor button a section opens so that the

user can customize the style through with a visual style editor by adding/editing
symbolizers, which can be: Mark, Icon, Line, Fill and Text. It is anyway possible to
switch to the text editor mode if necessary for a more complex styling.

https://mapstore.geosolutionsgroup.com/mapstore/#/

X States of US ‘7\

N © P U

Code editor

> ¢ ! OV NN T

Once a symbolizer has been added and customized, you can:

» C OXEL AN I (Y |

m

-«
™
=|

* Filter the style rule, as explained here, in order to apply the style only to

certain layer features. It is possible clicking on the Y button.

* Add a Scale denominator filter (max and min scale) to visualize the style

rule only within certain scale limits. This is possible by clicking the & button.
* Remove the symbolizer by clicking the ﬁf button.
Mark

The mark type allows you to add a mark to the layer: clicking on the @* button a

mark panel appears:

X States of US "\

N © /)

Code editor
» € @ NKT
Enter legend label Y £ 0
Shape]
Fill color /s
Stroke color l |
Stroke width ® 1px |
Radius —E
Rotation [0 |

The mark can have different Shape, Color, Stroke with different Color and Width
and customizable Radius and Rotation. Take a look at the following example.

el states_test N

x ° v 9
Code editor
by @R NN T
Enter legend label Yeou
(0]
Shape
Fill color
Stroke color
Stroke width —a
Radius —am l"‘“’" %
Rotation [o~} ok

o Memphis
> N

® OpenstreetMap contributors.

500 km scale: [1:18285335] |

Icon

With the icon panel, which opens by clicking on 9"’ button, the style editor is

allowed to add an image as an icon (by specifying its URL) and customize the icon
Opacity , Size and Rotation angle:

X States of US "\

S © Va U

Code editor
€ @ NKNT
Enter legend label Y £ 0
U
Image Jploads/2019/1O/pol-ﬂag.giﬂ=
Opacity S 1.00
Size —Er
Rotation =1

Line

The line rule is used to style linear features of the layer: clicking on the Y button

a panel allows the user to edit the corresponding properties.

>< States of US "\

N © Vo U

Code editor

» € O NN T
Enter legend label Y £ 0
N :
Stroke color | N
Stroke width E 1px |

Line style v
Line cap Butt Round Square

Line join Bevel Round Miter

The editor can change the Stroke color, the Stroke width, the Line style (continuous,
dashed, etc), the Line cap (Butt, Round, Square) and the Line join (Bevel, Round,
Miter). An example can be the following one:

Fill
The Fill rule is used to style polygon features. Clicking on N button, the editor is
allowed to customize the Fill color, the Outline color and the Outline width :

Text

The Text rule is used to style features as text labels. Text labels are positioned
either at points or along linear paths derived from the geometry being labelled.

Clicking on the T button a specific panel opens:

X States of US "\

N © W 9
Code editor

€ @V NN T
Enter legend label Y £ 0
T .
Label Select value v
Font family Select value v
Font size —ira

Font style Normal Italic

Font weight Normal Bold

Halo color

Halo width S 1px |

Rotation [0~ |

Offset x —l T

Offsety = 0 px |

The editor is allowed to type the name of the layer attribute to use for the Label
and the dropdown list is filtered accordingly to show the existing attributes that
are matching the entered text (the user can anyway directly select an attribute
from the list). Moreover, the style editor can customize the Font Family (DejaVu
Sans, Serif, etc), choose the font Color, Size, Style (Normal or Italic) and Halo

weight (INormal or Bold) and select the desired Halo color and Halo weight . It is also
possible to choose the text Rotation and Offset (x and y). En example can be the
following one

Style Methods

Different styles methods can be used for each style rule. Clicking on the :
button, available on top of the panel of each symbolizer, the editor can choose one
of the following depending on the rule type:

» Simple style

* Classification style

* Pattern mark style (available only for rules of type Line and Fill)

* Patter icon style (available only for rules of type Line and Fill)
Simple style
The Simple style is the default style described above for each symbolizer.
Classification style

MapStore allows you to classify the style based on the attributes of the layer. The
Classification style is available for Marker, Line, Fill and Text by clicking on the

: button and choosing the Classification style options from the dropdown

menu.

https://mapstore.geosolutionsgroup.com/mapstore/#/

X States of US "\

S © v U
Code editor
¢ ! @ XK T
Classification]

(e
.

Color ramp OrRd _

Reverse order True False

Attribute Select value v
Method Equal interval v
Intervals —=1]

Opacity - 1.00 |
Shape (]

Stroke color L]
Stroke width 8 1px |

Radius —iTrA

Rotation [0" |

It this case the editor is allowed to choose a Color ramp and the order (with
Reverse order) of the classification intervals colors. It is obviously possible to select
the layer Attribute to use for the classification along with the classification Method
(Quantile, Equal interval, Natural breaks and Standard deviation), the number of

classification Intervals and the Opacity (%) of each interval range. An example of
the Classification style for a Fill rule type can be the following one:

X states_test ‘)\ search by location name - JeN Em

! Regina
B yoncogtee Ontario
. © ” i Pl
Code editor P
b ¢ ©@ ¢ NKNT
_ e
Classification LAl | {
,
OUIWa" - Montréal.
N H J\fd
Color ramp OrRd -
Reverse order True False
Attribute FAMILIES -
Method Unique interval -
Intervals
Opacity _
Outline color
Outline width —E
7/ 740819 .
/1130683 .
/122087 .
/2 1334052 .
/500259 :
/| 45427 . -
\
vl i
© OpenStreetMap contributors. o0k Scale: [1: 18489335 v

Pattern mark style

With the Pattern mark style it is possible to represent Line or Fill style rules with a

mark by clicking on the : button and choosing the Pattern mark style options

from the dropdown menu.

>< States of US "\

N © P 9

Code editor
» € @ NN T

Enter legend label Y £ 0

N :

Shape

Fill color

Stroke color

L
Stroke width 8 1px |
Radius —i
[0> |
® 1px |

Rotation

Stroke width

Line style -
Line cap Butt Round Square

Line join Bevel Round Miter

The style editor can configure a Mark as explained here along with the usual
options available for rules of type line or fill depending on the selected symbolizer.
Take a look at the following example of the Pattern mark style for the Line rule
sample.

X states_test - LA . . , - | search by location name

[« v] 4 .

{
~ Regina

N °
rrrrrrr
4 Av
» ¢ z v e Dokors

v

v
Enter legend label

N

South Dakota.

Shape

Fill color

Stroke color E
S
—&r3
—m
—Z

Stroke width

Radius

Rotation

Stroke width

Line style

Line cap Burtt
Austin
Line join Bevel

San Antonio

[— - o s []|
Patter icon style
With the Pattern icon style it is possible to represent Line or Fill style rules with an

icon by clicking on the : button and choosing the Pattern icon style options

from the dropdown menu.

X States of US "\

N © P U

Code editor

» ¢ ! @ N KX T
Enter legend label Y £ 0
N :

Enter image url

—Fm™

Stroke width £ 1px |

Line style -
Line cap Butt Round Square
Line join Bevel Round Miter

The style editor can configure the Icon as explained here along with the usual
options available for rules of type line or fill depending on the selected symbolizer.
Take a look at the following example of Pattern icon style for a Fill rule sample.

X states_test "‘ Search by location name & O Em
— ——— -

Regina
:

> ¢
Ei legend label
N
Image https://opmjobs.com/wp-co
Size —Em
Outline width 43
San Lul§ i =
© Openstreethap contributors. 500 km Scale: | 1:18489335 v

Styling on the 3D navigation

Thanks to the new improvements made to the Visual Style Editor editor, when 3D
Navigation is enabled, the editor has the ability to customize the style of 3D Tiles
and vector layers.

Styling of 3D Tiles layer

With MapStore it is possible to customize the style of a 3D Tiles layer client side.
The MapStore support is working in respect of the 3D Tiles Specification 1.0 and
on top of the Cesium Styling capabilities. Below is an example of how the Style
Editor of a 3D Tiles layer is appearing in the MapStore UL

https://mapstore.geosolutionsgroup.com/mapstore/#/
http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html
https://github.com/CesiumGS/3d-tiles/tree/1.0/specification/Styling

X Buildings

» €

% Inserisci l'etichetta della legenda

[N

Colore riempimento

i Inserisci l'etichetta della legenda

N

Colore riempimento

% Inserisci l'etichetta della legenda

N

Colore riempimento

i Inserisci l'etichetta della legenda

N

Colore riempimento

- Soddisfa almeno una delle V seguenti condizioni:

- | height b > -, 25

|

For the 3D Tiles styling, while with the Code Text Editor it is possible to leverage

completely on the styling specifications:

X Buildings ‘)\

“show": "((!(${name} === undefined || ${name
"color”: {
“conditions": [
[
"((!(${name} undefined || ${name}
"color('#f5a623", 1)"

“((!(${name} === undefined || ${name}
“color('#f8e71c’, 1)"

"((!(${name} === undefined || ${name}
"color('#7873db", 1)"

"((!(${height} === undefined || ${height}
“color('#69ca8f’, 1)"

true,

“color("#ffffff’, 1)"

The MapStore Visual Style Editor supports for now only a limited set of
capabilities:

¢ Customization of the Fill color

» Style Rule filtering based on the available properties dictionary defined in the
tileset.json

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://github.com/CesiumGS/3d-tiles/tree/1.0/specification#properties

X Buildings o,

\
|

3% ® Vi Soddisfa almeno una delle V seguenti condizioni:

Editor dic] eight v v 9

» ¢

it Inserisci l'etichetta della legenda

N

Colore riempimento

i Inserisci l'etichetta della legenda

N

Colore riempimento

i Inserisci l'etichetta della legenda

N

Colore riempimento

i Inserisci l'etichetta della legenda

N

Colore riempimento

Via Preero Chiesa -

* Possibility to customize the radius in case of point cloud features

PointCloudRGB N

.
L]] .l ..-l

. L
"color": “"color('#b6lele', 1)", . .'.

"pointSize": . o :'-_ .'.'.- '."._ ".‘ ".._. '5_ . '1._
L l-. .lm

" S T §

X PointCloudRGB N

N © 2
ditor - -
R . R}
-. .l .|. .l
Enter legend label] S ke
o EI E L} X
0 I S T §
S
""""""""" .

Radius — wm T T e e e

aglfanannn®

S A T et
P L — S
Y Ty, g, TSungng ey

e S AN

sglifanunnn®

R R
P P | T

 \

Styling of Vector layer

In 3D mode MapStore allows to customize the style of the Vector layer through the
Visual Style Editor using the same styling options available in 2D mode as
described in the previous chapter.

In addition the 3D model rule type is also available. From the Visual Style Editor,
by clicking on .-,+ button, the 3D model symbolizer panel opens to allow adding a
3D model (based on gITF, GLB is also allowed) as an external graphic by
specifying its URL (see also the Cesium documentation). Furthermore, it is possible
to customize the 3D model Scale, Rotation and Color . Take a look at the following
example.

Warning

For the Vector layer, the Visual Style Editor have some limitations:

 It's possible to apply only one type of symbolizer at the time, so if the rule
editor shows multiple rule with the same filter, only the first one is used.

 For the Line symbolizers: the Line cap and Line join options are not available
as properties in Cesium

Furthermore, for WFS layers, MapStore adds some additional styling options in
the Visual Style Editor such as:

* Bring to front (available for Icon, Mark and 3D model symbolizers) to bring in
front and so to make visible (if set to true) all features covered by 3D Tile layers
and the Terrain layer (for this last case when the depth test against terrain
option is enabled in Global Settings).

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://github.com/KhronosGroup/glTF
https://cesium.com/learn/cesiumjs/ref-doc/ModelGraphics.html?classFilter=Model
https://mapstore.geosolutionsgroup.com/mapstore/#/

)& V_INTERVENTI LN

e © Vd Q
Code editor
bl > v & T
Enter legend label YT
Shape @
Fill color
Stroke color
Stroke width 1 px
Radius 12 pX
Rotation 0
I Bring to front False
Height reference from ground m Relative Clamp
Height Point height v
Leader line color 1 i |
Leader line width 0 px

* Height reference from ground (available for Mark, Icon, 3D Model and Text
symbolizers) to indicate the reference for the point height between None (to
the absolute zero of the ground), Relative (to the terrain layer level) or Clamp
(the feature is clamped to the Terrain, if present, or to the ground). It is also
possible to finely configure the Height value of the point symbols by choosing
between one of the attributes of the feature (where Point height indicates the
intrinsic height of the feature geometry) selecting Attribute Value or choosing
Constant Value that allows to set the raw value of the height.

bl (¢

Enter legend label

Shape

Fill color
Stroke color
Stroke width
Radius
Rotation

Bring to front

V_INTERVENTI N

d 9

Code editor §

True False

Height reference from ground

Height

e L

Leader line color

Leader line width

Constant value

Attribute value

0 px

* Leader line (available for Mark, Icon, 3D Model and Text symbolizers) to add
a line to connect the point symbol with the Terrain/Ground to have a more
clear reference of the effective point position when the camera orientation
change. The editor can choose the Width of the line and the Color through the
usual color picker.

X V_INTERVENTI

Y ¢ Ol

Enter legend label b 4

Shape E’

Stroke color

Stroke width 2 s | px

Radius 12 pX

Rotation 0 e

Bring to front False
Height reference from ground m Relative Clamp
Height 20

Leader line color

Leader line width 3 pX

* Clamp to ground to enable/disable the boolean property specifying whether
the line or polygon features should be clamped to the ground (this option is
available for Line and Fill symbolizers).

RS ° Vi

y ¢

Enter legend label

N
Fill color R R S S RS T
Qutline color [|
Outline width 3 px
I Clamp to ground True I

* Clamp to ground reference to choose whether the drape effect, should
affect 3D Tiles, Terrain or Both. This option is available for Fill symbolizers and
it is only enabled when the Clamp to ground option is set to True

Y ¢

Enter legend label

N

Fil color FLS SRR SRS
Qutline color L

Outline width 3 px

Clamp to ground False

I Clamp to ground reference 3D Tiles Terrain Both

m—
e I =

i

Feature Info Form

Through the last section of the layer settings panel, it is possible to decide the
information format that appears querying a layer with the Identify Tool:

X States of US ‘)\

DISABLE IDENTIFY

Disable the feature info for this layer

TEXT

Shows feature info results as plain text

HTML

Shows feature info results as html

PROPERTIES

Shows feature info results as properties list

TEMPLATE

Customize feature info results format

m» & & & ®

In particular, the user can choose between:

* Disable Identify to disable the Identify for the layer
* Text

« HTML

* Properties

 Template

V . Note

Without selecting any format here, the Identify Tool will return the layers
information with the format chosen in Map Settings (in the Side Toolbar). Once a
user specifies the information format in layers settings, instead, that format will
take precedence over the map settings only for that specific layer.

Text

An example of layer information in text format can be:

Results for FeatureType 'htips://gs-stable.geo-solutions.it/geoserver/geoserver:us_st
ates’:

the_geom = [GEOMETRY (Polygon) with 297 points]

STATE_NAME = Montana

STATE_FIPS = 30
SUB_REGION = Mtn
STATE_ABBR = MT

LAND KM = 376920.894
WATER_KM = 3858.589
PERSONS = 799065.0
FAMILIES 211666.0
HOUSHOLD 306163.0
MALE = 395769.0
FEMALE = 483296.0
WORKERS = 293243.0
DRVALONE = 258373.@
CARPOOL = 41442.9
PUBTRANS = 2059.0
EMPLOYED = 3508723.0
UNEMPLOY = 26217.0
SERVICE = 123090.0
MANUAL = 4361°2.8
P_MALE = ©.495
P_FEMALE = @.505
SAMP_POP = 158891.@

HTML

An example of layer information in HTML format can be:

us_states

fid STATE_NAME STATE_FIPS SUB_REGION STATE_ABBR LAND_KM WATER_KM PERSONS FAMILIES HC

us_states.28 South Dakota 46 W N Cen SD 19657521 3169429 696004.0 180306.0 25

4 »
Properties

An example of layer information in properties format can be:

us_states 28

STATE_NAME South Dakota
STATE_FIPS 46
SUB_REGION W/ N Cen
STATE_ABBR 5D
LAND_KM 19657521
WATER_KM 3169 429
PERSONS 696004
FAMILIES 180306
HOUSHOLD 253034
MALE 342498
FEMALE 353506
WORKERS 250825
DRVALONE 233478
CARPOOL 32610
PUBTRANS 971
EMPLOYED 321891
UNEMPLOY 13983
SERVICE 119594
MANUAL 41921
P_MALE 0 492
P_FEMALE 0508
SAMP_POP 162746

Templates

In this case the user can customize the information format:

X States of US N

p
0
i
£
©

DISABLE IDENTIFY

Disable the feature info for this layer

HTML
Shows feature info results as html

PROPERTIES

Shows feature info results as properties list

@
Shows feature info results as plain text

a TEMPLATE

Customize feature info results format

In particular, by clicking on the button, the following text editor appears:

Edit custom format ¢ X

Font ¥ Normai Y B ¥

'

4
i

4
A
N
5]
53|

V . Note

Clicking on the button, the Identify Template editor allows to insert images in

different ways:

» Using direct URLs of resources available on the web
* Using URIs encoded in base64

» Parsing needed image URLs from available feature attributes (eg. attributes
with URL value). The usual syntax can be used in this case to refer the
attribute value (eg. ${properties.IMAGE})

» Parsing image URIs encoded in base64 from available feature attributes (eg.
attributes with base64 URIs values). The usual syntax can be used in this case
to refer the attribute value (eg. ${properties.IMAGE})

Here it is possible to insert the text to be displayed through the Identify Tool, with
the possibility to wrap the desired properties.

Let's make an example: we assume to have a layer where each record
corresponds to a USA State geometry in the map. In the Attribute Table of this
layer there's the STATE NAME field that, for each record, contains a text value with
the name of the State.

If the goal is to show, performing the Identify Tool, only the State name, an option
could be to insert the following text on the Template text editor:

Nomal ¢ B I U ® == Kk

The name of the State is ${properties. STATE_NAME}|

In this case, by clicking on the map, the Identify Tool returns:

States of US

Lat: 40852 - Long: -73.103

The name of the State is New York

Using the ${properties. NAME OF THE FIELD} syntax, MapStore is able to parse the
response to the Identify Tool request by matching the configured placeholder.

Filtering Layers

When using vector layers it might be useful to work with a subset of features.
About that, MapStore let the user set up a Layer Filter that acts directly on a
layer with WFS available and filter its content upfront. The map will immediately
update when a filter is applied.

. Warning

The MapStore's filtering capabilities are working on top of the WFS specifications
so that service must be enabled if you want to filter a layer using the tools
described in this section.

Filter types
In MapStore it is possible to apply filters on layers in three different ways:

» With the Layer Filter tool available in TOC
e With the Advanced Search tool available from the Attribute Table

e With the Quick Filter available in the Attribute Table

Layer Filter

This filter is applicable from the Filter layer button in TOC's Layers Toolbar

and it will persist in the following situations:
» Using other tools like the Identify tool:
* Applying another type of filter

* Opening the map next time (you need to Save the map from the Side Toolbar
after applying a filter)

Once a Layer filter is set, it is possible to enable/disable it simply by clicking on the
button that will appear near the layer name in TOC:

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

I
75
Q
W
-

]

© Default

= © & states

This filter is applied through the Query Panel. Once the settings are chosen, it is
possible to Apply them. After that the user can:

* Undo the last changes

* Reset B M the filter to the initial situation

* Save the filter in order to make it persistent

Advanced Search

This filter, applicable from Advanced Search button in Attribute Table,

behaves as follows:

It can be used to apply a filter to a layer for search purposes in Attribute Table:
this filter is applied in AND to the Layer Filter if it is already been set.

SN YRESF N

STATE nNaae STATE Fws SUR RECON STATE AbRa LAND kM WATER xn PERSONS FanaLgs

HOUSHOLD

Q=)
® It is possible to sync this filter with the map through the icon:

* It will be automatically removed/reapplied by closing/opening the Attribute
Table

Also this filter is applied through the Query Panel but in this case it is not possible
to Save it and make it persistent reopening the map the next time. The user is only

allowed to apply it by clicking on Search or eventually Reset it.

Quick Filter

The user can perform three type of quick filters:

* Filter by attributes
* Filter by clicked point in the map

* Filter by viewport
Quick Filter by attributes

This filter is available for each colum in the Attribute Table just below the field
names and it can be also used in combination with other filter applied:

The user has the possibility to apply simple filters by attributes simply typing the
filter's value in the available input fields (Date or Time pickers are available
according to real attributes data types and a tooltip usually gives an information on
how to fill the filter's input field). Filtering by one or more attributes, layer records
in Attribute Table are automatically filtered accordingly.

If the user wants to filter by an attribute of type String, he can simply write
something inside the input box and the list of records in table will be automatically
filtered by matching with the input text.

w;u:-v:o‘«
USA Population
STATE_NAME STATE_FAIPS SUB_REGION STATE_ABBR LAND_KM WATER_KM
I Mrona I
Q Artzona 04 Min AZ xa333462 o277

© CpenSlrectMan Conrtatons

If the User wants to filter by a numeric attribute, he can type directly a number or
an expression using the following operators:

* Not equal (!=or !==or <>)

* Equal or less than (<=)

* Equal or greater than (>=)

* Less than (<)

* Greater than (>)

* Equal (=== or == or =)

In order to filter a numerical filed matching the records greater than or equal to a
certain threshold value, an example can be:

— y o
Y so‘.o @ |I|I l'l USA Population
STATE_NAME PERSONS FAMILIES MALE FEMALE EMPLOYED
I 24000000
o lincts 11430802 2924880 5652273 5878360 5417967
& Missoun 17073 1368334 2464315 2852768 238738
& North Caroling 6628829 1812051 3014286 3414343 . a4

© OpenSirmetMap contnbutors

Quick Filter by map interaction

It is possible to filter records in the Attribute Table by clicking on the map or doing
a selection directly in a map of multiple features. The user can activate the Filter

on the map ¢@ button (once clicked the button turns blue) and then:

* Click on the map over the features he wants to select

* Add multiple features to the selection by pressing Ctrl and clicking again over
other features in map

* Add multiple features to the selection by pressing Ctrl + Alt and drawing a
selection box in map

The list of records in the Attribute Table will be automatically filtered according to
such user selection and then the user can disable the geometry filter through the

Remove filter € button.

Quick Filter by viewport

From the Attribute Table the user can filter data by map viewport through the

Filter by viewport B4 button. Once clicked, the toggle button turns its state to

green and the list of records in the Attribute Table is filtered by showing only
records corresponding to layer features present in the current map viewport.

The list of records in the Attribute Table is automatically updated when the user

pan/zoom the map view. It is possible to deactivate the Filter by viewport B8 by

clicking again the same toggle button.

. Note

The Quick Filter remains active as long as the Attribute Table is open but, unlike
the Advanced Search, closing the Attribute Table it will not reappear anymore if
the Attribute Table is re-opened in a second time.

Query Panel

This tool is used to define advanced filters in MapStore. It includes three main
sections:

* Attribute Filter
* Region of Interest

* Layer Filter

https://mapstore.geosolutionsgroup.com/mapstore/#/

Attribute filter [W

Match any v of the following conditions B <+
Region of interest | M
Filter type elect v
Geometric operation Intersects v
Layer filter | W
Target layer Select layel v

Attribute filter

This filter allows to set one or more conditions referred to the Attribute Table
fields.
First of all it is possible to choose if the filter will match:

* Any conditions

¢ All conditions

¢ None conditions

After that, the user can insert one or more conditions, that can also be grouped in

one or more condition groups (use the button in order to create a group).

A condition can be set by selecting a value for each of the three input boxes:

» The first input box allows to choose a layer field

* In the second input box it is possible to choose the operation to perform
(selecting a text field can be =, like, ilike or isNull, selecting a numerical field,
can be =, >, <, >=, <=, <> or ><)

* The third input box (in case of fields of type String) provides a paginated list of
available field values already present in the layer's dataset (a GeoServer WPS
process is used for this). In case of numeric fields the user can simply type a
value to use for the filter.

. Note

the "paginated list of available field values" above is available only if the server
provides the WPS process gs:PagedUnique

A simple Attribute Filter applied for a numerical field can be, for example:

Region of interest
In order to set this filter the user can:

* Select the Filter type by choosing between Viewport, Rectangle, Circle,
Polygon (selecting Rectangle, Circle or Polygon it is necessary to draw the
filter's geometry on the map)

* Select the Geometric operation by choosing between Intersects, Is

contained, Contains

Applying a Circle filter with Intersect operation, for example, the process could be
similar to the following:

Once this filter is set, it is always possible to edit the coordinates and the

dimensions of the drawn filter's geometry by clicking on the Details button § .

Editing a circle, for example, it is possible to change the center coordinates (x, y)
and the radius dimension (m):

Region of interest i | W

Filter type Circle v
Geometric operation Intersects v
Selection Details v T X

. 104,38

Y c1a 02

4.V
iadiusim) P
Ra L 1834716.96

Edit the numeric fields to modify the radius and center of the circle

Layer filter

This tool allows to set cross-layer filters for a layer by using another layer or even
the same one.

. Warning

This filter tool requires the Query Layer plugin installed in GeoServer

In order to set up a cross-layer filter the options below are required:

» Target layer (between those present in the TOC)
* Operation to be chosen between Intersects, Is contained or Contains

* Optionally some Conditions (see Attribute filter)

In order to better understand this type of filter, let's make an example. We suppose
that the user want to filter the Italian Regions with the Unesco Item's one:

Warttemberg Wien
]

>< .~ ~ ftnchen Osterreich

Schweiz/ ; Magyal
Suisse/Svizzera s Graz

I Unesco ltalian Items ~ - Sgerak
Auvergne g /i
Rhéne-
F . ? Alpes L)
ilter layers
: 9"3 “Hrvatska
Mon: Sarajew
NS EHEHT [fMarsellle ; “\ Crnal
= upna
© Default e \
= St
3 s,
= © Unesco ltems <
Palerm
= © Regioni ltaliane <

u.u
Conslamme ' 7)Q \/

‘“’""‘ = Malta

100 %

In particular, if our goal is to take a look at the Italian Regions that contain the
Unesco sites with serial code=1, the operations to perform can be the following:

https://docs.geoserver.org/stable/en/user/extensions/querylayer/index.html
https://docs.geoserver.org/stable/en/user/extensions/querylayer/index.html#installing-the-querylayer-module

Attribute Table

In GIS, the Attribute Table associated to a vector layer is a table that stores tabular
information related to the layer. The columns of the table are called fields and the
rows are called records. Each record of the attribute table corresponds to a
feature geometry of the layer. This relation allows to find records in the table
(information) by selecting features on the map and viceversa.

In MapStore, through the button in Layers Toolbar it is possible to access the
Attribute table:

WYX E O E

land type name
9 Type number or expression.. Type text to filter.. Type text to filter..
2|0 FOREST Mountains of The Dragon
o2 LAKE Lake of The Lady
o) 3 DESERT Ryukahn Desert
o 4 FOREST Living Woods
o5 FOREST My Forest

5 Items (1 Selected)

Accessing this panel the user can perform the following main operations:

* Edit records through the button

* Filter records in Attribute Table in different ways as described in the Set filter
section below

® Open the Advanced Search tool through the button
* Activate the filter by the current viewport, through the button

* Activate the filtering capabilities by clicking on map, through @ button
» Using the quick filter by attribute

* Download the grid data through the E button

* Create Widgets through the m button

https://mapstore.geosolutionsgroup.com/mapstore/#/

. Customize the attribute table display through the button

® Zoom to features through the :o\: button available on each record or zoom to

the page max extent through the MW button (available only if the virtual

scrolling is disabled, it is enabled by default in MapStore).

. Warning

When GeoServer is set to strict CITE compliance for WFS (by default), the feature
grid do not work correctly. This is because MapStore uses by default WFS 1.1.0
with startIndex/maxFeatures. This is not strict compliant with WFS 1.1.0
(GeoServer supports it but the request in strict mode is invalid). To solve it un-
check the CITE compliance checkbox in the "WFS" page of GeoServer "Services"
configurations using the GeoServer web interface

Manage records

The basic Web Feature Service allows querying and retrieval of features. Through
Transactional Web Feature Services (WFS-T) MapStore allows creation, deletion,
and updating of features.

. Warning

By default editing functionalities are available only for MapStore Admin users.
Other users can use these tools only if explicitly configured in the plugin
configuration (see the APIs documentation for more details). In any case, the user
must have editing rights on the layer to edit it (see for example the GeoServer
Security Settings).

The Edit mode can be reached from the button in Attribute Table panel,

allowing to menage only the layer which the table refers to:

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://dev-mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.FeatureEditor
https://docs.geoserver.org/stable/en/user/security/webadmin/data.html
https://docs.geoserver.org/stable/en/user/security/webadmin/data.html

Ny & © [T
osm_id

9 Type text to filter...

2] 10013388
o] 10013389
o 100271638
o] 10032248
o] 100478655

55302 Items

fclass name

Type text to filter... Type text to filter...

| forest

forest

grass

forest

forest

. Note

When the Edit mode is enabled only the editing functionalities are available to the
user, all other tools are deactivated.

By default, in Edit mode, you can see a panel like that following:

€= um -
osm_id

9 Type text to filter...

fclass name

Type text to filter... Type text to filter...

10013388

forest

Q) 10013389
@) 100271638
10032248

100478655
55302 Items

forest

grass

forest

forest

Through the Quit edit mode button you can stop the editing session to make

the other functionalities available again.

Create new features

Once the Edit mode is enabled it is possible to create a new feature by clicking on
the Add New Feature button . After clicking on it the user can fill out the

fields and edit the geometry of the new feature:

Landuse

Landus

X B X mU-

osm_id fclass name
9 Type text to filter... Type text to filter... Type text to filter..
] ! v
Q) 10013388 allotments
P cemetery
A, 10013389)
commercial
@) 100271638 farmland
farmyard
&) 10032248 >

To edit attributes MapStore provides some input fields based on the attribute type,
that forces the user to insert a valid value. If the attribute is of type text, MapStore
will also show a dropdown menu with the list of the existing values for that

attribute to allow a quick selection.

V . Note

the dropdown menu is available only if the server provides the WPS process

gs:PagedUnique

The Missing geometry exclamation point | in the second column of the
.

Attribute Table means that the feature doesn't have a geometry yet. It's possible to
add it later or draw it on the map before saving:

X B X w

land

) Type number or expression..

In order to save the changes made until now, there's the button, whereas to

undo the changes there's the E button.

Once a new record is created, it's possible to draw a geometry for it, by clicking on
the button that appears once that feature is selected. The process of drawing

a new geometry is a little different depending on the layer type:
* For Polygons and Multipolygons layers, each click on the map add a new

vertex (the minimum is 3). Once the vertex are set, it is possible to change the
shape by creating new vertices or dragging the existing ones:

* For Lines and Multilines layers the shape drawing function works more or less
in the same way. The only difference is that you need at least two vertices to
draw a line and not three like for polygons:

» For Points layers a point is drawn for each click on the map

The user is always allowed to delete the drawn shape through the button.

Create new geometry with Snapping

To fine tune the vertex position while editing or creating a new feature geometry;, it

is possible to leverage on the Snapping functionality. Through this function K®N it
is possible to snap to other vertices of features belonging to the same layer or to
others while editing a feature.
The tool provides the ability to tune the snapping function so that the user can:
* Choose one of the visible map layers in TOC to be used for the snapping
* Choose where to snap the layer, enabling/disabling the Edge or/and the
Vertex

* Set Tolerance for considering the pointer close enough to a segment or vertex
for snapping

* Choose the Loading strategy of features to snap with by choosing one of the
available options from the dropdown menu. Available options are:

* bbox: only features in the current viewport are loaded

e all: all layer features are loaded

. Note

The snapping functionality is by default set to work with the same layer in editing
mode. By default, the Edge and the Vertex are enabled, the
Tolerance is set to 10 pixel and the Loading strategy is set to bbox.

Editing and removing existing features

In order to edit an existing feature, it is necessary to switch the Attribute Table in
editing mode by clicking the Edit mode button. If the goal is to edit the
Attribute Table records, the user can simply select them and type the desired

value into the input field. However, it is also possible to modify the geometry
associated with a record by editing it on the map (adding or changing its vertices).

. Note

It is possible to edit the value of an attribute for multiple records at once by
selecting the corresponding cell in the table and dragging the content onto the
multiple cells, as follows:

With a click on Save changes these changes will be persistent.

In Edit mode, the user can also delete some features by selecting them in the table
and clicking on the button.

Set filters

In the Attribute table it is possible to apply filters in four ways (as explained in the
Filtering layers section):

¢ Advanced search
* Click on map
¢ Quick filter

* Filter by viewport

Those filters, once applied, can be visible on the map by enabling the m button.

Download the grid data

Form the Attribute table it is also possible to download the grid data through the
E button. The following window opens:

File Format

Spatial Reference System

Native b 2

From this window it is possible to set:

* The File Format (GML2, Shapefile, GeoJ]SON, KML, CSW, GML3.1 or GML3.2)

* The Spatial Reference System (by default Native or WGS84)

With a click on the button and the browser will download the file.

Customize Attribute table display

MapStore allows the user to customize the fields displayed in Attribute table
mainly in two way:

* Ordering the records in alphabetic order (if it's a text field) or from the
minimum to the maximum value and viceversa (if it's a numerical field):

* Deciding which columns to show and which to hide through the button:

https://mapstore.geosolutionsgroup.com/mapstore/#/

Widgets

In MapStore it is possible to create widgets from the layers added to the map.
Widgets are components such as charts, texts, tables and counters, useful to
describe and visualize qualitatively and quantitatively layers data and provide the
user the opportunity to analyze information more effectively.

. Note

Some widgets (in maps or in dashboards) need some WPS back-end support to
work:

* The map widgets (dashboards) needs the WPS process gs:Bounds to zoom to
filtered data, if connected to a table.

» For aggregate operations, chart and counter widgets need the WPS process
gs:Aggregate available in GeoServer to work.

Add a Widget

Once at least one layer is present in the map (see Catalog section for more
information about adding layers), it is possible to create a widget by selecting that

layer in the TOC and by clicking on the m button from the Layer Toolbar or

from the Attribute Table. Performing these operations the Widget panel appears:

https://mapstore.geosolutionsgroup.com/mapstore/#/

>< Widget ||||

Select the widget type

Chart

I I I I add a chart
Text
3dd a text area

Table
= add a tabl

o

Counter

I aad a cournter

From here the user can choose between four different types of widget:

e Chart
e Text
e Table

e Counter

Chart

Charts widget allow multi-selection of layer to create a widget that allows user to
configure chart options for each layer. And switch between multiple charts in a
widget.

X Widget il

Select one or more layers @

GeoSolutions GeoServer CSW x v N O+

text to search...

Linea_costa

test:Linea_costa

areeverdiPolygon

test:areeverdiPolygon

dati

&
&
&

generic_geometry

test:generic_geomeltry

Selecting a Layer or Layers, the following Chart options is presented to user:

X Widget il

<Y + 7 E=

Configure data
Chart Chart - States of US ¥
Chart type il Bar Chart v
200k
150k
100k
50k
0 -
43, M Ve Yo So
PSos SO(/,_, Gso é’es,(, W
(o} a 6,(.0(6,4,0
9 o
X Attribute: STATE_NAME X ¥
Y Attribute: LAND_KM LW
Operation: SUM %Y

[
I

Display Legend:

Advanced Options

From the chart configuration page, the user can perform the following operation

* Edit chart name

* Choose between Bar Chart, Pie Chart or Line Chart. By default, the bar chart is
selected.

From the toolbar of this panel B A S8 S B N the user is allowed to:

* Go back to the chart type selection with the button

* Connect n or disconnect the widget to the map. When a widget is

connected to the map, the information displayed in the widget are
automatically filtered with the map viewport. When a widget is not linked, it
otherwise shows all the elements of that level regardless of the map viewport

* Configure a filter for the widget data (more information on how to

configure a filter can be found in Filtering Layers section).

* Add new layers to existing chart configuration

* Delete the current layer and it's related chart configuration from the
wizard

* Move forward to the next step when the settings are completed. The

button prohibits the user from proceeding further when some chart is invalid
Just below the chart's preview, the following configurations are available:
* Define the X Attribute of the chart (or Group by for Pie Charts) choosing

between layer fields

* Define the Y Attribute of the chart (or Use for Pie Charts) choosing between
layer fields

* Define the aggregate Operation to perform for the selected attribute choosing
between No Operation, COUNT, SUM, AVG, STDDEV, MIN and MAX

. Note

The No operation option is used when the aggregation method is not needed for
the chart. If No Operation is selected, no aggregation will be carried out for the
chart and the WFS service will be used to generate the chart without using the
WPS process gs:Aggregate in GeoServer.

* Enable the chart's legend by activating Display Legend

e Choose the Color (Blue, Red, Green, Brown or Purple) of the chart (or the
Color Ramp for Pie Charts) or choose to Customize the color.

Color customization

For Bar Charts and Pie Charts, MapStore provides the possibility to customize the
colors of the charts bars and slices. From the Color option dropdown menu, the
user can select the Custom option and open the Custom Colors Settings modal

through the S, button.

Custom Colors Settings

Classification Attribute Select attribute v

Close Save

Inside this modal, the user is allowed to:

* Change the default Color of bars or slices (depending on the chart type)
through the Color Picker. This color will be applied for all values for which a
Class Color has not been configured.

* Select an Attribute in the dropdown list as a Classification attribute.

Once the attribute is chosen, new options appear in the Custom Color Settings
panel that allow the user to:

* Enter a Default Class Label to be used in the legend for all values that will
not be specifically classified in the following list.

https://mapstore.geosolutionsgroup.com/mapstore/#/

Custom Colors Settings

Defout Colo .

Classification Attribute STATE_NAME

Default Class Label @ US states

Class Color Class Value Class Label @

Close

. Note

For both Default Class Label and Class Label '${legendValue}' can be used as a
placeholder for the Y Attribute (that can be further customized through the usual

Advanced Option).

* Classify Classification Attribute values to assign a specific color in the chart
along with its Class Label to use for the chart legend. Only values of type
String or Number are currently supported.

Classification Attribute of type String

When the values of a classification attribute are of type String, the user can:

Custom Colors Settings

Detou Color s

Classification Attribute STATE_NAME x w

Default Class Label @

Class Color Class Value Class Label @

Close Save

* Choose the Class Color through the Color Picker.
* Choose the value of the Classification attribute through the dropdown menu
Class Value

* Enter a Class Label to be used in the legend for the value entered in the Class

Value

. Note

For Class Label, '${legendValue}' can be used as a placeholder for the Y Attribute
(that can be further customized through the usual Advanced Option).

An example of Bar charts corresponding to this type of classification can be the

following:

Through the E button the user can add new values before through the
F Add new entry before

button or after through
+ Add new entry after

button.

Classification Attribute of type Number

When the values of a classification attribute are numbers, the user can configure a
color ramp and so:

Custom Colors Settings

Default Color ,‘

Classification Attribute PERSONS x ¥

Default Class Label @

Class Color Min Value Max Value Class Label @

Y .0 .

* Choose the Class Color through the Color Picker
* Choose the Min value of the Classification attribute
* Choose the Max value of the Classification attribute

* Enter a Class Label to be used in the legend for the value entered in the Class
Value

. Note

For Class Label two placeholders can be used in this case: ${minValue}, can be
used as a placeholder for Min Value and ${maxValue}, can be used as a
placeholder for Max Value; the ${legendValue} can be used in the same way as
specified above.

An example of Bar chart corresponding to this type of classification can be the
following:

Bar Chart Type

If the Classification attribute is added to the Bar Chart, in the Advanced Options,
the Bar Chart Type option is displayed.

Advanced Options .j

Hide Grid: N

Bar Chart Type: @® Stacked O Grouped

The user can customize the bars by choosing between:

* Grouped. An example can be the following:

=7
@+
M North Sea
M Gulf Of Mexico
500 M Others
400
300
200
100
0
4'70,,7 "og, Vi, Sse, uy,
%oy, <, g, 78y, 2N
o, o o, ’14,0 ep, a
s sy, iy S s,
(" ey //t/[- s (2
70,
S/"O(—
* Stacked. An example can be the following:
A=
@
600 M Others
M Gulf Of Mexico
M North Sea
500
400
300
200
100
0
An, “r 2 e 2
sy, %"Cf/ ey, Sey rs,
s 4 0 K M %,
Ser S U, S, iy n A e s,
"'q. //q. ~ o g

. Note

By default, the bar chart type is Stacked

Advanced Options

In addition, only for Bar Charts and Line Charts, MapStore provides advanced
setting capabilities through the Advanced Options section.

https://mapstore.geosolutionsgroup.com/mapstore/#/

600k

400k

200k

s|1a
\oN
€2
2l
A1l

124

0|4
aN
EIN
Xal
107

Advanced Options

Hide Grid:
Y axis

Type:

Hide labels:

Format:

Prefix:
eg. ~
Formula @

e.g. value / 100

X axis
Type:
Hide labels:

Never skip labels:

Label rotation:

Legend
Legend Label

Widget

€« ¥

6 Q4+ ODEX4A

A
BpI
ST
A
pur
105

Auto

Format@

eg. .2s

Auto

Ay

Suffix:
eg. W

Auto

B
Sl
10N
31

]

Through this section, the user is allowed to:

* Show/Hide the chart's grid in backgroung with the Hide Grid control

* Customize Y axis tick values by choosing the Type (between Auto, Linear,
Category , Log or Date): the axis type is auto-detected by looking at data (Auto
option is automatically managed and selected by the tool and it is usually good
as default setting). The user can also choose to completely hide labels through
the Hide labels control or customize them by adding a Prefix (e.g. ~), a
custom Format (e.g. 0%: rounded percentage, '12%' or more) or a Suffix (e.g. Km).
It is also possible to configure a Formula to transform tick values as needed
(e.g. value + 2 or value /100 or more)

(O}

~139558.572 Km
~248648.672 Km
~143988.61 Km

~103963.904 Km
~199115.203 Km
~79941.207 Km
~304474.805 Km
~206209.099 Km “III
~161.055 Km Lt

Hide Grid: u

Y axis

Type Category

Hide labels

Format:
Prefix Format@ Suffix
~ 0% Km

Formula @

value + 2

. Note

More information about the syntax options allowed for Format are available here
and the allowed expression to be used as Formula are available here in the online
documentation.

* Customize X axis tick values by choosing the Type (between Auto, Linear,
Category , Log or Date): the axis type is auto-detected by looking at data (Auto
option is automatically managed and selected by the tool and it is usually good
as default setting). As per Y axis, the user can completely hide labels through
the Hide labels control or tune the rendering of tick labels with options like
Never skip labels (it forces all ticks available in the chart to be rendered
instead of simplifying the provided set based on chart size) and Label rotation
to better adapt X axis tick labels on the charts depending on the needs.

https://d3-wiki.readthedocs.io/zh_CN/master/Formatting/
https://github.com/m93a/filtrex#expressions

(O}

- < o

Advanced Options | W

Hide Grid: | W

Y axis
Type: Category g

Hide labels: | W

Format:
Prefix: Format@ Suffix:
~ .0% Km

Formula @

value + 2

X axis

Type:

Hide labels:
Never skip labels:

Label rotation:

. Warning

The tick labels available for the X axis by enabling the option Never skip label
cannot be more than 200 in order to provide a clear chart and for performance
reasons.

* Set the Legend Label name

139556.572 Km o

248646.672 Km

143986.61 Km

103961.904 Km

199113.203 Km

79939.207 Km

304472.805 Km
3%%

land (km)

206207.099 Km I“IIII“I
159.055 Km =il

Q. b %L L
@%ow%a&%ea “

Hide Grid:

Y axis

Type: Category « v
Hide labels:

Format:
Prefix: Format@ Suffix:
e.qg. .2s Km

eg

(@]

Formula @
eg. value / 100
X axis
Type: Auto -
Hide labels:

Never skip labels: e
Label rotation: n —_— A

Legend

Legend Label land (km)

. Note

The tooltips of the X and Y axis labels are available by hovering the mouse over the
charts. This way the labels are available even if the Hide labels option for the X
and Y axis is enabled.

. Warning

In order to move forward to the next step, only X Attribute, Y Attribute and
Operation are considered as mandatory fields.

Once the settings are done, the next step of the chart widget creation/
configuration is displayed as follows:

X Widget 1l |

€« Y B

Configure Widget Info

@
139556.572 Km land (km)
248646.672 Km
143986.61 Km
103961.904 Km
199113.203 Km
79939.207 Km
304472.805 Km
206207.099 Km |||||II|
159.055 km -l
%3%%%%%%%82%%%
Title: Km of land of the USA states
Description:

The user can:

* Go back to the chart option with the button

* Configure a filter for the widget data (more information on how to

configure a filter can be found in Filtering Layers section)

* Add the widget to the map with the E button

Just below the chart's preview, the user is allowed to set:

* The widget Title

* The widget Description

V . Note

None of these fields are mandatory, it is possible to save/add the widget to the
map without filling them.

An example of chart widget could be:

Km of land of the USA states
134875.075 Km M land (km)
25316.345 Km
23230.674 Km
103961.904 Km
172447.205 Km
126177.635 Km
102537.328 Km
21208.368 Km
147135.821 Km IIII
150.055 Km -] | |
< - LA A A oA < . A
- 2 < 252) N e) Z 0. T 2 2
R O O R O G IO XX
o8 P2 LLe 2o %Bd § *9p S6%BiCC 3% 3 *% ° %ou3
a% 2 LT © 2 o 232% ! 2
0, o ® e % % % %)
2 > > & %
2,
c.
®

The Chart toolbar, displayed in the right corner of the chart allows the user to:

* Download the chart as a png through the button.

* Zoom the chart through the Q button.

* Pan the chart through the button.
®* Zoom in the chart through the button.
* Zoom out the chart through the button.

* Autoscale to autoscale the axes to fit the plotted data automatically through

the button.

* Reset axes to return the chart to its initial state through the button.

. Toggle Spike Lines to show dashed lines for X and Y values by hovering the

mouse over the chart. This is useful to better see domain values on both axis in

case of complex charts. It is possible to activate that option through the

button.

Text

Creating a new text widget the following window opens:

X Widget

Insert title...

Font v Nomal v B Y =— Vv (= v

/7 & [
Through the toolbar it is possible to:

* Go back to the widget type selection with the button

* Add the widget to the map with the m button

Here the user can:

* Write the title of the widget
» Write the text of the widget

* Format the text through the Text Editor Toolbar

. Note

From the Text Editor Toolbar the user can also add an URL Image through the
button and add an Embedded Link through the button.

. Note

filling in these fields.

None of these options are mandatory, you can add the widget to the map without

An example of text widget could be:

> -

USA States

The United States of America is a federal republic consisting of 50 states. a federal
district (Washington. D.C., the capital city of the United States). five major territories.
and various minor islands. The 48 contiguous states and Washington, DC.. are
in North America between Canada and Mexico. while Alaska is in the far northwestern
part of North America and Hawaii is an archipelago in the mid-Pacific. Territories of
the United States are scattered throughout the Pacific Ocean and the Caribbean Sea.

Table

Adding a table widget to the map, a panel like the following opens:

X Widget il

Configure table options

Columns

Name Title Description
= | STATE_NAME a
- STATE_FIPS
n SUB_REGION
n STATE_ABBR
- LAND_KM
- WATER_KM
- PERSONS
- FAMILIES
l HOUSHOLD -

The toolbar on the top of this panel is similar to the one present in Chart section.
Here the user is allowed to:

* Enable/Disable the layer fields that will be displayed in the widget as
columns.

. Warning

At least one field must be selected in order to move to the next configuration step.

* Enter a Title for each column to be displayed as the table header in place of
the Name of the layer field

* Enter a Description for each field to be displayed as a tooltip, visible moving
the mouse on the column header.

Once the desired fields are selected, a click on the u button opens the

following panel:

X Widget

€« v A
Configure Widget Info

Title:

Description:

In this last step of the widget creation, the toolbar and the information to be

inserted are similar to the ones in Chart section.
An example of table widget could be:

| — . US state

| State LAND WATER
lllinois 143,986.61 1,993.335
Missouri 178,445.951 2,100.115
Arizona 294,333.462 942.772
Oklahoma 177,877.536 3,170.998
North Carolina 126,177.635 10,309.652
Tennessee 105,823.567 2,311.556
Texas 688,219.07 17,337.549
New Mexico 304,472.805 586.054
Alabama 131,443.119 4,332.268
Mississippi 121,506.43 3,598.337
Georgia 148,574.888 3,934.991
District of Columbia 159.055 17.991
South Carolina 77,987.823 4,910.636
Arkansas 134,875.075 2,867.302
Louisiana 112,836.008 19,978.72
Florida 139,852.123 30,456.797
Michigan 147,135.821 12,547.912
Montana 376,990.894 3,858.589

49 Items
Counter

Selecting the counter option, the following window opens:

PERSONS
11,430,602
5117,073
3,665,228
3,145,585
6,628,629
4,829,958
17,122,020
1,379,559
4,040,587
2,573,216
6,457,339
606,900
3,486,703
2,350,725
4,219,973
12,937,926
9,295,297

799,065

FAMILIES
2,924,880
1,368,334
940,106
855,321
1,812,051
1,334,052
4,377,106
358,259
1,103,835
674,378
1,707,476
122,087
928,206
651,555
1,089,882
3,511,825
2,439171

211,666

x Widget il

Configure data

42

elect attribute

®

Use:
Operation: Select attribute
Unit of measure:

Also in this case the toolbar is similar to the one present in Chart section. The user
is allowed to:

¢ Select the attribute to Use

* Select the Operation to perform

* Set the Unit of measure that will be displayed

. Warning

In order to move forward to the next step, only the Use and the Count are

considered as mandatory fields.

Once the button is clicked, the panel of the last step appears:

X Widget il

Configure Widget Info

49

Title:

Description

Also in this case the toolbar and the information to be inserted are similar to the

ones in Chart section, with the only exception that the Filtering button is
missing.

An example of counter widget could be:

Unemployed people

7,744,324

Manage existing widgets

Once widgets have been created, they will be placed on the bottom right of the
map viewer and the Widgets Tray appears:

Ottawa
®

Workers per region

v

Colombia
San(la,goqh d ~

Population per region

My Cs

W, . Sy &p M, W
% 4/‘-‘9,700(‘ Cs,,‘q[/ /Vce/,d‘qr/ sce,,

49

operations:

—"9]

Population per region
(O}

N Eng W N Cen Pacific Mtn ES Cen S Atl EN Cen Mid AtIW S Cen O

* Drag and drop the widget to move it within the map area of the viewer and

resize it through the = I button (also available for widgets present in a

dashboard)

~ 4
. LA) 9 il > E
2 [A/ EY (\ ,"
1000 km Scala: 1:36978669 v H

Through the buttons available on each widget the user can perform the following

* Pin the position and the dimension of the widget through the

°* Collapse the widget through the button and expand it again by clicking

the related button in the Widgets Tray

. Note

The Widgets Tray allows the user to expand/collapse each single widget
individually il &2 N 9 > E or all of them at once by using the E

button.

. Warning

When both Timeline and widgets are present in a map, the Timeline button
appears in the Widgets Tray < [E=@} allowing the user to expand and collapse

it (widgets and Timeline can't anyhow be expanded at the same time).

* Make the widget Full screen through the button (also available for

widgets present in a dashboard)

® Access to the Title and Description info through the button, if this

information has been provided during the widget configuration/creation

Unemployed people \

It's the number of unemployed people
in USA B

7,744,324

Access widgets menu

Once a widget is added to the map, it is possible to access its Menu through the

¢ button. For Text, Table and Counter widgets, the following menu appears:

Edit

=) L

Delete

From here the user can:

* Edit the widget

* Delete the widget

Only for Charts, the menu is like the following:

ic

Show chart data
Edit

Delete

Download Data

I@@éh/@]

Export Image

In particular, the user can also:

* Show chart data in tabular representation
* Download data in .csv format

* Export Image in .jpg format

Export Layer Data

MapStore allows to export both vector and raster layers present in TOC. In order
to provide advanced export capabilities the WPS Download process must be
installed and available in GeoServer. MapStore performs a preventive check for
this as soon as the user opens the tool: if the WPS Download process is not
available, MapStore uses the WFS service as fallback and the export options are
limited (eg. only vector data can be exported). Once a layer is selected in the TOC,

the user can open the Export Data tool by clicking the button available in the

layer toolbar.

Service

WPS v
File Format

Select... v

Spatial Reference System

Native v

Crop dataset to current viewport

Download filtered dataset

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://docs.geoserver.org/stable/en/user/community/wps-download/index.html

. Note

If the WFS service is the only one available, once the Export Data opens, the user
can only select the File Format and the Spatial Reference System (as explained

below).

Export Data

File Format

Select... v

Spatial Reference System

Native v

. Note

Only for the Vector layer, the user can also download data by opening the
Attribute Table from the TOC and clicking the button.

From the Export Data panel the user can:

* Select the Service, choosing between WPS and WFS (this option is present in
the form only if the WPS Download process is available, otherwise the WFS
service is used directly).

» Select the File Format. The list of formats depends on the availability of the
WPS Download process in GeoServer. If the WPS process is available, the user
can choose between GeoJSON, wfs-collection-1.0, wfs-collection-1.1, Shapefile and
csv for vector layers, and between ArcGrid, TIFF, PNG, JPEG, in case of
raster layers. If the WPS Download process is not available for some reasons,
MapStore provides the list of formats valid for the WFS service by looking at
the ones offered by the services capabilities (WFS Capabilities).

» Select the Spatial Reference System (By default Native or WGS84)

* Enable the Crop dataset to current viewport for downloading only the part
of the layer visible on the map at that moment (this option is present in the
form only if the WPS Download process is available)

., Only for Vector layer, allows to consider for the download also an eventual
filter applied to the layer using the Filter layer tool (this option is present in the
form only if the WPS Download process is available)

File Format

GeoJSON -
Spatial Reference System

Native -

Crop dataset to current viewport

* Only for Raster layer (and if the WPS Download process is available) the user
can open the Advanced options to choose:

* The Compression type used to store internal tiles (CCITT RLE, LZW, JPEG,
ZLip, PackBits or Deflate)

* The Compression quality for lossy compression (JPEG). Value is in the range
[0 : 1] where 0 is for worst quality/higher compression and 1 is for best
quality/lower compression

» Tile Width of internal tiles, in pixels

 Tile Height of internal tiles, in pixels

File Format

PNG v
Spatial Reference System

Native -

Crop dataset to current viewport
Vv Advanced options
Compression

Quality

Tile width

Tile height

With a click on the button MapStore performs the export request. In

case of WPS Download process available, multiple export requests can be
performed from MapStore asynchronously. An information popup informs the user
when an export process starts and the user can check the status of the process

itself by opening the Export Data Result panel with a clicking on the button

available on the right side of the footer.

)
\ |

" i\
A

““ The Bahamas

bana @™ " .
:I_ o » . N
wCuba NI~
~O w'Republica
—— A Dominicanas==—) &,
: | 0\ Vo~V 8
Kingston KD
— ’\‘—. 00) ~
as— L
:, o) ',"v
gua - 0 A Ay
- QY y
e .
e e Caracas
B Ronama 8, . 8 375 o e

| 500 km m Scale: 1:36978669 v H

The Export Data Result provides the list of exports processes started by the user
and their status: as soon as the WPS completes the export operation, its status is
reported by MapStore to the user (in progress, completed, and so ready for
download, or failed). Therefore, the user can:

Export data resulis

States of US 11/01/202110:12

* Check for eventual reported errors: a specific icon informs the user that the
process failed with a popup message.

* Download the final zip file: clicking the button

* Remove the final zip file: clicking the button

MapStore Toolbars

The main toolbar of MapStore, used by the user to interact on the map viewer, are:

e The Search bar
¢ The Side toolbar

Search by location name

e

KpOMUBHALKWIA YipaiHa 3
@< : i e]
.‘ N KpuBwii Pire 3 cme X
) nopbo
ros SRRV o :

© OpenstreetMap contributors.

Search Bar

The search bar is a tool that allows the user to query the layers in order to find a
specific information. In MapStore it is possible to perform the search in four
different ways:

* By Location name

* By Coordinates

* By Configuring a search service

* By Bookmarks

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Search by location name

O, SEARCH BY LOCATION NAME

S

o €) SEARCH BY COORDINATES

A SEARCH BY BOOKMARK

b
B\

Search by location name

The Search by location name, set by default when a new map is created, allows the
user to search places asking the OpenStreetMap Nominatim search engine.
Typing the desired place, the Nominatim seach engine is queried; selecting then
the desired record in the list of results, the map is automatically re-center/zoomed
to the chosen area that is also highlighted:

Rome Fioyt County, Gecegia 30181 Unitod SRates of Amerca
Rome. Fioyd County Gategia United States of Amenca

Rome Qneda County New Yok 53430 Undted States of Arverica
Rome. Jeferson County Winconsin Unded States of Amenca
Reme Bracddord County. Parvisytvania Unted Siates of Amenca

Rome Boulevard oes Batgnolies. Eurcpe. 3th Armondrzement of Parzs
Parss Ke-ga-France Mabopoldan Frarce. 75008 France

Rome Boulevrd des Batbonolies. Europe Sth Arondczement of Fares
* Di le-de-France Matwpoitsn France 75008 France

Rome £t Ticer Place Rame Pecna County 18nos 63551 Unted
States of Amenca

Roee Pecns Courty noc. 61562 Uraded Siates of Ameecs

https://nominatim.openstreetmap.org/

Search by coordinates

Performing a Search by coordinates the user can zoom to a specific point and
place a marker in its position. That point can be specified typing the coordinates in
two different formats:

* Decimal (the default format)

Lat at Lon on Q’ O\

* Aeronautical (that can be chosen through the #£ button)

Lat , ‘ , N v

& O

Lon ¢ ‘ S E v

Once the coordinates are set, it is possible to perform the search with the O‘

button. The displayed result is similar to the following:

Configuring a search service

MapStore allows the user also to extend or replace the default OSM results with
additional WFS Search Services. Selecting the Configure Search

Services option #£ , the following window opens:

https://mapstore.geosolutionsgroup.com/mapstore/#/

Create/edit a search service X

Available services

No Custom Services Defined

[} Override default services

Add

In order to create a new custom service, the AGEM button brings the user to a

page where he can set the WFS service properties, for example:

-eate/edit a search service

WFS service props

Name

My tiger_roads NAME WFS

Service url

https://demo.geo-solutions.it/geoserver/wfs

Layer

tigertiger_roads

Attributes
NAME

In particular, the information to be entered are:

* Name of the service
e WFES Service URL the user want to call
* Layer to be queried

* Specific Attributes (comma separeted fields) the user wants to query

When all the options are set, by clicking on the BIN[&%#8 button a new panel opens,

where it is possible to choose the properties for the displayed results:

Create/edit a search service

Result display properties

Title

Siproperties NAME]

Description

Manhattan Roads

Priority [E}
Used to sort search results. lower values first Nominatim results
have priority - 5

Launch Info panel
No Info -

Identify panel will not show up on search

Back Next

In this case, the user can define the following settings:

* The Title displayed on the top of each results row (in the previous image, for
example, the chosen title for the results is the one corresponding to the
attribute NAME of the feature)

* The Description to report in the results just below the title

. The Priority, a parameter which determines the position of the records in the
results list. Lower values imply a higher positions in the results list and vice
versa. By default the OpenStreetMap Nominatim search engine result has
priority equals to 5, therefore in order to see the custom results in a higher
position a lower priority value is needed

* The Launch Info panel allows the user to chose if and how the custom search
interact with the Identify tool. In particular, with the No Info option, the Info
panel doesn't show up once a record from the search results is selected.
Selecting All Layers or Single Layer the Identify tool is triggered, and the
related panel opens displaying the information of all/single layer(s) visible in
the map. With Single Layer instead, the Identify tool is triggered only for the
layer (if it is present and visible in the map) related to the selected record in
the search result list.

Launch info panel

No Info -
No Info
All Layers

Single Layer

. Note

Note that, selecting All Layers or Single Layer options, the point used for Identify
request is a point belonging to the surface of the geometry of the selected record.
Moreover, using Single Layer, the Identify request will filter results to the selected
record and to its layer, using featureid which might be ignored by other servers, but
can be used by GeoServer to select the specific feature of the results, when

info format is other than application/json. In order to achieve filtering of feature
on servers other than GeoServer, one can select the format (info_format) as
application/json for the layer to GetFeatureInfo from the layer settings in TOC to
allow filtering features by using the ID of the selected record.

Once all the option are set, it is possible to move forward with the Next button
that opens the Optional properties panel:

https://nominatim.openstreetmap.org/

Create/edit a search service X

Optional props

Sort by
NAME

Max features
— i
(11|

Max zoom level

- A
o

Back | Save/Update

Here the user can choose:

* To Sort the results by the specified attribute
* The Max number of features (items) displayed in the custom search results

* The Max level of zoom to be set for the map when opening from the custom

search result

After the BEEVEVAVEIEN it is possible to see the custom WFS search service inside

the Available services list:

Create/edit a search service X

Available services

My Tiger_roads NAME WFS \N®

Override default services

Add

Once a search service is created, it is always possible to Edit it & or Remove it

® from the list. By default the Override default services option is disabled, in

that case performing a search not only the custom search service results are
shown, but also the Nominatim ones:

grand > &

Grand Army Plz
Manhattans Roads

Grand Army Plz
Manhattans Roads

Grand Army Plz
Manhattans Roads

Grand St
Manhattans Roads

Grand St
Manhattans Roads

I Grecia

PV O

Grand. Neufchateau, Vosges. Grande Est. Francia metropolitana,
88350. Francia

H
| I

" Grosseto. Toscana, Italia i

Guerrero, Messico

Grand County, Colorado. Stati Uniti dAmerica

Grigioni. Svizzera

WSO A - L &

Lagrand. Garde-Colombe. Gap. Hautes-Alpes. Provenza-Alpi-Costa
Azzurra, Francia metropolitana. 05300. Francia

g
|

Groningen. Paesi Bassi

| Grand County, Utah, Stati Uniti d’America -

SScommanng 4L - AEETOTERE Al v —Cs.

Once the Override default services option is enabled, only the custom search
service results are shown:

grand X

Grand Army Plz
Manhattans Roads

Grand Army Plz

Manhattans Roads

Grand Army Plz

Manhattans Roads

Grand St

Manhattans Roads

Grand St |
Manhattans Roads '

O oY 12 A~ W 5K W

Search by bookmark

ThunderBay

Vancover

MapStore allows the user to search by the preconfigured bookmarks, which can
zoom to a specific bounding box area or zoom along with reloading the visibility of

the layers. Selecting the Bookmark settings # icon, the following window

View bookmarks X

opens:

Filter bookmarks Y

I ThunderBay N

I Vancover N

l Bookmark 1 DN
N

In order to create a new bookmark, the @WNEM button brings up Add new

bookmark page where the user set the Bookmark properties, for example:

Add new bookmark

Title
I Bookmark 1 ‘
Bounding Box % u
North
53.299368755339685
West East
-103.73510883068411 -69.98510883068413

South

42.675974024765516

Back || Save/Update

In particular, the information to be entered are:

e Title of the bookmark
* Bounding Box property the user wish to zoom to
* West, South, East and North

* Toggle layer visibility reload, © to enable/disable the layer visibility

reload when searched by bookmark

Note: The user can define bounding box value either manually or by selecting Use
current view as bounding box @ to fetch the current bounding box values

from the map view to populate the fields

When all the properties have been set, selecting the it is possible to
see the newly added bookmark in the View bookmarks list:

View bookmarks X

Filter bookmarks Y

I ThunderBay N T

l Vancover ~ &

l Bookmark 1 X =
N

Once a bookmark has been created, it is always possible to Edit it \ or Remove

it ® from the list.

Side toolbar

The Side Toolbar is an important component, positioned on the right side of the
map viewer, that provides to the user the access to different tools of MapStore. The
following tools are the ones available by default:

QEORL=aEEI>»Voodoldd

In particular, with these options it is possible to:

* Go back to the Homepage by clicking the ﬁ button

https://mapstore.geosolutionsgroup.com/mapstore/#/

. Login/Logout by clicking the E button (for more information see the

Managing Users and Groups section)

* Print the map by clicking the #= button
* Export map in json format by clicking the @ button

* Import files from your computer by clicking the @ button

* Open the Catalog in order to connect to a remote service and add layers to the

map by clicking the fggg button
* Perform a Measure on the map by clicking the ‘@* button

* Save the map by clicking the [F] button, in order to apply the changes made

in an existing map. Selecting this option, the Resources Properties window
opens, already filled with the current map properties

* Save as when the user needs to save a copy of a map or save one for the first

time by clicking the button. Selecting this option an empty Resources

Properties window opens.

* Delete Map in order to delete the current map by clicking the '“zﬂ button

® Access the map Settings by clicking the a button, where the user can

change the current Language and select the Identify options

../managing-users-and-groups/
../print/
../import/
../catalog/
../measure/
../resources-properties/
../resources-properties/
../resources-properties/

Language

il 5 01| =

Information sheet format

TEXT v

Trigger event for the display of the
information sheet

Click v

. Note

When the 3D navigation is enabled, opening the Settings panel, the editor is
allowed to configure some options related to the Cesium viewer.

Settings X

Language

il |5 (00| = | =

Information sheet format

TEXT v

Trigger event for the display of the
information sheet

Click v

Map settings

Show sky atmosphere

(J Show ground atmosphere

(J Show fog

(] Enable depth test against terrain

In particular, from the Map Settings it is possible to:

* Enable the Show sky atmosphere to see the atmosphere around the globe

e Enable the Show ground atmosphere to view the ground atmosphere on the
globe when the camera is far away

* Enable the Show fog to allow additional performance by rendering less
geometry and dispatching less terrain requests

* Enable the Depth test against terrain if primitives such as billboards,
polylines, labels, etc. should be depth-tested against the terrain surface instead
of always having them drawn on top of terrain unless they're on the opposite
side of the globe

. See the About this map panel by clicking the @ button, when Details are

present

® Share the map by clicking the button
* Open the MapStore Documentation by clicking the 0 button

* Start the Tutorial by clicking the Rl button

* Know more information About MapStore and the deployed Version of
MapStore by clicking the O button

MapStore Version
Version 2022.02.xx-qa

Message 8414 _backport (#8613)
Commit f5e01702f2df93b0ed85b643d3e53¢cf95a298938
Date Mon, 26 Sep 2022 10:34:44 +0200

MapStore

MapStore is a framework to build web mapping applications using
standard mapping libraries, such as OpenLayers and Leaflet.

MapStore has several example applications:

e MapViewer is a simple viewer of preconfigured maps (optionally
stored in a database using GeoStore)

* MapPublisher has been developed to create, save and share in a
simple and intuitive way maps and mashups created selecting
contents coming from well-known sources like Google Maps and
OpenStreetMap or from services provided by organizations using
open protocols like OGC WMS, WFS, WMTS or TMS and so on. For
more information check the MapStore wiki.

License

MapStore is Free and Open Source software, it is based on OpenLayers,
Leaflet and ReactS, and is licensed under the Simplified BSD License.

For more information check this page.

Credits

MapStore is made by:

& GeoSolutions

Your one-stop-shop for geospatial open source software

../share/
https://mapstore.readthedocs.io/en/latest/
https://mapstore.geosolutionsgroup.com/mapstore/#/

. Warning

The Save, the Delete Map and the Share buttons are present in the Options Menu
only when the map has already been saved once.

Printing a Map

In MapStore it is possible to print a map by selecting the Print s button from
Side Toolbar. The print process is composed by two main steps:

* Print Settings definition

* Result checking in Preview before download the printed file

Print settings

As soon as the Print s=s button is chosen, the following window opens:

Title

Resolution:

Enter a title... 96 dpi v
a_as =x ey
Description 4 { LG
] 1 \
Enter a description... P : (B P
Y | o) P
~URited Kingdom)% (- = Lletuva
(Great Britoin A g
Format AT - e Gamburg Bendpycs
> & - Berlin
] S London/ Mederland - Polska
PDF v !
e > _ Deutschland
o &
-~ P (% Knie
: Paris Leskq
Coordinates System Sfoverska "
. A b Maqyarorszag (m?'n'nau
EPSG:3857 v & France
! ® Zagreb Romdnia
i = . g v%”“”"“" Cpbuja g ‘;_F
Rotation) e 3 . Bucurest -
\% L f \ P TR Bbarapus |
! Barcelona L ftalia Y _ed
0 ‘ - &4 falia S . Cxonje ~ [stanbul
¢ Espana s R RIS]
Pg. tugal I. e Bers ir
| f Nt r \
-— i \ Antalya
Layout N J— S0) Artaly
06es% 9 Alger A) ~
. B AXa330 >
Sheet size: - A e
A3 !, i
::“}“ Algérie HXXo350

(J Include legend
Legend on distinct page

O Landscape @ Portrait

Pl

© OpenStreetMap contributors.

Legend options

Through this window it is possible to:

* Enter a Title and a Description, that will be shown on the print page

https://mapstore.geosolutionsgroup.com/mapstore/#/

. Change the Format (PDF, PNG, JPEG)

* Change the Coordinates System (EPSG:3857, EPSG:4326)

* Change the Rotation of the map (value in degrees)

* Change the Resolution of the print (96 dpi, 150 dpi, 300 dpi)
* Accessing Layout settings

* Accessing Legend options

. Note

In Print settings preview there's the map portion that will be displayed on the print
sheet. In order to center the map the user can pan it until the preview displays the

desired extension

Layout

Opening the Layout settings menu, the following menu appears:

Title Resolution:

My print 96 dpi v

Description

Enter a description...

Format

PDF v

Coordinates System

EPSG:3857 v

Layout

Sheet size:

A3 v
(J Include legend
Legend on distinct page

O Landscape @ Portrait

Colombia

Legend options

© OpenStreetMap contributors.

From here, in particular, it is possible to:

* Select the Sheet size (choosing between A3 and A4 format)
* Choose to Include legend
* Choose to place the Legend on distinct page from the map

» Select the page orientation between Landscape and Portrait

Legend options

The Legend can be customized through the Legend options menu:

Title Resolution:

My print 96 dpi v

Description

Enter a description...

Format

PDF v

Coordinates System
EPSG:3857 v

Layout

Legend options

Labels Config:

Verdana v 8 < n

(0 Force Labels:

Font Anti Aliasing: Calombia
Icons size: © OpenStreetMap contributors.
24
96

Through this menu the user is allowed to:

* Configure labels by choosing font type and size, and by adding Bold and Italic
style

* Enable the Force Labels option, that force the display of labels even if only one
rule is present (by default, if only one rule is present, the label is not displayed)

* Enable the Font Anti Aliasing (when Anti Aliasing is on, the borders of the
labels font are smoothed improving the image quality)

e Set the Icons size

* Set the Dpi resolution of the legend

Preview

When the print settings are chosen, it is possible to access the preview by clicking

on the M= button. A window similar to the following appears:

& Ma pStO re %4 GeoSolutions

K B - B S - B

Here it is possible to:

* Zoom in/out int the preview

* Navigate between pages (when more than one page is present)

* Download the file in .pdf format H

A simple printed map could be, for example, like the following:

Z= MapStore © GeoSolutions

My print

My description of the map

states

= 2M
[2M - am

/ Boundary

México ;

e s e |
12.20.2019 0200 600 1000km

Import Files

In MapStore it is possible to add map context files or vector files to a map. This

operation can be performed by clicking @ from the Side Toolbar. Following

these steps the import screen appears:

®

Drop your map conteat or vector files here

OO et g el b Cvervidden I Cave oF D COreent Gy

Here the user, in order to import a file, can drag and drop it inside the import
screen or select it from the folders of the local machine through the BSEIEER S
button. Actually there's the possibility to import two different types of files:

* Map context files (supported formats: MapStore legacy format, WMC)

* Vector layer files (supported formats: shapefiles, KML/KMZ, GeoJSON and
GPX)

Warning

Shapefiles must be contained in .zip archives.

https://mapstore.geosolutionsgroup.com/mapstore/#/

Export and Import map context files

A map context is, for example, the file that an user download selecting the @

button from the Side Toolbar. Map contexts can be exported in two different
format:

* The B2 NVETIStelf=] file, is an export in json format of the current map context

state: current projections, coordinates, zoom, extent, layers present in the
map, widgets and more (additional information can be found in the Maps
Configuration section of the Developer Guide).

Adding a MapStore configuration file the behavior is similar to the following:

* The SRV Y [6M (Web Map Context) file, is a xml format where only WMS

layers present in the map are exported including their settings related to
projections, coordinates, zoom and extension (additional information can be
found in the Maps Configuration section of the Developer Guide).

Adding a WMC configuration file the behavior is similar to the following:

. Warning

Adding a map context file the current map context will be overridden.

Import vector files

Importing vector files, the Add Local Vector Files window opens:

Add Local Vector Files X

san_andres_y_providencia_coastline @«

\/\ : :

") Default style

¥ Zoom on the vector files

Cancel Add

https://mapstore.readthedocs.io/en/latest/developer-guide/
https://mapstore.readthedocs.io/en/latest/developer-guide/

In particular, from this window, it is possible to:

* Choose the layer (when more than one layer is import at the same time)
» Set the layer style or keep the default one

* Toggle the Zoom on the vector files

Once the settings are done, the files can be added with the f¥GEM button and they

will be immediately available in the TOC nested inside the Imported layers group.
For example:

X &

([
Filter layers Y
& =

© mported layers 4

= © Mamores.gpx <
0 &

= © San-andres.shp <
1%

= © Civil-war-battleskmz <
100 %

= © \Yorld.geojson <
100 %

. Warning

Currently is not possible to read the Attribute Table of the imported vector files
and for this reason also the Layer Filter and the creation of Widgets are not
allowed for those layers.

../attributes-table/
../filtering-layers/
../widgets/

Catalog Services

The Catalog Service for the Web (CSW) is an OGC Standard used to publish and
search geospatial data and related metadata on the internet. It describes
geospatial services such as Web Map Service (WMS) and Web Map Tile Service
(WMTS).

In MapStore the Catalog offers the possibility to access WMS, WFS, CSW, WMTS
and TMS Remote Services and to add the related layers to the map. By default, as
soon as a user opens the Catalog, a CSW a WMS and a WMTS Demo Services are
available, allowing to import layers from the GeoSolutions GeoServer. The user can
access the Catalog with a click on the Fggg button from the Side Toolbar. As soon

as you open it, the first display is like the following:

https://www.ogc.org/standards
https://mapstore.geosolutionsgroup.com/mapstore/#/

T Catalog X

Service

GeoSolutions GeoServer CSW v N+

: Meteorite_Landings_from_NASA_Open_Data_Portal
Preview
Ava“a mapstore:Meteonte_Landings_from_NASA_Open_Data_Portal
m" A simple layer with all the existing supported attriute types
Aval
mapstoreTypes
states
Preview N
Aval mapstorestates

. test.point
Preview

A layer that tests issues with layer names with points. See https:/githubc

mapstoretest point

Results 1-4 of 22

l 500 km | Scale 1:18489335 j H

Adding Layers from Remote Services

In order to add a layer, the user can first of all open the catalog and choose from
the following dropdown menu the Remote Service from where the layer is going to
be added:

s Catalog X

Service

GeoSolutions GeoServer WMS N+

GeoSolutions GeoServer CS\W

GeoSolutions GeoServer WMS

GeoSolutions GeoServer WMTS

Once the Remote Service is set, it is possible to search the desired layer by typing
a text on the search bar:

I\

_ = Catalog X
Gd;ﬂﬁfly“ 'KanuuuHe Savvice
gt o | GeoSolutions GeoServer WMS < v |8 |
(1]
Polska e 5]
e u
todz] SI)
aw
Krakbw Search
Slovensko 8
States of US
v States of US
Magyarorszag Y
gsus_stales
Clu
Timisoara®
beorpap
®

Sar.:!evo Cpbuja !

iCrna Gora,/ A
SlUpha fopa Codus

v

By clicking on the button, the layer is finally added to the TOC and rendered

to the map viewer:

V . Note

For those layers which have long descriptions or long metadata information, the
content is truncated in order to fit the Layer Card size. In order to access the
complete information, the user can expand the card using the button:

Managing Remote Services
MapStore allows also to add new Remote Services to the map project (==) or

Edit/Remove the existing ones (&).

4 Catalog

Service

GeoSolutions GeoServer CSW x v | N

text to search

The adding/editing process is very similar and the only difference is that editing
an existing Service the input fields will be already filled with its settings, while

https://mapstore.geosolutionsgroup.com/mapstore/#/

adding a new one all the fields will be empty. Moreover only editing an existing
Service, it will be possible to remove it from the Services list.
Editing an existing Service, for example, the first display is the following:

7 Catalog X
Type Title

CSW v GeoSolutions GeoServer CSW
Url

https.//gs-stable.geo-solutions.it/geoserver/csw

Advanced settings

Save || Delete || Cancel

From here the user is allowed to set the Service options, that can be divided into:

* General settings

* Advanced Settings

Once the options are properly set, it is possible to | save |the Service. If the user

wants to discard the edits, instead, there's the | cancel | button. An existing Service

can finally be removed from the Services list through the | Delete | button (this

option is not available creating a new Remote Service).

General settings

The general settings are three mandatory fields that each Remote Service needs to
have:

Catalog

GeoSolutions GeoServer CSW

https.//gs-stable.geo-solutions.it/geoserver/csw

Advanced settings

Save || Delete || Cancel

In particular:

e Url: the URL of the remote source service

* Type: the type of the remote source service (between WMS, WFS, CSW, TMS,
WMTS and 3D Tiles)

* Title: the title to assign to the catalog. This text will be used in the service
selection dropdown menu for this service.

Advanced settings

The Advances settings section opens by clicking on the icon:

7 Catalog X
Type Title

cSW v type a title
URL

e.g. https://mydomain.com/geoserver/csw

Advanced settings

Search on service selection

Show preview

The content of Advanced settings depends on the catalog type, but some options
are common to all the services types:

* Search on service selection that allow to enable/disable the automatic loading
of the catalog records when the user opens that Service

* Show preview that can show/hide layers thumbnails in Catalog

Catalog Types

CSW Catalog

The Catalog Service for the Web (CSW) is an OGC Standard used to publish and
search geospatial data and related metadata on the internet. It describes
geospatial services such as Web Map Service (WMS), Web Map Tile Service
(WMTS) and so on... MapStore actually supports only the Dublin Core metadata
schemas. ISO Metadata Profile is not supported yet.

In general settings of CSW service the user can specify the title to assign to this
service and the URL of the service.

Catalog X

ype €
CSW v GeoSolutions GeoServer CSW
Url

https.//gs-stable.geo-solutions.it/geoserver/csw

Advanced settings

Save || Delete || Cancel

https://www.ogc.org/standards

Advanced Settings

4 Catalog X
Type Title
csw v type a title
URL

e.qg. https://mydomain.com/geoserver/csw

Advanced settings

(] Search on service selection

Show preview

[Set Visibility Limit @

(J Show metadata template

Server Type Select...

Format

Tile Select...

Information sheet Select...

Tile size (WMS) 256x256

» Server Type: to specify the server type of WMS online resources referred by
metadata exposed by the CSW service URL. Possible options are two:
Geoserver or No Vendor which can be for example MapProxy, MapServer or
other.

. Note

If the No Vendor is set, then MapStore will not use any vendor option supported
only by GeoServer in the OGC requests where this source is involved.

* Format: to assign the default Tile format for the layers added to the map (e.g.
png, png8, jpeg, vnd.jpeg-png, vnd.jpeg-png8 or gif) and to define the default
Information sheet format for the layers added to the map (text/plain, text/html
or application/json). The list of available formats is automatically retrieved from
the ones supported by the WMS server and can be also manually fetched
e
./

through the Fetch supported formats button when necessary.

. Note

The Tile and the Information sheet configured through this option will be
automatically used for all layers loaded from the involved catalog source (if not
configured the default Tile used is image/png and the default Information sheet
used is text/plain). For layers already loaded on the map, it is possible to change the
format through the Layer Settings tool as usual.

* Tile size (WMS): it represents tile size (width and height) to be used for tiles of
all layers added to the map from the catalog source (256x256 or 512x512). For
layers already loaded on the map, it is possible to change the tile size through
the Layer Settings tool as usual.

» Set Visibility Limit: if checked and scale limits present in the WMS Capabilities
(eg. MinScaleDenominator and/or MaxScaleDenominator), these will be
automatically applied to the layer settings when a layer is added to the map
from this source.

* Show metadata template: this can be enabled when the user wants to insert in
the layer description a text with metadata information

. Warning

The Metadata Template function is available for CSW Services only.

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings
https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings/#display

Metadata templates

In order to better understand this function, let's make an example supposing to

edit the GeoSolutions GeoServer CSW service:

* Change the Format of the image that will be rendered on the map (png, png8,
jpeg, vnd.jpeg-png, vnd.jpeg-png8 or gif) for layers belonging to the selected
source

* Show metadata template can be enabled when the user wants to insert in the

layer description a text with metadata information

Enabling the Show metadata template option appears a text editor through witch it
is possible to insert the custom metadata information for that service. In order to
dynamically parse each layer's metadata value the user can insert the desired

properties name with the format ${property name} :

— Catalog X

Url

https://gs-stable geo-solutions it/geoserver/csw

Type Title
CSW v GeoSolutions GeoServer CSW
Advanced settings
¥ Search on service selection Metadata available from Dublin
Core format: abstract,
@ Show preview boundingBox. contributor,

creator, description. format.

identifier. references, nghts,
source, subject, temporal. title,
type. uri

Use 9]} to wrap the properties you nead to display %

@ Show metadata template

The description of layer is ${ description }

Nomal $ B I U®% == AT 9

${description}

Format Select -

w
W
(11}
W)
a
w
o
m
-
o
=3
(o]
1)

In this case it is possible to add a text like the following, in order to present desired
metadata properties:

title: ${title}

uri: ${uri}

Inserting this text and saving, the result should be that each layer will show its
properties in catalog with the format we set:

. Note

If some metadata are missing, the server response will be source Not Available

Static Filter and Dynamic Filter

From the Advanced Settings of the CSW catalog the user has the possibility to
configure a Static Filter and a Dynamic Filter to customize the search request.

In order to better understand this function, let's make an example supposing to
edit the GeoSolutions GeoServer CSW service:

* From the Static Filter text area it is possible to insert the custom filter for that
service.

7 Catalog X

Type Title
CcsSwW v GeoSolutions GeoServer CSW
URL

https://gs-stable.geo-solutions.it/geoserver/csw

Static Filter @

dc:type

dataset

dc:type

http://purl.org/dc/dcmitype/

Dataset

In order to present desired Static Filter configuration, it is possible to add a text
like the following:

<ogc:Or>
<ogc:PropertylsEqualTo>
<ogc:PropertyName>dc:type</ogc:PropertyName>
<ogc:Literal>dataset</ogc:Literal>
</ogc:PropertylsEqualTo>
<ogc:PropertylsEqualTo>
<ogc:PropertyName>dc:type</ogc:PropertyName>
<ogc:Literal>http://purl.org/dc/dcmitype/Dataset</ogc:Literal >
</ogc:PropertylsEqualTo>
</ogc:Or>

Inserting this text and saving. The filter is applied, even in empty search.

* From the Dynamic Filter text area it is possible to insert the custom filter to
applied in AND with Static Filter. The template is used with ${searchText}
placeholder to append search string

7 Catalog
Type

CSW
Title

GeoSolutions GeoServer CSW

URL

https://gs-stable.geo-solutions.it/geoserver/csw

dataset

dc:type

http://purl.org/dc/dcmitype/

Dataset

Dynamic Filter @ wildCard="

singleChar="_" escapeChar="\\"

csw:AnyText

${searchText}*

|

Use template with ${searchText} placeho

string

In this case it is possible to add a text like the following:

<ogc:PropertylsLike wildCard="*' singleChar=" ' escapeChar="\\'>
<ogc:PropertyName>csw:AnyText</ogc:PropertyName>
<ogc:Literal>${searchText}*</ogc:Literal>
</ogc:PropertylsLike>

Inserting this text and saving, the filter is applied when text is typed into the
service search tool.

WMS/WMTS Catalog

WMS and WMTS Services are OGC Standards protocol for publishing maps (and
tile maps) on the Internet. The user can add these kind of services as catalogs to
browse and add to the map the layers published using these protocols.

In General Settings the user can set the title he wants to assign to this service
and the URL of the service to configure the service and its URL.

Advanced Settings

In addition to the standard options, only for WMS catalog sources, through the
Advanced Settings the user can configure also the following options:

https://www.ogc.org/standards

1 Catalog X

Type Title
WMS v type a title
URL

e.g. https://mydomain.com/geoserver/wms

Advanced settings

[JJ Search on service selection

Show preview

(J Enable localized styles @
() Set Visibility Limit @
[Single Tile @

(J Allow not secure layers @

Server Type Select... v
Format ~
Tile Select... v
Information sheet Select... v
Tile size (WMS) 256x256 x v

Domain aliases @

-

* Localized styles (only for the WMS service) if enabled allows to include the
MapStore's locale in each GetMap, GetLegendGraphic and GetFeaturelnfo
requests to the server so that the WMS server, if properly configured, can use
that locale to:

» Use localized lables for Tiles in case of vector layers (the layer's style must
be properly configured for this using the ENV variable support)

* Produce a localized layer legend in case of vector layers (the layer's style
must be properly configured to use the Localized tag for rule titles)

https://docs.geoserver.org/stable/en/user/styling/sld/extensions/substitution.html
https://docs.geoserver.org/stable/en/user/styling/sld/language.html

. Produce a localized output for GetFeaturelnfo requests (the freemarker
template need to be properly configured to retrieve the locale from the

request)

Enabling that option, all layers added to the map from this catalog source will be
localized as described above (it is possible to tune again that setting for each single
layer by opening the Layer Settings in TOC).

» Set Visibility Limit: available only for WMS layers coming from CSW or WMS
catalog sources type. If checked and scale limits present in the WMS
Capabilities (eg. MinScaleDenominator and/or MaxScaleDenominator), these
will be automatically applied to the layer settings when a layer is added to the
map from this source

Single Tile (only for the WMS service): if checked, the layers loaded from the
involved catalog source are rendered as a single tile. For layers already loaded
on the map, it is possible to disable this option through the Layer Settings tool
as usual.

» Allow not secure layers: if enabled allows the unsecure catalog URLs to be
used (http only). Adding layers from WMS sources with this option active will
also force the layer to use the proxy for all the requests, skipping the mixed
content limitation of the browser.

Server Type: to specify the server type of the used WMS service URL. Possible
options are two: Geoserver or No Vendor which can be for example MapProxy,
MapServer or other.

. Note

If the No Vendor is set, then MapStore will not use any vendor option supported
only by GeoServer in the OGC requests where this source is involved.

* Format: to define the default Tile format for the layers added to the map (png,
png8, jpeg, vnd.jpeg-png, vnd.jpeg-png8 or gif) and to define the default
Information sheet format for the layers added to the map (text/plain, text/html
or application/json). The list of available formats is automatically retrieved from
the ones supported by the WMS server and can be also manually fetched
~

through the Fetch supported formats button when necessary.

https://docs.geoserver.org/stable/en/user/tutorials/freemarker.html
https://docs.geoserver.org/stable/en/user/tutorials/freemarker.html
https://mapstore.geosolutionsgroup.com/mapstore/#/

. Note

The Tile and the Information sheet configured through this option will be
automatically used for all layers loaded from the involved catalog source (if not
configured the default Tile used is image/png and the default Information sheet
used is text/plain). For layers already loaded on the map, it is possible to change the
format through the Layer Settings tool as usual.

* Tile size (WMS): it represents tile size (width and height) to be used for tiles of
all layers added to the map from the catalog source (256x256 or 512x512). For
layers already loaded on the map, it is possible to change the tile size through
the Layer Settings tool as usual.

* Domain aliases: available only for WMS catalogs type. This option is used to
improve the performances of the application for tiled layer requests when
multiple domains can be defined server side for the configured catalog source
in MapStore (domain sharding). The user can configure multiple URLs

+ button. Useful
information about other kind of performance improvements can be found in

referring to the same WMS service through the Add alias

the MapStore online training documentation.

TMS Catalog

The Tile Map Service (TMS) specifications include some not official/not standard
protocol for serving maps as tiles (i.e. splitting map up into a pyramid of images at
multiple zoom levels). MapStore allows to add to the map the following services
providers:

* Custom TMS service, specifying the URL template for the tiles.
* TMS 1.0.0, setting the URL

e Select from a list of known TMS services, with all the variants.

https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings
https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings/#display
https://training.mapstore.geosolutionsgroup.com/administration/best.html#performances

Type Title
T™S v My TMS servi
Provider URL Template
custom v https.//my-ct

custom

OpenSeaMap gs
Stamen Known online
services

Save || Cancel

Select provider for TMS. The list of providers contains "custom", "TMS 1.0.0" and other resources

. Note

Since some of these services are not standard, using them in different CRSs may
cause problems. Therefore, keep in mind that changing CRS can cause problems
when these levels are on the map.

Custom TMS

Selecting the custom provider the user can insert the tile URL template manually.
The URL template is an URL with some placeholder that will be replaced with
variables. The placeholder are identified by strings between brackets. e.g.:

{variable name} .

https://mapstore.readthedocs.io/en/latest/user-guide/footer/#crs-selector

7 Catalog X

Type Title
T™MS v My TMS service
Provider URL Template @
custom v https://my-custom-service/|zl/{xi/lyl.png
Advanced settings

¥ Search on service selection
Show preview
Custom TMS Configuration @
Fi

"options": {}

}

Edit a custom TMS
Allowed placeholder are:

* {x}, {y}, {z}: coordinates of the tiles

* {s}: subdomains, this provides support for domain sharding. By default this is
["a", "b", "¢"] . User can customize the default by adding options.subdomains.

example:

{
"options": {
"subdomains": ["a", "b", "c", "d", "e"]
}
}

When the user saves this custom catalog service and clicks on search, he will see
only one result, that can be added on the map: variants are not currently
sopported in MapStore for this provider type.

4 Catalog X
Service
My TMS service v N+

xt to search

My TMS service

3 :
Results 1-10f 1

Browse custom TMS service. It contains only one result

SAMPLE CUSTOM

url: https://{s}.tile.opentopomap.org/{z}/{x}/{y}.png
SAMPLE CUSTOM WITH ADVANCED OPTIONS

url: https://nls-{s}.tileserver.com/nls/{z}/{x}/{y}.ijpg

{
"options": {
"subdomains": [
non
II1II’
non
II3II

TMS 1.0.0

Selecting the "TMS 1.0.0" provider the user can insert the URL of the Tile Map
Service (see TMS Specification). For instance, in GeoServer, it is the URL of the
"TMS" link in the home page.

usemame password Remember me -/

GeoServer

Welcome

About & Status
Welcome

& About GeoServer

This GeoServer belongs to . Service Capabilities

csw
2.0.2
wcCs
1.0.0
1.1.0
111
11
2.0.1
WFS
1.0.0
1.1.0
2.0.0
wWMS
p I 7% |
1.3.0
WPS
1.0.0
™S
1.0.0
WMs-C
111
WMTS
1.0.0

Data
Layer Preview This GeoServer instance is running version 2.16-SNAPSHOT. For more

information please contact the administrator.

Demos

TMS 1.1.0 URL from GeoServer

When saved this, the user will be allowed to browse and add to the map the TMS
layers provided by the service. MapStore will filter the layers published showing
only the tile maps in the current EPSG.

=1 Catalog X
Type Title
™S v My TMS 1.0.0
Provider url
TMS 1.0.0 v http:/#/¢ /geoserver/gwc/service/t.
Advanced settings

Edit a TMS 1.0.0 provider

https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

T Catalog X

Service
My TMS 1.0.0 « v N+

e m."'.

tasmania_water_bodies

mv'ew NO}{ EPSG:g00913, png
Avaliable
<9

P

tasmania_water_bodies

Preview NOF EPSG 00913, jpeg
Avaliable

2

tasmania_water_bodies

Preview NOI‘ EPSGg00913, pngs
Avaliable

=9
)

poi +
Preview NOF EPSG:Q00013, png .
Avaliable

l.
a2k
iy

" BEREE

Browse TMS 1.0.0 layers

SAMPLE TMS 1.0.0 SERVICES

https://public.sig.rennesmetropole.fr/geowebcache/service/tms/1.0.0
https://osm.geobretagne.fr/gwc01/service/tms/1.0.0
https://gs-stable.geosolutionsgroup.com/geoserver/gwc/service/tms/1.0.0

TMS KNOWN SERVICES

The other known services are listed as providers below "custom" and "TMS 1.0.0".
They are a static list configured inside the application. Selecting one of the
provider listed and saving the new catalog service allows to browse al the variants
known for that service. For more information about the list of available providers,
see the developer documentation about Tile Providers

7 Catalog X

Type Title
T™MS v OpenStreetMap

Provider
OpenStreetMap v
Advanced settings

@ Search on service selection
£ Show preview

| Save || Delete || Cancel |

Select a known TMS provider

3 Catalog X
Service
OpenStreetMap « v N+

text to search

Search

OpenStreetMap.Mapnik
OpenStreetMap.BlackAndWhite
OpenStreetMap.DE
OpenStreetMap.France

“ (2

Results 1-4 of 5

Browse the TMS variants

3D Tiles Catalog

3D Tiles is an OGC specification designed for streaming and rendering massive
3D geospatial content such as Photogrammetry, 3D Buildings, BIM/CAD, and Point
Clouds across desktop, web and mobile applications.

MapStore allows to publish 3D Tiles contents in its 3D mode on top of the Cesium]JS
capabilities. Through the Catalog tool, a specific source type to load 3D Tiles in the
Cesium Map can be configured as follows by specifying the URL of a reachable

tileset.json .

In General Settings of 3D Tiles service, the user can specify the title to assign to

this service and the URL of the service.

Catalog
Type Title
3D Tiles v 3dtiles
URL
https://demo.geo-solutions.it/share/3dtiles/genova/aa5/tileset.json
- _
Advanced settings

Save Delete Cancel

. Warning

MapStore allows you to load also Google Photorealistic 3D Tiles and some
constraints need to be respected in this case. Since the Google Photorealistic 3D
Tiles are not ‘survey-grade’ at this time, the use of certain MapStore tools could be
considered derivative and, for this reason, prohibited. Please, make sure you have
read the Google conditions of use (some FAQs are also available online for this
purpose) before providing Google Photorealistic 3D Tile in your MapStore maps in
order to enable only allowed tools (e.g. Measurement and Identify tools should be
probably disabled). For this purpose it is possible to appropriately set the
configuration of MapStore plugins to exclude tools that could conflict with Google
policies. Alternatively, it is possible to use a dedicated application context to show
Photorealistic 3D Tiles by including only the permitted tools within it.

https://www.ogc.org/standards/3DTiles
https://github.com/CesiumGS/3d-tiles
https://github.com/CesiumGS/3d-tiles
https://cloud.google.com/blog/products/maps-platform/create-immersive-3d-map-experiences-photorealistic-3d-tiles
https://developers.google.com/maps/documentation/tile/policies
https://cloud.google.com/blog/products/maps-platform/commonly-asked-questions-about-our-recently-launched-photorealistic-3d-tiles

COG Catalog

A Cloud Optimized GeoTIFF (COGQG) is a regular GeoTIFF file, aimed at being
hosted on a HTTP file server, with an internal organization that enables more

efficient workflows on the cloud environment. It does this by leveraging the ability

of clients issuing HTTP GET range requests to ask for just the parts of a file they

need.

MapStore allows to add COG layers (also as a background) through its Catalog tool

where a specific source type can be configured as follows by specifying the URL of

a reachable COG .tif resource.

In General Settings of a COG source type, it is possible to specify the service
Title and its URL.

-

Type
COG

URL(s) @
https://cogeo.itVopendata/ortho/2018.tif

Title

Cloud Optimized Geotiff service

Advanced settings

Save

Delete

Cancel

X

. Note

configuration

To properly display COG layers in your MapStore map, it is necessary to add the
reference system definition supported by the COG in the MapStore projectionDefs

https://www.cogeo.org

. Warning

The COG catalog type in MapStore is still in experimental state and for this reason
not directly available in the default service types list of the Catalog tool. In order
to enable this service, update the default Catalog tool configuration in
localConfig.json or inside the application context wizard as shown below:

{

"name": "MetadataExplorer",
”Cfg“: {

serviceTypes: [

+ { name: "cog", label: "COG" }
1
}
b

Advanced Settings

In addition to the standard options, only for COG catalog sources, through the
Advanced Settings the user can configure also the following option:

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.MetadataExplorer

— Catalog X

Type Title
COG v Cloud Optimized Geotiff service
URL(s) @

https://cogeo.iopendata/ortho/2018.tif

Advanced settings

(] Search on service selection

Show preview

Download file metadata on search @

Save Delete || Cancel

* Download file metadata on search: this option will fetch metadata to support
the zoom to layer when the layer is added to the TOC.

. Note

The tool capabilities currently available for COG layers are:

* Zoom to selected layer extent : in order to zoom the map to the layer's
extent

® Access the Layer Settings to view/edit the General Information and
customize the Opacity value and the Visibility limits from the Display tab

* Remove the layer

Performing Measurements

The Measure tool in MapStore allows the user to perform different kind of
measurements (like distance, area and bearing etc.) on the map. It also provides
some additional functionalities that are described in this section of the
documentation. The tool is accessible from the Side Toolbar by selecting the
button that opens the following toolbar:

/ENOEL - -

Through this window it is possible to:
* Measure distance “

* Measure Area

* Measure Bearing E
* Clear measures

* Export the measures to GegJSON
® Add the measure as a layer in TOC n

* Add the measure as an Annotation n

. Note

The user can perform more than one measurement simultaneously on the map and

then cancel it with the Clear Measures button

Measure distance

As soon as the measure window opens, by default the measure distance option is

selected '\. . In order to perform a distance measure, each click on the map

correspond to a segment of the line (at least one segment is needed) while the
double click inserts the last line segment and ends the drawing session.

The available units of measure are:

https://mapstore.geosolutionsgroup.com/mapstore/#/

m »

m
km
mi

nm

. Note

The length of a line segment is shown on the map together with the measurement
of the overall distance of all segments.

Measure area

Once the Measure Area button is selected , it is possible to start the drawing

session (in this case at least 3 vertices need to be indicated). Same as measuring
the distance, each click correspond to a vertex and the double click will indicate
the last one.

In this case the available units of measure are:

2
m- v

-

ft?
m?
km?
mi?
2
nm?

. Note

Each side's length of the polygon is reported in map along with its perimeter and
the area.

Measure bearing

The Bearing measurements allows you to measure directions and angles. In the
quadrant bearing system, the bearing of a line is measured as an angle from the

reference meridian, either the north or the south, toward the east or the west.
Bearings in the quadrant bearing system are written as a meridian, an angle and a
direction. For example, a bearing of N 30 W defines an angle of 30 degrees west
measured from north. A bearing of S 15 E defines an angle of 15 degrees east
measured from the south.

After selecting the Measure Bearing button E the user can draw a line with

only two vertices that indicates respectively the starting and the ending point.

Export the measure

Measurements drawn on the map can be exported in GeoJson format through the

button.

Add the measure as layer

Once a measure is drawn, it is possible to add it as a layer through the H button.

The created layer is added to the Table of Contents as follows:

>

Choctaw =

& % \
X @ | |
\. - \ Piedmont Edmon‘d
[[1] ‘1' 7 (W,
E oy L ——— ElReno__ { G t -1
] ~J————=vukon"J rd {
, "¢ Oklahoma/
Filter lavers Y VYI(l)/‘l(l' G ','Tcit\'y""\ i3
(('1(do- %) <
Delaware \ Mustang — ‘r b
o Tribes J { Mibe
o= ‘ 10,33 k= |
AN
© Default = Nofman
7 \
| 42038 = e
/ \
= © Measurements —~¢ \
Chickasha ‘
100 % /
S
51.16 ks
/ o (
\

Medicine
Park

LI M9 et sin 125{.“““

Law‘tpn

Add measure as annotation

Once a measure is drawn, it is possible to add it as an Annotation through the n

button. The following panel opens:

Kicko

Nat
Ny

D> 4 Annotations 5=
3 0
€ i ®
6 rced
Title A
Measure Bearing Madera
e Fresno
Description 5}
Vo3 (@)D DR -
Hanford \
Annotations created from
measurements
s \ &
) > o
Bakersfield.. 9
aMaria N
q
i + S+ A+ + + \
Geometries RN T @ Santa Barbara \
k Line o m Oxnard
L \/-'—’F/\\j
T Text Y]

Lancaster
S Victorvitie
Palmdale /e

Santa Clarlra

+ <8urbank Janeernardmo

S, N
D g Rlversme

Long Beach\
San Clemente Temecula
Ocea nside
Escondldo
El Ca,on

Cedar. /
%

St Ggorde

- ‘f'
-~ Mesquite

N45°28'8"E

LasVegas

Bullhead e
Clty AKingman.—

Presc

Lake Havasu
City

Indio
Buc‘i‘(eys

El Centro

From this step the creation process is the same described in the Annotations

section.

Measurement on the 3D navigation

When the 3D Navigation is enabled, the user has the ability to perform distance,

area, point coordinates, height from terrain, angle and slope measurements on the

3D map.

Measure distance on the 3D navigation

As soon as the measure window opens, by default the Measure distance in 3D

space option is selected . In order to perform a distance measure, each click

on the map correspond to a segment of the line (at least one segment is needed)
while the double click inserts the last line segment and ends the drawing session.

Measure area on the 3D navigation

Once the Measure Area in 3D space button is selected , it is possible to

start the drawing session (in this case, at least 3 vertices need to be indicated).
Same as measuring the distance, each click corresponds to a vertex and the
double click will indicate the last one.

Measure point coordinates

After selecting the Measure point coordinates button H the editor can click
on a point on the map and know latitude, longitude and altitude of that point.
Measure height from terrain

Once the Measure height from terrain button is selected E it is possible to
click on a point on the map and know the distance from the point to the terrain.
Measure angle

Once the Measure angle in 3D space button is selected , the editor can
draw three points on the map and get the angle value.

Measure slope

Once the Measure slope button is selected E the editor can draw three points

on the map to create a triangular surface and get the slope value.

Annotations

Mapstore lets you enrich the map with special features which expose additional
information, mark particular position on the map and so on. Those features make
up the so called Annotations layers.

Starting from a new map or an already existing one, the editor can access the
Annotations n button from the TOC panel on the top-left corner of the

map viewer.

The annotation panel will open:

1

. §
H N
X Annotations [| vnies vy
/ e ,'I\‘Jewc.'
/ﬁ» f ?\ "\ Great Britain
= \l§|e\'0f Mgn Leeds
Filter annotations... Y S] —i
| Eire /Ireland (Manchester® ;cpaff
No annotations yet, click on [+] to add /7 ! (. ¢ Engloi
) ymru ;s
annotations 7 f Wales Birming
H\\\ - o (. cardifft Lon
/-‘/) - //p\f’"/\ s
\v/\w_//A = maE |
Guernsey, =
=)
..

“Rennes

Add new Annotation

To begin, from the annotation panel, the editor can open the new annotation panel

by selecting the button.

https://mapstore.geosolutionsgroup.com/mapstore/#/
../toc/

banp'gark

X Annotations [
vk

: . Newcastle t\‘ '.\
S s

Schleswig- v
Holsle/rg Mecklenburg-
Titl = e \{qrpqmmem 4§
€ ~ Groningen Ha'
’ 2
2 e] 5 W o :
mru /, o BIE”QI on: o { Niedersachsel
o fales gangian ‘edefl“ﬁnd /\Lj X
Description

Cardiff London < .
' ok > Dussgidorta'bey

e EEEE |
@ : B qieri't/ : :

N
e
Sloveni

Nouvell: Rhone-Alpes’ Venezia|
Geometries NN T @ Aquitaine o ‘h

Add a new geometry

AL T e 2Bologna “Hryat
; o > R
Occitanie.
itoria-Gastei: it

h ~ Andorra

UE. 3 Y laVella_
Aragén -

Oriental

From here the editor can insert a Title (required), a Description (optional) and
choose between five different types of Geometries:

* Marker @
* Line
* Polygon N
* Text T'
* Circle (9°
After selecting a geometry type, the editor can:

* Draw a Geometry on the map.

* Enter the vertices of the geometry or modify the existing ones through the
Coordinates editor using Decimal or Aeronautical formats.

* For Line and Polygon, add new vertices using the =} button and typing the

latitude and longitude values.

. Note

If the vertices are invalid, they are notified with a red exclamation point.

| 7

X Annotations [/
m I\, Polygon ;)

x

I
Lat 46.99570943771267 T
% 40
EEE NF 171 "-

Lat 46.96947659374448

S
N
1 1 - /
Title . All coordinate must be valid (+|- IS
Coordinate 90° lat, +]-180° lon) %uschm
4 SN
! & + !/“ > /'A/
Description A /__.~"

Lo

Treiten

= o .
Lon 7.263336181640625 : ntschemier
~— \
"’,\A '_/
<5
- o~ \4\
Lat 47.84720076526227 : =\
G i X Y Y X - = L
eometries "RKNTO Lon 7.404785156249999 -
N, Polygon (1]
/"
\ // 7 o
)_,-’) / Galmiz!
Vi
Bt

&
=L
In this case, it is not possible to add new geometry or save the annotation until a
valid value is entered. It is still possible to interact with the geometries already

present in the annotation, by zooming in on it or deleting it, as follows:

* Customize the Style of the annotation, as explained in the following paragraph.

Once the geometry has been saved through the Save button, for each

geometry created, the editor can perform the following operations:
* Zoom to the geometry annotation on map through the @} button

* Delete the geometry annotation through the ﬁ button

Once all the Geometries have been created, the editor can save the annotation
through the Save button that will be visible in the annotation list:

X Annotations

Filter annotations...

| 9 Test

Then, if not present, a new Annotations layer will be created and added to the
TOC

../toc/

X

w
Filter layers
¥ w
© Default

= © Annotations

Styling Annotations

Based on which type of annotation was chosen, MapStore allows you to customize
the annotation style through a powerful editor. It is accessible from the Style tab of
the annotation viewer. During the style editing a preview placed on top of the
styler form shows a preview of the edited style.

https://mapstore.geosolutionsgroup.com/mapstore/#/

' Annotations X
h, Polygon-test

Coordinates Style Title
Poly
Polygon Style Description
Normal ¢ B I U ®
EIlE | &
Description
Fill
Color P
Opacity £ Geometries NN T @
Stroke h Polygon-test [VINCHN]
LineDash -
Color v
Opacity —_——n
Width m
500 km | Scale: 1:18489335 v H
Marker

MapStore provides two types of Marker annotations, so you have to choose what
type do you prefer using the Type combo box (Marker is the default):

Em
9 Point

Coordinates
Marker Style

Type

Icon

Shape

* Marker types can be customized through the following editor:

Q@ roint

Coordin:

Marker Style

Type

Icon

¢
¢
¢
-
y
>

Shape

Annotations

Style Title
Point

Description

Normal & B

I

Marker - =l
= = Ix
Marker
Description
Symbol @
Geometries ™ @
Q ot]

Annotations

int

cription
dJormal & B

Ix

escription

.
g
e

Geometries

:

<

FrRBET O

Q roint oK T

Choose the Shape, Color and Icon that best fit your needs.

* Symbol types can have different Shape and Size, a Fill color with a
customizable Opacity level (%), a Stroke of different types (continuous, dashed,
etc) and customizable Color, Opacity and Width . Only few symbols are
provided by default in MapStore but a custom list of symbols can be

configured.
5] Annotations b 4
0 o < B
Coordinates % Style Title
Point
Symbol Style Description
= Normal ¢ B I U & E = Kk
ype Symbol v
Description
Geometries NN @
Layout
’ Q ot Q9
Shape A Triangle d <
Size ﬂamt
Fill
Color s =
A EE
Opacity —F
Stroke
LineDash o
— |
at —3
v
| 500 km | Sca 18480335 v K

Polyline

Polyline annotations can be styled using the following editor:

|
x Line

Coordinates

Polyline Style

Stroke

LineDash

Color

Opacity

Width

StartPoint Style

EndPoint Style

Annotations X

Style Title
Line
Description

Normal & B I

<
&
1]
i

I

Description

2 Geometries SNe N T @

100 %

k Line Q0 [T

| 500 km | Scale: 1:18489335 v H

You can customize the Stroke in order to consider the Line/Dash type (continuous,
dashed, dotted, etc), Color, Opacity and Width . You can also have styled Start/End
Points: enable the StartPoint Style/EndPoint Style panel using the corresponding

check box, the editor will be the same used for Marker/Symbol annotations.

Polygon

With polygonal annotations changing the style means choose the Shape and the

size the Size of the polygon, its Fill color (with custom Opacity), the type of the

Stroke (continuous, dashed, dotted, etc), its Color, Opacity and Width . See the

example below to better understand these options.

. Annotations X

‘ h Polygon-test

Coordinates Style Title

Poly
Polygon Style Description

Normal ¢ B I U 9

E|l|l=| | &

Description
Fill
Color P
Opacity = Geometries NN T @
Stroke h, Polygon-test O T
LineDash -
Color P
Opacity —l]
Width m

500 km | Scale: 1:18489335 v E

Text

Text annotations are a bit different from the geometric ones. They display a
formatted text on a given point of the map. The style editor allows you to customize
the text Font (Family, Size, Style, Weight), the Alignment (left, center or right)
and Rotation. You can also choose the text Fill color and its Opacity , the Stroke
type, its Color, Opacity and Width . Take a look at the following example.

&= Annotations D¢

s 8

Text Title
Tijuana Text
| o= Saes Description
Coordinates Style
Nomal ¢ B I U & E = Kk
Text Style i
Tijuana
Geometries v MNNTOE
Font
Famiy Helvetica v T Text o W
Size
o 1 [-

mal -
Text
|| Align
enter -
Rotation "o |
|
Fill
I fee
- [
Opacit: i00% |
| Stroke
LineDash
| g
L Y
— mm

Circle

Circle annotations can have custom Fill color (with custom Opacity), Stroke type
(continuous, dashed, dotted, etc) with custom Color, Opacity and Width . The
Center can be also customized through the same editor described for Marker
annotations. See the example below.

i Annotations X

@ Circle

Coordinates Style Title
Circle
Circle Style Description
Normal ¢ B I U & &£ =
I
Description
Fill
Color 2
Opacity —E3 Geometries CFNNT O
Stroke s @ cice O T
L]neDaSh v
Color 2
Opacity 00 % |
Width E3
Center Style
| 500 km | Scale: 1:18489335 v H

Click on to apply the style.

Managing Annotations

Once annotations are added to the TOC, the editor can Manage them by clicking
to button from the TOC toolbar and the Main Annotations panel will be open.

../toc/

X Annotations =

Filter annotations... Y
h My annotation o ©
9 Annotation 2 E:’; ©

From it, the editor is allowed to:
* Download a file with all the existing annotations by clicking on button
* Upload annotations from a valid json file by clicking on button
* Zoom an annotation on map by clicking on 'O button

* Show/Hide an annotation on the map by clicking on © button

From the Main Annotations Panel, by selecting an annotation from the list, the
editor is returned to the Annotation Viewer where the annotation can be edited.

X Annotations [

Title

My annotation

Description

[Normal :][B][I][Q][%]

== 3

Geometries NN TT®

h Polygon o m

In particular, the editor can:

* Change the Coordinates and the Style by clicking a geometry from list of
geometries.

* Download the annotation in json format and reused in other maps by clicking

on button

Map Views

The Map Views is a MapStore tool useful to set up multiple map views differently
configured and switch between them. A navigation functionality is also provided to
automatically activate each view one after the other in temporal sequence.

. Note

The Map Views plugin works both in 2D and 3D modes, but the 3D mode has
advanced options including the Mask, the Globe Translucency and the Clipping
(see next paragraph).

Add new view

*..

Once the user opens a map, the Map Views tools can be opened through the e

-

button available in the Side Toolbar.

\0, Click on the plus button to add a new view

{ 19
{ & Boyagy®
| & Bayaap,
~ "Otsgg

SR

AN T

| Maciza,)
Lo See

To create a new simple view the user can simply move the map to the interested
area, enable the desired layers in TOC to be displayed in the map and finally click

on the button. The view will be created and visible in the Views list by clicking

the E button.

https://mapstore.geosolutionsgroup.com/mapstore/#/

MapStore allows to customize and edit the new view by opening the Edit panel
through the button. Here the user is allowed to:

* Add a text, images, videos or hyperlinks through the Description section. The
description is visible during the Views Navigation. Take a look at the following
example.

https://mapstore.geosolutionsgroup.com/mapstore/#/

over [AR
‘

Font v Normal v IB Y| = v||i= V¥

& /Z @ B4 [a]

Intervention area

Here is a privately owned building that will be used for the
construction of offices.

* Capture the view positions through the [&ETNITERGIRVENES TSN button or

change the longitude, latitude and height of the Camera Position and Center

Position (only available for the 3D mode) by using the Position section.

TRRTRN =]+ & < > <

> Description

Camera position

Longitude Latitude Height (m)

8.929333 44.401233

509

Center position

Longitude Latitude Height (m)

8.929333

Capture this view positions

> Animation

44.401233 0

> Mask
> Globe Transluncency

> Layers Options

* Modify the duration of the animation and enable/disable the transition effect

during the Views Navigation by using the Animation section.

- L __,.~"
o NPRUSTRNN -1 o < > [<> o]k

> Description
= | > Position

Duration (s)

10

/ Animation transition during navigation

> Mask
> Globe Transluncency
>

Layers Options

* When in 3D mode, use the Mask section to select a WFS or Vector layer

available in TOC to create a mask on all the 3D tiles visible in map. The mask
layer need to be added to the map before using this functionality so that it is
possible to use the layer features as masking areas: if multiple WFS or Vector
layers (with polygonal features) are present in the map, these are used all

merged together to represent the final masking areas.

| > Position

> Animation

% Enable mask
Layer
Mask x w

O Inverse

Inverse offset (m)

10000

> Globe Transluncency b~

@ ~ 5°"5'.“'mtev[{uu- NN

> Layers Options S M S el

If the user enables the Inverse option, simply the inverse mask is applied using

the same layer so that each feature is used to produce an hole on all visible 3D
Tiles.

a WATERFRONT E + 8 N> C

> Description
> Position
> Animation
Vv Mask
Enable mask
Layer

Mask

Inverse

Inverse offset (m)

10000

> Globe Transluncency

B Layers Options.

(2

Search by lo

aie i e
AT

* Enable the translucency of the globe through Globe Translucency section so

that it is possible to see layers under the globe's surface.

Milano Subway E "‘ . AN 5 (m

Description
Position
Animation

Mask

Globe Transluncency I

Enable translucency

Opacity

0.3
(0 Fade translucency by distance

Minimum distance (m)

Maximum distance (m)

> Layers Options

* Choose which layer should be visible when the view is active through the
Layer Options section. In 2D mode the user can simply enable or disable all
the layers present on TOC and change the opacity.

Al WATERFRONT E + B\ Y C
> Description

> Position

> Animation

« |V Layers Options

V Interventi SR 2 \

Opacity 1

. Warning

In 2D mode, the 3D Tiles and the Terrain layers are not displayed in the Layer
Options.

In 3D mode, using the same logic described above for the Masking option, it is also
possible to Clip (not Mask) each 3D Tiles or Terrain layers using a WFS or a vector
layer as a clipping source. Furthermore, in this case the user can also choose
which layer feature can be used as Clipping feature.

. Warning

The clipping layer must have polygon convex features. Concave polygons are not
supported by this type of clipping.

. Note

Unlike the Mask option, described above, the Clip function is a more narrowly

focused tool because:

* The clipping are is visible only on the selected 3D Tiles layer and not on the

whole view

It is possible to select the feature of the WFS or Vector layer that you want to
use for the clipping

3D Views navigations

Once multiple views are added to the Map Views tool it allows to visualize them in
sequence by clicking on the u button. Doing that the presentation mode starts
and each view is displayed in the Map Viewer, together with its descriptive panel
(if configured) on the left side of the screen, for a time depended on the duration

previously configured.

The user can also choose to navigate each view manually using the navigation
toolbar provided by the tool.

¥V Milano Subway

Milano Subway
Data © OpenStreetMap contributors ODbL

The subway linestring has been exctracted from OSM data with the
overpass turbo query tool. The transparency effect has been applied with
the Map Views plugin inside the Globe Translucency editing section.

RETE METROPOLITANA E LINEE FERROVIARIE SUBURBANE °
METRO NETWORK AND SUBURBAN RAILWAYS

“u
]

-

]
f:°
'

L

Street View

The Street View tool allows the user to browse Google Street View contents in
MapStore. Through the .I button available in the Side Toolbar, the tool can be

activated so that it is possible to navigate the map with Google Street View.

Street View

Click on the map to start browsing the images of street view

SRR

e o~ Z
T e - A
_ e) ‘" g

i ' \)

A -

R - | Bric Pasquin
ar - Ny b
é x\f‘ﬁ\! _ » ,. g
2
S Wk
» I 0

X A 'me
14
{ [

£ o~

When the tool is activated, a window opens and the streets highlighted on the map
so that the user can select one of them with a simple click of the mouse.

By clicking on a street in the map, the tool window displays the Street View and
the user can navigate it as usual.

Zoom in/out on the street

https://www.google.com/streetview/
https://www.google.com/streetview/

* Use the Pan Interaction to navigate all-around the street

Enable/disable the Full Screen .

. Note

By default, the Street View plugin is ready to be configured for application
contexts, and is not available in the default plugin configuration due to licensing

reasons.

Longitudinal Profile

Given a DEM or a bathymetric layer as a source and a provided path on it, this tool
allows to calculate the Longitudinal Profile and display it within an interactive
chart.

. Note

The Longitudinal Profile is not included by default in the MapStore configuration
but it can be configured within an application contexts if needed. The plugin works
only if the Longitudinal Profile WPS process is properly installed in GeoServer.
Look at the official online documentation to learn more about this process and how
to install it. The GeoServer module of the Longitudinal profile is available from
Geoserver v2.20.x of Aug 2023.

By clicking the Longitudinal Profile N button, available in the Side Toolbar, a

drop down menu opens so that the user can manage the available options
including different ways to calculate the profile:

® Load file

€ Selection to profile

£ Parameters

—

N

* It is possible to draw a line directly on the map through \ Draw line
button

 In alternative it is also possible to import a linear profile as a vector file
(available formats for this are GeoJSON, ShapeFile or DXF), through

® Load file button

http://geoserver.org/
https://docs.geoserver.org/latest/en/user/community/wps-longitudinal-profile/index.html

* Finally, through 4 Selection to profile button, the user can also selecta

vector linear layer in TOC and then select the line feature representing the
desired profile path on map.

Chart

When the geometry of the profile path has been drawn on the map, the
Longitudinal Profile panel opens and the chart appears in the Chart tab.

../toc/

Longitudinal profile X
- 1

Longitudinal profile

1400 m
1350 m
1300 m

1250 m

Elevation (m)

1200 m

1150 m

0 sk 10k
Distance (m)

15k

Units meters
CRS EPSG:3857
Source sfdem

®Ccsv ®PNG ®PDF

While the X axis indicates the distance from the starting point of the provided path,
the Y axis indicates instead the height of points along the profile calculated from
the provided path. The user can hover over the chart to interact between the chart
and the line of the map as follows:

The Chart toolbar, displayed in the right corner of the chart, allows the user to:

Longitudinal profile X

il]

Longitudinal profile

1200 m
1190 m
1180 m
1170 m

= 1160 m

Elevation (m)

1150 m

1140 m

1130 m

1120 m

0 sk 10k 15k 20k
Distance (m)

* Download the chart as a png through the button.
* Zoom the chart through the Q button.

* Pan the chart through the button.

®* Zoom in the chart through the button.

* Zoom out the chart through the button.

. Autoscale to autoscale the axes to fit the plotted data automatically through
the button.

* Reset axes to return the chart to its initial state through the button.

MapStore also allows to export the Longitudinal Profile as CSV, PNG or PDF file.

Longitudinal profile X

Longitudinal profile

1200 m
1190 m
1180 m
1170 m

5 1160 m

Elevation (m)

1150 m

1140 m

1130 m

1120 m

0 sk 10k 15k 20k
Distance (m)

Units meters
CRS EPSG:3857
Source sfdem

https://mapstore.geosolutionsgroup.com/mapstore/#/

Information

In the Information tab are reported all relevant indicators related to the
longitudinal profile calculation. In particular it is reported:

Longitudinal profile X

Layer: sfdem
Distance: 23195 m
Cumulative elevation gain: 1420 m

Cumulative elevation loss: -300m

& < > /J @

Number of points processed: 314 points

* The layer used to calculate the profile
» Total linear length of the profile

* Cumulative elevation gain

* Cumulative elevation loss

* Number of points processed (the number of points varies according to the
pitch chosen).
Setting Parameters

Through the Q Parameters button it is possible to tune the profile

properties. The available parameters used to calculate the longitudinal profile are:

Profile layer

sfdem -

Distance (m)

75

Chart Title

Longitudinal profile

* The Profile layer choosing between the available layer on the dropdown menu

* The Distance choosing the maximum distance between two points along the
profile (in m)

* The Chart Title to be used in the UI on the top of the chart.

Longitudinal profile X

Longitudinal profile

1200 m
1190 m
1180 m
1170 m

= 1160 m

Elevation (m)

1150 m

1140 m

1130 m

1120 m

0 5k 10k 15k 20k
Distance (m)

Units meters
CRS EPSG:3857
Source sfdem

GeoProcessing Tool

This tool aims to provide a set of geo-processing utilities on layers present in map.
WPS calls are made by the tool to produce the result to be displayed in the map.
Supported WPS processes are geo:buffer and gs:IntersectionFeatureCollection
(the WPS plugin need to be installed for your GeoServer version in order to use
this tool).

. Note

The GeoProcessing Tool is not included by default in the MapStore configuration
but it can be configured within an application contexts if needed or directly
included in the standard application configuration.

By clicking the GeoProcessing Tool Gb button, available in the Side Toolbar, a

panel opens so that the user can choose the geographic operations between
Buffer and Intersection.

https://docs.geoserver.org/latest/en/user/services/wps/install.html
../../developer-guide/local-config/

o GeoProcessing D7

Select a process to use

Buffer -

Buffer

Intersection

Source Feature

Select... v @ 9
Distance

100 m v
Advanced Settings

n Highlight features

Run @

Buffer tool

The Buffer tool allows to create a buffer around the input geometries and when it
is selected, the user can:

* Select a layer from the Source Layer option drop down menu. The dropdown
shows the layers available for the process from the ones present in TOC.

* Select one of the layer features from the Source Feature option. The feature
can be selected from the dropdown menu or directly clicking on map by

activating the @ Dbutton.

* Insert the desired Distance for the buffer (supported are m and km).

When all mandatory process parameters have been provided, it is possible to click

on button to start the process to generate and visualize the buffer layer.

The buffer layer is added in TOC inside a new group created for the purpose.

../toc/

Advanced Settings

Enabling the Advanced options the user can include further (not mandatory)
parameters for the Buffer process:

o GeoProcessing X

Select a process to use

Buffer -

Source Layer

Select... v @

Source Feature

Select... v @ 9
Distance
100 m w

Advanced Settings

Quadrant segments

Cap style

Select...

n Highlight features

Run @

* Enter the Quadrant Segments, that is the number of line segments used to
approximate a quarter circle.

* Select the Style for the buffer end caps choosing between Round, Flat or
Square

Intersection tool

Once Intersection is selected as a process to be used from the first dropdown,
the user can also select the layer to use as Source Layer for the intersection as
well as the layer to be intersected with the given source (Intersection Layer
option). For both options it is possible to select a feature to use for the intersection

process; this is possible by enabling the @ buttons in order to select the layer

features directly with a click on the map. If no layer feature is provided for one of
the to layer options, the operation will be performed on the entire layer.

The user can then:

* Select the Source Layer from the drop down menu.
» Select the layer feature from the Source Feature. The feature can be selected
from the drop down menu or by clicking directly on the map by activating the

Q@ button.

In the same way it is possible to select the Intersection Layer and the
corresponding Intersection Feature to obtain the new intersected layer by

clicking on button.

The new layer, result of the intersection of the features selected, will be added to
the TOC inside a dedicated group and visible in the map viewer.

../toc/

>< Search by location name

Wi 9263 gs-main

Filter layers

¥ w e

I © Intersected Layers

I © Intersection Layer 0

© Default

% © builtup_area

% @ Jand_polygons

Advanced Settings

Enabling the Advanced options the user can include further (not mandatory)
parameters for the Intersection process:

eﬁ GeoProcessing
Source Layer

elect... v @

Source Feature

Select... v @ 9

Intersection Layer

Select... v @

Intersection Feature

Select... v 9 9

Advanced Settings

First attribute to retain

Second attribute to retain

Intersection mode

INTERSECTION

Percentages enabled

Select...

Areas enabled

Select...

Highlight features

Run @

* Enter the First attribute to retain, which is the first attribute to display

. Enter the Second attribute to retain, which is the second attribute to display

* Select the Intersection mode choosing between INTERSECTION, FIRST or
SECOND

* Select the Percentages, choosing between False or True, to indicate whether
to generate area percentages.

* Select the Areas enabled, choosing between False or True, to indicate
whether to generate area

Navigation Toolbar

The Navigation Toolbar is a navigation panel containing various elements that help
the user to explore the map. In particular, it is possible zooming, changing the
extent, navigating in 3D mode and querying objects on the map. Moreover, the

following icon . is used to expand/collapse the navigation toolbar.

®

Geolocation tool

Through the Show my position E the user can center the map on his position.

Therefore the button turns green.

;.uwl"‘"’f“'*, SRa39 T S
N . ———

" SP5

The position is still active even when the user interacts with the map; with a single
click on the button it is possible re-center the map on his position. To disable the
position the button needs to be duble clicked.

Zooming tools
MapStore provides several tools allows the user to:
* Increase the map zoom by using the zoom in icon
* Decrease the map zoom by using the zoom out icon =
* Switch to full screen E view
* Go back to the previous map extent in the map navigation history
* Go forward to the next map extent in the map navigation history

* Zoom to the maximum extent E the map

https://mapstore.geosolutionsgroup.com/mapstore/#/

3D Navigation

The 3D navigation in MapStore is based on Cesium]S. If the 3D button m in the

Navigation Toolbar is clicked, the map switch in 3D mode so map contents are
displayed on a 3D globe and it is possible to orbit around it through the compass

place in the upper right corner of the map.

Note

The 3D mode in MapStore support also the rendering 3D Tiles layers once they
are added through the Catalog tool as explained here.

Identify Tool

The Identify tool n allows to retrieve information about layers on the map. The

tool is active by default (the button is green). Therefore if the user click on a layer
in the map, the identify panel opens containing the layers information
corresponding to the clicked point in the map (also the coordinates of the clicked
point are reported in the identify panel).

https://mapstore.geosolutionsgroup.com/mapstore/#/

\\ _
\
X

‘.;‘ X Q| States of US ¥ H
L -0
W\
Y Y Q Lat: 41.837 - Long: -110.25
q
>
&

. Results for FeatureType 'https://gs-stable.geo-solutions.it/geoserver/geoserver:us_s
tates’:

| the_geom = [GEOMETRY (Polygon) with 48 points]
STATE_NAME = Wyoming

STATE_FIPS = 56

SUB_REGION = Mtn

STATE_ABBR = WY

LAND_KM = 251500.801

WATER_KM = 1848.149

PERSONS = 453588.0

FAMILIES = 119825.0

HOUSHOLD = 168839.0

MALE = 227007.0

FEMALE = 226581.0

WORKERS = 164561.0

DRVALONE = 153679.0

CARPOOL = 28109.0

PUBTRANS = 2963.0

EMPLOYED = 207868.0

México. |

\ { X UNEMPLOY = 13112.0
o =
S5 dc"::ﬂd’ SERVICE = 71419.0
s - T MANUAL = 29157.0
- -y % o\ 95— P_MALE = 0.5
e :1/’)/'\-\«(, . ()K—‘"gs"”‘ P_FEMALE = 0.5
" Ciudad o fjonduras-1, 50 SAMP_POP = 83202.0
de Guatemala...” [6o
\'Ngavdgu,aa o s
X & i | There are no features for the following layers: ny_roads

\ o ©
D SRS 4) Carag

© OpensStreetMap contributors.

L_s500km | Scale: 1:36978669 v H
The layers information are reported in plain text by default. It is possible to change
the format by selecting the Q button in Side Toolbar where the user can select,

through the Identify response format menu, three different formats like: TEXT,
HTML and PROPERTIES.

Settings X

Language
il | 5 |01 o =

Identify response format

TEXT v

TEXT
HTML

PROPERTIES

The information will be returned in the format chosen by the user. For exaple with
PROPERTIES format as follows:

Rcaracuciy

oA /
S

© OpensStreetMap contributors.

£ | States of US

Q Lat: 41.627 - Long: -110.25

us_states.29

| STATE_NAME Wyomir

STATE_FIPS 5

SUB_REGION M

|| STATE_ABBR W

LAND_KM 251500.8¢

WATER_KM 18484

PERSONS 45358

FAMILIES 11082

HOUSHOLD 1688:

MALE 2270C

FEMALE 2265¢

WORKERS 1645¢

D B DRVALONE 15367
\\\ \;\K CARPOOL 2810
B ¥ O\ PUBTRANS 206
Y N Medco |) iy a, P S EMPLOYED 20786

«\\}? Ciudad} QT,‘L»»\’ C i, UNEMPLOY 131

e e 00 AV 0o SERVICE 7141

: A e 51 . MANUAL 201
V\’r\\\//_?:iudad T, P-MALE 9

de Guatemala oo S5 06 P_FEMALE >

| There are no features for the following layers: ny_roads

L_500km | Scale: 1:36978669 v H

. Warning

This global settings could be overwritten by a layer-specific
Feature Info Form).

configuration (see

In addition to the layers information, the following are provided by the Identify

Tool:

* The point address through the More Info button ﬂ

9 Address

Sweetwater County, Wyoming. United States of America

* The coordinates =58 of the point

@ \

@ States of US v

Y, \ Q Lat 42.09822241118974 Lon -110.03906303644179
-

Results for FeatureType 'https://gs-stable.geo-solutions.it/geoserver/geoserver:us

_states’

Ottawa
®

the_geom = [GEOMETRY (Polygon) with 48 points]
STATE_NAME = Wyoming
STATE_FIPS = 56
SUB_REGION = Mtn
STATE_ABBR = WY
LAND_KM = 251500.801
WATER_KM = 1848.149
PERSONS = 453588.0
FAMILIES = 119825.0
HOUSHOLD = 168839.0
MALE = 227007.0
FEMALE = 226581.0
WORKERS = 164561.0
DRVALONE = 153679.0
CARPOOL = 28109.0
PUBTRANS = 2963.0
EMPLOYED = 207868.0

Toronto

México

QE; ciudbdl o UNEMPLOY = 13112.0
{ de México', %) SERVICE = 71419.0
o8 N LIS >

MANUAL = 29157.@
P_MALE = 0.5

s 3 2 oo P_FEMALE = 0.5
Cludad 5 fHonduras—° o o =
de Guatemala " 7 e SAMP_POP = 83202.0
’Nl:\augu[a‘ o
B 4

: There are no features for the following layers: ny_roads

© OpenStreetMap contributors. L_500km | Scale 136978669 v H

. Note

The point coordinates are visualized in decimal or areonautical format. It is

possible to change the format by the setting button O

* The Highlight Features button allows to highlights on the map the

layers features corresponding to the retrieved information in the clicked point.

* The Edit button allows the user to open the Attribute Table in edit mode

showing only layers records corresponding to the clicked point on the map.

Using the Coordinates Editor

In order to Identify layers features by typing coordinates instead of clicking on the
map, you can use the Coordinate Editor.

The coordinates can be in decimal or areonautical format depending on the user

needs. It is possible to change the format by the setting button o

An example of search with Decimal coordinates as follows:

An example of search with Aeronautical coordinates as follows:

Identify Tool with more than one layer

In a map it is possible to have several overlapping layers. With the Identify tool the
user can retrieve information on one or more overlapping layers at the same time
in a certain point.

If the user clicks on the map where one or more overlapping layers are present,
the identify panel opens. The panel provides the layers information, therefore the
user can navigate different layers information from the layer select drop-down
menu where the layer options have been sorted as in TOC.

../attributes-table/

W orderGFl @ [states of US
ny_roads

’ I

observatories

5
D
-«

¢ = States of US
it tates':
© Default = RS ID\—{ | SD [A |\ . . A
the_geom = [GEOMETRY (Polygon) with 56 points]
STATE_NAME = Colorado
Z @ ny_roads | | STATE_FIPS = 08

<
SUB_REGION = Mtn
STATE_ABBR = CO
LAND_KM = 268659.501
WATER_KM = 960.364
PERSONS = 3294394.0
FAMILIES = 854214.0
HOUSHOLD = 1282489.0
MALE = 1631295.0
FEMALE = 1663099.0
WORKERS = 1233023.0
DRVALONE = 1216639.0
CARPOOL = 210274.0
PUBTRANS = 46983.0
EMPLOYED = 1633281.0
UNEMPLOY = 99438.0
SERVICE = 421079.0
MANUAL = 181760.0
P_MALE = 0.495
P_FEMALE = 0.505
SAMP_POP = 512677.0

A

= © observatories

100 %

= @ Statesof US <

México The Bahj
La Habana® " "

Ciudad 7 <L_“cuba
de M) o
Ciudad Honduras—1

de Guatemala "
Nicaragua ¢

King

S Panama

© OpensStreetMap contributors 1000 km Scale: 1:36978669 v H

In order to have information about one layer only the user can select the layer on
the Table of Contents, through the TOC button , and then click on the layer in
the map to perform the identify operation only for that selected layer in TOC. The

identify panel opens containing the layer information corresponding to the clicked
point in the map, as follows:

Floating Identify Tool

In MapStore the user can set the Identify tool in floating mode (Floating Identify
tool) instead of having the default one available through a click on the map. In that
case an identify popup will appears on the map as soon as the user hover over a
layer in the map.

In order to activate the Floating Identify Tool the user can select the Q button in

Side Toolbar. Here he can select the Hover option through the Trigger event for
Identify dropdown menu.

https://mapstore.geosolutionsgroup.com/mapstore/#/

Settings X

Language

il |5 (| = | T

Identify response format

TEXT &

Trigger event for Identify

8a2043b85ebf4871594a98b9cf80822a6f4031b0

As soon as the option Hover is selected, the user can hover the mouse over a layer
in the map in order to show the popup containing the identify information.

Background Selector

The background selector, located in the bottom left corner of the Viewer, allows
the user to add, manage and remove map backgrounds.

SREPUPI._ SO et it

By clicking on the background selector several miniatures will be displayed. Those
miniatures can be selected in order to switch from a background to another (the
map backgrounds set by default in MapStore are Open Street Map, NASAGIBS,
OpenTopoMap, Sentinel 2 and the Empty Background).

For example choosing OpenTopoMap, the map background will change like in the
following image:

If the user has editing permissions on the map (independently on the role, see
Resource Properties section for more information about permissions), it is also
possible to add, edit or remove backgrounds.

Add background

A new background can be added through the button on the top of the

background selector main card. Performing this operation the Catalog panel opens
with the possibility to access the Remote Services:

- :)
Mo ks © Opmlioreiiag, LITW | Wag wigle: © s Soguliag 1KC 87 14) L sim 1E

7 Catalog X

Service

Default Backgrounds - +
GeoSolutions GeoServer CSW
GeoSolutions GeoServer WMS

GeoSolutions GeoServer WMTS

Open Street Map Added to b3 - electc

NASAGIBS Night 2012 Added to backaround select

'2

Resulis 1-4 of 5

. Warning

Default Backgrounds service is available only accessing the Catalog from the
background selector, but if you add a new Remote Service from there, it will be
available also accessing Catalog from the Side Toolbar or from TOC. Default
Backgrounds represent a list of backgrounds that can be configured from
MapStore's configuration files (more information about that can be found in
Developer Guide's Map Configuration section).

../catalog/
../catalog/
../toc/
../../developer-guide/maps-configuration/

From the Catalog the user can choose the layers to add to the list of backgrounds:

ne_1iom_ocean
Preview NO; ne_110m_ocean j

Avaliable

gsne_110m_ocean

.ll‘:z

Ldas

As soon as a WMS layer is selected, the Add New Background window opens:

Add New Background X

Preview No‘t:U
Available

Title
NE2_HR_LC_SR_W_DR

Format

image/png X w
Style

Select... v

Q

Use cache options

Additional Parameters 4

Add

In particular, from this window, the user can perform the following operations:
* Add a Thumbnail choosing the desired local file by clicking on image preview
area, or simply with the drag and drop function
* Set the Title
* Set the Format (between png, png8, jpeg, vnd.jpeg-png Or gif)

* Choose the Style, between the ones available for that layer

. Enable/disable the use of the layer cached tiles. If checked, the Tiled=true URL
parameter will be added to the WMS request to use tiles cached with
GeoWebCache. When the Use cache options is enabled, more controls are
enabled so that it is possible for the user to check if the current map settings
match any GWC standard Gridset defined on the server side for the given

WMS layer (Check available tile grids information 7). At the same time,

it is also possible to change the setting strategy (based on the WMTS service
response) to strictly adapt layer settings on the client side to the ones matching
any remote custom Gridset defined for the current map settings (Use remote

custom tile grids button). (More details on Layer Settings section.)

* Add Additional Parameters of three different types: String, Number or
Boolean (these parameters will be added to the WMS request).

Warning

The thumbnail image size should be a square of 98x98px or 128x128px, max 500kb
and the supported format are jpg (or jpeg) and png

Once the options are chosen, with the f¥GEN button the new background layer is

definitively added to the background selector as a card and automatically set as
the current one.

Add WMTS background

In case of a WMTS layer added as a background layer, the Add New Background
window is a bit different:

https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms
https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms

Add New Background X

Preview No'tﬂ‘n" ‘
Available

Title
Enter displayed name

Attribution

B /7 U § Normal v # Vo d

Enter Attribution Text

Add

The user can perform the following operations:
* Add a Thumbnail choosing the desired local file by clicking on image preview
area, or simply with the drag and drop function
* Set the Title

* Set the Attribution visible at the bottom left of the footer in the map viewer.

Edit background

It is possible to edit backgrounds by clicking on settings icon on top of each
background card:

Open Street
Map
b s et

o«

e~

O T [z
P A

= LY

) s
—l3h ri

. Warning

Default Backgrounds layers can't be edited, with an exception for Sentinel 2: only
WMS Layers can be edited&/configured through the Background Selector.

The Edit Current Background window opens, allowing the user to customize the
same set of information when adding a new background (see previous section).

Remove background

It is possible to remove a background from the background selector by clicking on
remove icon on top-right of each card

Open Street
Map

S N"Js"’;‘ﬁ iy
y s o 2 W

f
(=

= ' |

. Note

By default, for new maps, all backgrounds from Default Backgrounds Service are
added to the background selector, and in Catalog they appear grayed (it's not
allowed to add the same default background twice): as soon as you remove one
from the background selector, it becomes selectable from the Catalog.

Timeline

The Timeline is a MapStore tool for managing layers with a time dimension. It
makes possible to observe the layers' evolution over time, to inspect the layer
configuration at a specific time instant (or in a time range) and to view different
layer configurations time by time dynamically through animations.

. Warning

The Timeline tool currently works only with WMS layers from GeoServer where
the WMTS-Multidim extension is installed (WMS time values in WMS Capabilities
is not supported yet). To use the MapStore Timeline at least GeoServer 2.14.5 is
required, but the recommended version is GeoServer 2.15.2 to have a complete
support for all of the features the Timeline tool can provide (e.g. the filter by
viewport). From now on, the layers that the Timeline can manage will be
addressed as time layers. From now on, the layers that the Timeline can manage
will be addressed as time layers.

When a layer with a time dimension is added to the map, the Timeline panel

becomes automatically visible and it allows the user to browse the layer over time.

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://docs.geoserver.org/stable/en/user/community/wmts-multidimensional/index.html

. Note

Widgets and Timeline cannot be expanded on the same map at the same time. See

this section to learn more about this.

Timeline histogram

The Histogram panel opens through the Expand time slider button .

©| Meteorte Landings

=S o r "
i e s 719 070 R T] T eI P s s
imq 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 199 1997 1998 1999 2000 [2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 20

In the Histogram panel some of the most relevant elements are the following ones:

* A list of layers present in map with the time dimension available. It is possible
to hide this list with the Hide layers names button E
* The relative histogram that shows the layer' data for each time in which it is

defined. In order to manage the panel the user can zoom in/out on the
histogram, scroll the time axis and drag the current time cursor along it

. Note

The highlighted layer is the one whose histogram is displayed on the panel.

. Note

The highlighted layer in the time layers ' list drives the time management, from
now on it will be addressed as guide layer (See in the Animation Settings >

Timeline Settings > Snap to guide layer option).

Set a Time Range

In order to see a layer in a specific time instant the user can insert a data and a

time in the panel, as follows:

EEE]

75 [T S) B s e s e e
193 1984 o5 1986 197 188 199 190 1991 1552 1993 199 195 19% 1997 199 199 2000 | [a 2002 2003 204 2005 2006 2007 208 209 2010 o1 012 2013 2014 20

. Note

The current time cursor changes its position according to the selected date and
viceversa: when the user drag that cursor along the time axis the date/time cells

will update their values.

In order to observe the layers in a finite fixed time interval the user can set a time
range through the Time range button m A date/time control panel opens to set

the range limits either by directly entering values in those cells or by dragging the
limits cursors along the histogram time axis, as follows:

(&1 jan2001 © 0 o.ourcoml

©| Meteorte Landi 3 70 780 228 230 s 79 o7 =
e —— & " i pYery s 1351 i 1070 T i
g : : g . . : S e ' :
N9 180 se 1se2 1983 1984 1985 198 1987 1988 189 1990 1991 1992 1993 1995 199 1997 1998 1999 2000 [[o01 2002 2003 2004 2005 2006 2007 20| 2009

Reset timeline

Based on the timeline configuration, the reset button can be made visible on

the timeline toolbar. It allows the user to reset the time data based on the current

mode of the timeline

* When the current mode is single, the icon is represented as , and the

layer is selected in timeline, the time is set to nearest of now and when the layer
is not selected, the time is set to now

®* When the current mode is range, the icon is represented as = the time is

set to the full range of the layer

. Note

Reset button is made visible through plugin configuration i.e. resetButton: true

Show times available on map

Sometimes you might be interested to show in the timeline histogram only the
times instants currently visible on the map, especially when you are exploring a
big data set. This feature can be enabled by clicking the Map Sync button E .
When this tool is active the timeline will show only the times of the features

available in the current map viewport.

R

o

o o 5 ®0® 5 o

. Note

Map Sync feature need at least GeoServer 2.15.2

Animations

The user can start a time animation by using the timeline tool through the
following buttons (by default the animation of layers in map is based on time values
related the guide layer, see the Animation Settings section > Timeline Settings
> Snap to guide layer option):

A A A A A

I| 8 |[Jun][2005| ® 18 [:[0 |: m

v v v v v

In order to start the animation the user can click on Play button n Once the

animation is started, the temporal layers in map are updated accordingly and the
user can see the animation progress also in the timeline histogram. Following the
sequence of steps, the cursor will shift each time to the next step in a certain time
interval, the frame duration.

Through the Stop button n the user can stop the animation and the current

time cursor remains in the last position reached.
The Step backward button and the Step forward button allow the user

to change the current time. Therefore, by clicking on one of them, the cursor

changes its position (to the previous or the next step) on the histogram, the date/
time values of the control cells will be updated accordingly and the layers in map
are updated too.

The user can pause the animation through the Pause button n as follows:

. Note

The user can also specify a time range. During the animation, the whole range will
be shifted step by step along the time axis and, in each step, the layers in map will
show data corresponding to that range of time.

Animation Settings

The animation behavior can be customized through the Settings button n It

allows the user to tune the Timeline and the Playback options.

Timeline Settings

Snap to guide layer @ n

Time interval snap point @
@ Start (O End

Playback Layers

Frame Duration

)

2

4
»

Animation Step @

Animation Range

Follow the animation @ n

By default, the Snap to guide layer is enabled. It allows to force the time cursor
to snap to the selected layer's data.

Timeline Settings

Snap to guide layer @ n

Time interval snap point @
@ Start O End

Playback Layers

Frame Duration

2 S

{

Animation Step @

Animation Range

Follow the animation @ E

If the time dimension of the layer has time ranges defined (start/end time) instead
of time instants, the user can choose the Time interval snap point by selecting
the option Start or End.An example of snapping to the End point could be the
following:

The user can disable Snap to guide layer to select the preferred time step through
the Animation Step option. For example, the process could be similar to the

following one:

Timeline Settings

Snap to guide layer 4

Playback Layers

Frame Duration

)

2 3

(

Animation Step @

1 Day v

Animation Range

Follow the animation @ n

The user can set the number of second between one animation frame and another
through the Frame Duration and enable the Follow the animation to visualize
the animation process also inside the histogram: the histogram will automatically

move to follow the animation.

Timeline Settings

Snap to guide layer @

Playback Layers

Frame Duration

)
w

2

Animation Step @

1 -~ Day 8

Animation Range

Follow the animation 4“

Enabling the Animation Range the user can bound the animation execution to a
fixed time interval, the green range. The green range can be defined both
dragging the play/stop cursors directly on the histogram or filling the date/time
control cells of the extra panel displayed, as follows:

In order to properly set the Animation Ranger, some controls are available to help

the user:

* Zoom the histogram until it fits the animation's green range time extension

through the Zoom to the current playback range button O\

* Extend the animation's green range until it fits the current view range of the

histogram through the Set to current view range button <=

* Extend the animation's green range until it fits the guide layer time extension

through the Fit to selected layer's range button

Layers Setting

The layers tab lists all the available time layers present in the map. The user can
toggle a layer to be shown/hidden in the timeline by clicking on the checkbox next

to the layer title.

Timeline Settings

Snap to guide layer @ D

Playback Layers

Meteorite Landings

Storm observation

(<)

Footer

In MapStore some of the map information are reported in the Footer. By default, as
soon as the user opens the map, the scale bar and the scale switcher are showed
so that the user can change the scale bar by zooming in/out the map or by
selecting a map scale through the scale switcher.

| 1000 km Scale: 1:18468637 Y

In order to visualize the map coordinates corresponding to the mouse pointer in
the selected Coordinate Reference System of the map, the user can click on the

button

Coordinates: X:1,035,318.78 Y. 2,362,114.64 CRS: EPSG:3857

CRS Selector

MapStore allows also to change the Coordinate Reference System of the map by
clicking on the Select Projection button . A CRS selector opens to select one

of the available CRSs, as follows:

. Note

The list of available CRSs depends on the CRS Selector configuration.

In order to search a desired CRS, the user can also filter the CRS list by typing in a
search input field.

'AI.AI

A1l

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/developer-guide/local-config/#crs-selector-configuration

Selected:
EPSG:4326

EPSG:3857

Filter projection

1:18468637 Y H

Exploring Dashboards

In MapStore, a Dashboard is a space where the user can add many Widgets, such
as charts, maps, tables, texts and counters, and can create connections between
them in order to:

1. Provide an overview to better visualize a specific data context

2. Interact spatially and analytically with the data by creating connections
between widgets

3. Perform analysis on involved data/layers

In order to create a new dashboard, the New Dashboard button appears in

MapStore Homepage once logged as Administrator or Normal user. With a click on
it, an empty dashboard workspace appears. This page is composed of a Topbar, a
Sidebar and a Viewer:

SIDEBAR VIEWER

The dashboard is empty

Topbar
Through the Topbar it is possible to:

* Access GeoSolutions website with a click on the (C,) icon

» Set the language, with the Language switcher:

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://www.geosolutionsgroup.com/

s ENGLISH

I FRANCAIS

DEUTSCH

ESPANOL

* Go back to the Homepage with the m button

* Take a look at the account info, change password and logout, with the E

button (more info about these options are available in Managing Users and
Groups section)

Options Menu

In the Options E drop-down menu you can:

OPTIONS

EXPORT

IMPORT

SAVE

SAVE AS...

DELETE DASHBOARD
SHARE

TUTORIAL

ABOUT

CEA@=EBEOO®

* Export dashboard in json format

* Import dashboard in json format (it will replace without asking the current
dashboard)

» Save/Save as the dashboard
* Delete the dashboard

* Open the Share panel

* Start the Tutorial

* See the information about the deployed Version of MapStore in the About
panel.

https://mapstore.geosolutionsgroup.com/mapstore/#/
../resources-properties/
https://mapstore.geosolutionsgroup.com/mapstore/#/

MapStore Version

Version 2022.02.xx-qa

Message #8580 Unmute epics on plugin registration (#8583)
(#8585)

Commit 6191402349d6d286fff27e6e3c8df0e5825927a8

Date Tue, 13 Sep 2022 17:52:20 +0300

MapStore

MapStore is a framework to build web mapping applications using
standard mapping libraries, such as OpenLayers and Leaflet.

MapStore has several example applications:

* MapViewer is a simple viewer of preconfigured maps (optionally
stored in a database using GeoStore)

* MapPublisher has been developed to create, save and share in a
simple and intuitive way maps and mashups created selecting
contents coming from well-known sources like Google Maps and
OpenStreetMap or from services provided by organizations using
open protocols like OGC WMS, WFS, WMTS or TMS and so on. For
more information check the MapStore wiki.

License

MapStore is Free and Open Source software, it is based on OpenLayers,
Leaflet and React]S, and is licensed under the Simplified BSD License.

For more information check this page.

Credits

MapStore is made by:

© GeoSolutions

Your one-stop-shop for geospatial open source software

Sidebar

The Sidebar allows the user to:

* Add new widgets with the button

* See the connections between widgets with the ﬂ button, available when

connections are present (more information about this option are available in
Connecting Widgets section)

Viewer
Once the widgets are added in the viewer it is possible to:

* Change widgets position by moving them with a simple Drag and Drop and
resize them:

* Access widgets menu 5 from which the user can choose between several

options (more information about this menu's options can be found in Map's
Access Widget Menu section)

» Take a look at the widget Description (more information about widget
Description can be found in Map's Access Widgets Info section)

Adding Widgets

With a click on the button in Sidebar the Widget panel opens, showing the list
of the available widget types that can be added to the dashboard:

X Widget il

Select the widget type

Chart
l I ' | add a chart

Text

@ aaa a text area

==
add a table

Counter

I add a counter

Map

I l ‘ a0d a map

In particular, it is possible to choose between:

e Chart

» Text

* Table

* Counter

* Map

Creating Chart, Text, Table and Counter widgets the procedure is almost the same
as that described for create widgets in maps. The only minor differences are the
following:

* In dashboards as soon as the user selects the widget type, a panel appears to
select the layer from which the widget will be created. MapStore allows you to
choose between CSW, WMS and WMTS GeoSolutions Services, present by
default, or by accessing WMS, WFS, CSW, WMTS and TMS Remote Services as
explained in the Managing Remote Services section

X Widget ||||

Select a layer

IeoSolutions GeoServer CSW ~ a N+

GeoSolutions GeoServer CSW
GeoSolutions GeoServer WMS

GeoSolutions GeoServer WMTS

@ test:Linea_costa

areeverdiPolygon

test:areeverdiPolygon

* In dashboards the possibility to connect/disconnect widgets to the map is
replaced with the possibility to connect/disconnect the Map widgets together
or with other widget types (this point will be better explained in Connecting
Widgets section)

Creating Map type widgets, otherwise, is a functionality present only in
dashboards.

Map Widget

In dashboards, selecting the Map type widget, the following panel appears:

https://mapstore.geosolutionsgroup.com/mapstore/#/

X Widget il

Select one or more maps

text to search...

Empty Map
Start from an empty map
10358_demo

1863 - neftex - test

#3916 - test cql exceed

® @ @ @

configured a circle spatial filter that makes the url grws,...

Here the user can:

* Go back to widget type selection through the button

» Search for a map by writing its title

* Select one or more maps from the list of maps (mandatory in order to move
forward)

* Move forward to the next step through the button

Once a map has been selected, the panel display the layers present in the map in
the preview and lists the layer associated with the map.

. Note

If user has selected more than one map, the map wizard displays the map switcher
dropdown allowing user to select and configure the map.

X Widget il

B A § € 0 + »
Selectamap 10358_demo v

Configure map options

Preview

X

Map data: @ OpenStreetMap. SRTM | Map style: @ OpenTopoMap (CC-BY-SA)

Layers
© New York =
© & States of US
% Annotation Group =

. Note

If the Empty Map has been selected the user can:

* Create a map widget using an empty map

 If the map selection has an empty map, then the user is prompted with an
option to enter map name

* Upon adding the name, the map wizard displays the map switcher allowing
user to select and configure the map

® Add layers to the map through the button, as follows:

/>

On the Configure map options panel the user can toggle the layer visibility and
set layers transparency, as explained in Display options section. Furthermore, the
user can manage the layer with the new buttons present on the layer toolbar by
selecting the layer on the layers list.

X Widget il
QN i o€ 0 + >

Configure map options

Preview

© OpenStreetMap contributors.

v

© Default

© States of US

Here, the user is allowed to:
* Zoom to layers though the E button
* Access Layer Settings through the button

* Remove layers through the button

* Disable/Enable the Floating Identify Tool to retrieve Identify information about
layers available on the map through the n button

. Warning

The Floating Identify tool is active by default (the button is green)

Once the button is clicked, the last step of the process is displayed like the

following:

X Widget il
Configure Widget Info
Title:

Description:

Here the user has the possibility to insert a Title and a Description for the widget
(optional fields) and to complete its creation by clicking on the E button. After

that, the widget is added to the viewer space:

B

© OpenStreetMap contributors.
ol

Legend widget

When at least one Map widget is created and added to the dashboard, there's the
possibility to add also the Legend widget, available in the widget types list:

X Widget il

' | I I add a chart

Table

add a table

Counter

[} W
Q Q
c Q
u 7]
O

b,

[=
9 S
D

Legend
N ——
" add a legenc
N —
N

Selecting the Legend widget, the user can choose the Map widget to which the
legend will be connected (when only a Map widget is present in the dashboard this
step is skipped):

Sperafish

Select the map to connect

© OpenStreetMap contributors. © OpenStreetMap contributors.

Once a Map widget is connected, the preview panel is similar to the following:

b 4 Widget il

Preview
sfdem

values

values
values
values
values
restricted

@ RedFill RedOutline

roads

7/ Roads

bugsites

O Capitals

Here the user can go back to the widget types section, connect n or
disconnect the legend to a map and move forward to widget options.

If the last option is selected, a configuration panel similar to the Map widgets one
gives the possibility, before save, to set the Title and the Description for the Legend

widget.

An example of a Map widgets and a Legend widget is the following:

+ G
"

10358_demo i 8 USA states - Legend

© States of US

ENCen

ESCen

Mid Atl

Mtn

N Eng

Pacific

S Atl

W N Cen

WS Cen

UEROENECE

Map data: ® OpenStreetMap. SRTM | Map stvle: © OpenTopoMap (CC-BY-SA)

Connecting Widgets

In dashboards it is possible to connect the added widgets allowing the user to
inspect and interact with more than one of them at the same time.

Once at least one connection between widgets is set, it is possible to identify the
connected widgets turning on the connections button in the dashboard Sidebar

making it green E This will highlight the connected elements with a colored

bar on their upper side.
In general, you can connect:

* Map widgets with other widgets

» Table widgets with other widgets

Connecting Map widgets with other widgets
In dashboards it is possible to connect Map widgets with:

* Other Map widgets
* Chart widgets

» Table widgets

* Counter widgets

* Legend widgets

Maps with other Maps

As soon as more than one Map widget is added to the dashboard, the connect/
disconnect button appears inside the Configure map options panel (accessible by
adding a new Map widget or editing an existing one).

>< Widget il |

Configure map options

Preview

90
14
34
St
- {l‘(gls
lack-Hills
National
Forest
© OpenStreetMap contributors
Layers
© Default —
© roads

With a click on it, if only another Map widget is present, by default the connection
will be made towards that Map widgets. When more than one Map widget is

present in the dashboard, instead, it is possible choose one through a page like the
following:

Select the map to connect

Maps with Charts, Tables and Counters

In order to connect Charts, Tables or Counters widget with Maps widget, the
procedure is similar to that seen in the previous section. The result is that the
information displayed in the Chart, Table or Counter changes accordingly with the
map portion displayed in the connected Map widget. For example the result could
be:

* Connecting Charts with Maps:

it :
I USA States & Land (km)
g o

600K

450 K4

© OpenStrestMap contributors.
4

o :
USA States S States info

state_name land_km water_km persons

Type text to filter. Type number or ex Type number or ex Type number or ex
Alabama 131443119 4332268 4040587
Mississippi 121506 43 3598337 2573216
Georgia 148574888 3934991 6457339
South Carolina 77987823 4910636 3486703
Florida 139852123 30456797 12937926

© OpenStrestMap contributors. 5 ltems
a
T E—

* Connecting Counters with Maps:

179,103.285 knr

When a pan or zoom operation is performed in the Map widget, the other
connected widgets are spatially filtered according to the Map viewport.

Maps with Legends

Also in this case the connecting procedure is similar to those seen previously, but
now the information contained in the Legend widget doesn't change according
with the map extension. An example can be the following:

= :
I Spearfish ' Spearfish Legend

1
-l I
585 A i sfdem
]
1
!

values

N ese f
] 1040 \ i .values

values
values
values

restricted

@ RedFill RedOutline

streams
N T e st
oy Black Hills * 7 Streams
y~ National
Forest
= A bugsites
B i
]
A]
- O Capttals

]
!
i
i
i
i
© OpenStrestMap contributors

Connecting Table widgets with other widgets

With the same procedure used for maps (see previous section) the user can
connect Table widgets with:

* Map widgets

* Other table widgets, only if it refers to the same layer

* Chart widgets, only if it refers to the same layer

* Counter widgets, only if it refers to the same layer

When a table is connected with other widgets, it became a Parent Table and a filter
appears on the top.

TABLE - USA states

STATE_LNAME STATE_ABER LAND_KM PERSONS FAMILIES MALE FEMALE WORKERS CARPOOL EMPLOYED

UNEMPLOY

It is possible to apply a filter in the Parent Table simply by typing a text in the input
field present at the top of each column:

A Map widget that is connected to a Parent Table receives the alphanumeric filter
of the Table and:

* Performs a zoom to the extent that contains all the Table widget records (the
result of the filter in the Table)

» If the Map widget contains the same dataset (layer) of the Parent Table, also
the layer on map is filtered accordingly

Once a widget is connected to a map widget that is connected to a Parent Table at

the same time:

* If the widget has been created on the same dataset (layer) of the Parent Table
then two filters will be applied in AND to the widget itself: the spatial filter of
the Map widget and the attribute filter defined in the Parent Table

 If the dataset isn't the same, only the spatial filter of the Map widget will be
applied as usual: in the following example, the Counter refers to a level other
than that configured for the Parent Table

There are different combinations of connections, the image below illustrates the
allowed ones by reporting also the kind of filters applied for each case

Table :
........... E Map
v widget widget
(LayerA)
Map widget
(with Layer A)
Parent Table
R R R e (Table widget) auh
: ox
X (Layer A) !
: Map widget
i
| (Layer A) ' (with Layer C)
Y 1
- > Table results extont !
o g Table attribute filter |
= =P Map spatial fitter | At:,r’i'b'uh
. Table SO S
widget
—> widgot connection not aliowsd

Exploring Story

In MapStore, GeoStory is a tool that allows to create inspiring and immersive
stories by combining text, interactive maps, and other multimedia content like
images and video or other third party contents. Through this tool you can simply
tell your stories on the web and then publish and share them with different groups
of MapStore user or make them public to everyone around the world.

The user can approach a story in two different ways:

* Creating a new story or editing an existing one through the Edit Mode

* Enjoy the story and interact with it, through the View Mode

Edit Mode

The Edit Mode allows the user to edit a story by adding, removing or modifying the
elements inside it. This mode and its tools are used both to edit an existing story
and to create a new one.

In order to create a new story, the user can click on the New GeoStory button

on MapStore home page. As soon as the user clicks on that button in home

page the story editor opens, it is composed of three main elements: the Topbar,
the Builder and the Sections Container (later simply called Container).

|& Top Bar

L = /0

Insert title

B e

Builder Sections Container

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

The Story content is organized in Sections, that can be added with the < button

in the Container area. In particular, the user can add to the story the following kind
of sections:

Title Banner Paragraph Immersive GeoCarousel Media Web Page

2 ah = g ' m

I.

* Title Section

* Banner Section

» Paragraph Section

* Immersive Section

* GeoCarousel Section
* Media Section

* Web Page Section

View Mode

The View Mode corresponds to the final result of your story composition that will
be visible to end users on the web.
The user can access the View Mode also during the Story editing in order to have

a preview of its work on the Story itself. The Show preview button in
Builder's toolbar allows to do that and the first display looks like the following:

110) WP At e (PT w s

List of Highest Astronomical Observatories

From Wikoaca. 1he Dies si<yciopecs

On top of the page there is a Top bar in which the story's informations (if properly
configured in edit mode) are displayed.

S >

The elements available in the top bar can be the following:

* Edit Story button & that allows to switching back to the Edit Mode

* Navigation bar allows to navigate between different sections of the story
» The Title of the story configured in the story settings (edit mode)

* The Logo of the story chosen by the story editor in the story settings

Warning

In order to set up this information the story editor neededs to go back in Edit Mode

and open the Setting button ﬂ as explained in Story Setting.

The Story layout allows to navigate contents by scrolling up and down the Story
page by using the mouse or the Navigation bar.

Story Settings

The Story Settings panel allows the editor to customize the theme of the story and
configure which additional components should appear to end users in the story

view.
The Story settings panel is available in Edit Mode and it can be opened by clicking
on the Settings button n

Story theme

Default Theme
Background
Text
Font Family

Overlay
Background
Text

Shadow

Story Header

Title
Enter Tit
Font size

Logo

Navigation bar

4
@
“ EI\ <I\

Story Theme

The editor can customize the different components of the story through the
following sections:

* The Theme to choose the default background and text color and the default

font of the whole story: clicking on the Change Color button / a color picker

appears to allow selecting the desired color:

* The Font Family to choose the default text font present in the whole story:
clicking on the search bar a dropdown menu opens to allow selecting the
desired font (Inherit, Arial, Georgia, Impact, Tahoma, Time New Roman,
Verdana). The default list of Font Families can be customized in the MapStore
configuration file.

* The Overlay to choose the default background and text color of overlay
contents present in the Title Section and in the Immersive Section as well:

clicking on the Change Color button / a color picker appears to allow

selecting the desired color:

* The Shadow of overlay contents present in the Title Section and in the
Immersive Section: to enable or disable the shadow:

* The color of Links. The story editor can choose the default color of the
hyperlink that may be present in the Text Contents.

Story Header

In the top bar of the story, if the editor enables them, the following components are
added:

Story Header

Title n

Enter Title
Font size Select v

Logo

Drop your logo image here or click to select an image
file (supported formats are png and jpeg)

Navigation bar n

(J Abstract

* The Title of the story, the default value is the title given to the story's resource
in MapStore.

* The Font Size of the title: clicking on the search bar a dropdown menu opens
to allow selecting the desired size (14 px, 16 px, 18 px, 24 px, 28 px).

* The story Logo, that can be for example an image that represents your

organization or something connected to the story itself.

* The Navigation Toolbar to improve the story navigation for end users. Each
section of the story is reported in a tree and the editor can establish which
section should appear in the toolbar to allow end users to quickly navigate the
story.

Saving the story settings and going back in View Mode, the top bar looks like this:

©@ L h 2

A NW(=t of Highest Astronor History of high altitude astrox observatories Where are they located? ~ Mauna Kea Obse

Title Section

As soon as you create a new Story, by default, only a Title Section (the cover) is
present in the workspace. In this section the story editor can customize two
different elements: the title text and the cover's background.

Content
By default, the title section has the following placeholder with an empty
background behind it:

Vil |

Insert title

v

LG

With a click inside the text area, it expands and the Text Editor Toolbar appears
allowing the story editor to type and/or edit the title text:

3 &
Pl |

LG

4
w
i
i
3
il
1
(il
1|
~\
I
i

v

Once the text has been written, it is possible to configure the text area position and

its style from the component's toolbar:

VAl]

MD

List of Highest Astronomical
Observatories

The text window toolbar allows the user to change the following settings:

* The Change size button w0 allows to change the size of the text window in

Small, Medium, Large or Full.

* The Align content button = allows to align the text window, inside the

Container, on the Left, Center or Right.

* The Change field theme button /* allows to change the text window theme

in Default (same default theme settings of the story, see Story Settings), Bright,
Dark or Custom (allows to customize background and text colors and enable or
disable the shadow)

* The Remove button {j allows delete the title section.

. Note

When a section has only one content, and the story editor remove that content, the
entire section will be also automatically deleted.

Setting a title with Large size, aligned on the Center of the Container and with a
Bright theme, the result is something like:

V|

List of Highest Astronomical
Observatories

Background

For a Title sections it is possible to customize the background through the
background editing toolbar:

=

10
.
=

List of Highest Astronomical
Observatories

In case of an empty background, the background editing toolbar allows to:

* Add a media content as a background, with the Change media
source button %, that opens the Media Editor

* Change the height of the section through the Fit/adapt content button
or maps.

L 2

3
It is possible to add three types of media contents as a background: images, videos
Images

Once an image is added for the background, the result is something like this:

List of Highest Astronomical

Observatories

b 11

In this case the background editing toolbar allows to customize the image
background through the following settings:

* Change media source %, allows to select the media content to use for the
section, clicking on this button the Media Editor opens

* Change the content height through the Fit/adapt content button

* Change the relation image/container, choosing between making the

"_&
A
background cover the whole container or making the whole background
visible inside the container [m

. Change size x. between Small, Medium, Large or Full

° Align content = on the Left, Center or Right

* Change the background theme /* to setthe colour of the empty

background between Default (same default theme settings of the story, see

Story Settings), Bright, Dark or Custom (allows to customize the color of the
background).

. Warning

The Align content and the Change field theme buttons are disabled if the image
size is full screen

Videos

Once a video is added for the background, the result is something like this:
(@)

e &V

e List of Highest Astronomical O]
= type:title

§= Highest astronomical obs o)
= type paragraph

Text o
type: text

Image Y = /0
type:image A

* History of high altitude astronc]
+% type: immersive

mw

List of Highest Astronomical Observatories

From Wikipedia, the free encyclopedia
History of high altitude astrc &

type: column

1]

e Text x

type: text

Where are they located?
type:title

bi

* Where are they located? o
« '+ type:immersive

Mauna Kea Observatory &
type: column

Text x

type: text

The background toolbar, in this case, changes a little bit by including an additional
button:

* The Audio, enabled by default, through which you can enable or mute the
video.

By clicking on the Make the whole background visible inside the container button

= other two buttons appear to perform the following operations:

\NEFH@xe = 2800

° Enable Autoplay () to play the video automatically once the user is on it

%

* Enable Loop ':_j’ to continuously repeat the video

. Note

edit mode except in the media editor as a preview.

The video play will be available only in View Mode of the story: it is not available in

Maps

In this case, adding a map as background, the result will be like this:

83 o v AR

Lt of Highest Astrondemcsl €

'l Vs

]
]
£
» : {
[i X
g §9
-

o

| List of Highest Astro

Moy of NG SERUe aation
30 e Uoe ey

R
g

nomical Observatories

Mattory of WGP 3ERuce sy . \l
: L @
H —— - .

button:

N\ |l =

* The Edit map configuration through which it is possible to Configure the

Map

The background toolbar, in this case, changes a little bit by including an additional

Banner Section

The Banner Section is similar to the Title Section and it is useful to easily create a
story banner without the title text content.

NET

+
From the background editing toolbar the user can do the following actions:

* Add a media content as a background opening the Media Editor through the

Change media source button %, and choose between images, videos or

maps.

* Change the height of the section through the Fit/adapt content button =}

=

* Remove the banner section through the Remove button j

Once the media content has been added as a background of the section, the
editing toolbar changes to enable different functionality depending on the content
inserted: as explained here.

Below is an example of an image added as background in the Banner Section:

N < eylocated? Ma Demo Observatories

s F—— T

+ o 2 e *ROB . FET ghime o BaD
=1 Fargona BARE @%BC mpmem o -
: KRB, ReEm e

Paragraph Section

The Paragraph Section allows to insert a textual content to the story. The story

editor can also click on the + button to add additional contents to this section

(like media, other paragraphs or embed third party contens). It is possible to
choose between:

Insert text here.. B s [

* Text Content ﬁ to add another text content just below the current one

* Media Content @ to open the Media Editor to add an image, a map or a

video.

°* Web Page Content </> to add an external web page

Text Content

By default, as soon as a Paragraph is added, an empty text content is already
present as a placeholder and the content toolbar allows to:

Insert text here..

* Change the size of the text content: clicking on the Change Size button «» a

dropdown menu appears to allow selecting between Small, Medium or Full
size:

MD
Piccola

This is a list of the highest astronomical o

world, considering only ground-based ok
ordered by elevation above mean sea level. The main lis
includes only permanent observatories with facilities
constructed at a fixed location. followed by a
supplementary list for temporary observatories such as
transportable telescopes or instrument packages. For large
observatories with numerous telescopes at a single
location. only a single entry is included listing the main
elevation of the observatory or of the highest operational
instrument if that information is available.insert text here...

+

* Delete the Paragraph Section through the Remove button {j

The editor can write a text by clicking on the text content and customize it through
the Text Editor Toolbar. A possible result of adding and formatting the text can be
the following:

LG

This is a list of the highest astronomical observatories in the world, considering only ground-based observatories and ordered by

elevation above mean sea level. The main list includes only_permanent observatories with facilities constructed at a fixed location,

followed by a supplementary list for temporary observatories such as transportable telescopes or instrument packages. For large

observatories with numerous telescopes at a single location, only a single entry is included listing the main elevation of the observatory or

of the highest operational instrument if that information is available.insert text here...

<+

Media Content

Adding a media content, the Media Editor opens to allow adding the supported
media (like Image, Map or Video).

Images

An image added inside the paragraph section can be customized through the
Image Content Toolbar. Below is an example of a small, center-aligned image, just
below a text content:

This is a list of the highest ast ical observatories in the world. considering only ground-based observatories and ordered by
elevation above mean sea level The main list includes only permanent cbservatories with facilities constructed at a fixed location,
followed by a supplementary list for temporary observatories such as transportable telescopes or instrument packages. For large
observatories with numerous telescopes at a single location. only a single entry is included listing the main elevation of the
observatory or of the highest operational instrument if that information is available insert text here.

Videos

A video added inside the paragraph section can be customized through the Video
Content Toolbar. Below is an example of a video, just below an image content:

Maps

A map added inside the paragraph section can be customized through the Map
Content Toolbar. Below is an example of a large, center-aligned map, just below an
Image content:

Viow showing Soveval of $he acrid's ighost obsorvatory sies it Ol Jooking north acmes B0 Liano Jo Chgimantor andd ALMA slie. s B0 pooks of
Como R¢0 #iprt contert arct Como SRgnantsy 50RO sung above

Web Page Content

Adding a web page content, the Web Page Windows opens allowing the user to
add the URL of an extenal web page. A web page added inside the paragraph
section can be customized through the Web Page Content Toolbar. Below is an
example of a medium, center-aligned web content, just below a map one:

Liictiogged in Tal Cortrbusions Creste scccunt Log I

Ace Tak Resd EO1 Viewhistory | Search Wikpeda a

wixipema List of highest astronomical observatories
R From Wikpeda, he Fee encyciopeda

Man page This s a list of the highest astronomical observatorles in the wedd, fing only ground based ob dies and
Contents ordered by elevasion above ran sea evel The main st indudes coly ‘ s with faciies daa
Cument events foend locasion. followed by a supp y st for lemporary ob s SUCh &5 ¥anspotable 1oscopes of instrumant
e packages. For large with descopes at a single bocation, only a single entry Is included ksting the main
R ey elevation of the cbservatory or of the highest operational in # that infoemation is availabl
Contactvs = A
D Contents puce]
Comete 1 Mitory of figh aeude a5t nomial CLINVIOrRS
e 2 Highest permanent cbsenvaaries
Leam 1o oot 3 HGNS! tempacary ORIMVANeS

Chapanior and ALMA e, wilh the
3 6 Retecences

Tooks

Immersive Section

The immersive section is composed of two elements: the background and the
immersive content. As soon as you add an immersive section to your story, an
empty background with an empty text content will be displayed.

. N
[,

Insert text here...

+

Content

Inside an Immersive Section the story editor can customize the content area
through the Immersive Content Toolbar:

[[]

Insert text here...

+

In particular, it possible to:

* The Change size button wo allows to change the size of the text window in

Small, Medium, Large or Full.

* The Align content button = allows to align the text window, inside the

Container, on the Left, Center or Right.

* The Change field theme button /* allows to change the text window theme

in Default (same default theme settings of the story, see Story Settings), Bright,
Dark or Custom (allows to customize background and text colors and enable or
disable the shadow)

Below is an example of a small Immersive Content, aligned to the Right and with a
Dark field theme:

Insert text here...

+

As soon as you add a text content, it appears available just below the current one.
With a simple click inside it, the user can write the text and customize the text
formatting through the Text Editor Toolbar. An example of a text content can be
the following:

History of high altitude astronomical observatories

Prior to the late 19th century, almost all
astronomical observatories throughout history
were located at modest elevations, often close to
cities and educational institutions for the simple
reason of convenience.[1] As air pollution from
industrialization and light pollution from artificial
lighting increased during the Industrial Revolution,
astronomers sought observatory sites in remote
locations with clear and dark skies, naturally
drawing them towards the mountains.

The immersive content can include text, media contents or web pages. A new

content can be added inside the immersive content column through the ==

button, or it can be removed through the jj button.

o

™MD 7’

[=]

Insert text here..| B « @

<+

Adding a media content, the Media Editor appears to allow the story editor to add
an Image, a Map or a Video. It is also possible to add a Web Page content as it is
explained in the Web Page Section. An example of immersive content with a text

and an image can be the following:

History of high altitude astronomical observatories

Prior to the late 19th century, almost all astronomical observatories
throughout history were located at modest elevations, often close to
cities and educational institutions for the simple reason of
convenience.[1] As air pollution from industrialization and light
pollution from artificial lighting increased during the Industrial
Revolution, astronomers sought observatory sites in remote locations
with clear and dark skies, naturally drawing them towards the
mountains.

It's the hystorical cincinnati Observatory

Background

For Immersive sections, it is possible to customize the background through the
background editing toolbar:

Bl

= |l

L
W

The background editing toolbar, when no media are applied, allows to:

* Add a media as a background of the section, with the Change media source
button %, that opens the Media Editor

Once a media (image, video or map) is added to the background, an editing toolbar
appears in the upper left corner of the section allowing the user to manage the
background content.

| *.‘ Canada

History of high altitude astronomical observatories

Prior to the late 19th century, almost all
astronomical observatories throughout history
were located at modest elevations, often closeto |
cities and educational institutions for the simple @
ﬂ ‘ . reason of convenience.[1] As air pollution from
@043 industrialization and light pollution from artificial B @
3‘) lighting increased during the Industrial Revolution, (&
astronomers sought observatory sites in remote
locations with clear and dark skies, naturally
@ drawing them towards the mountains.

Soomaaliya

Jlog 2l

République
démocratique

The Background editing toolbar changes depending on the type of media
added to the background, as it is explained in the Background section.

. Note

Only for Immersive Section, when the user try to add another section of the same
type just below the current one, the added section is actually another immersive
content, that fits inside the same immersive section.

GeoCarousel Section

The GeoCarousel section allows another kind of immersive experience than the
Immersive Section. The story editor can define a list of carousel cards to be
presented with an accompanying descriptive content and a geographic location. In
edit mode it is composed of three elements: the background map, the descriptive
panel and the carousel panel where the editor can manage carousel items.

)
ik v | Add a background ma)
g P
— T= Abstract o)
= el et
— =9 Geocarousel Section kM
T oo gype: carousel
— = Geocarousel Content
= = type:column
— @ Text Mo = 2
- type: text
Insert text here...
+
Add a new marker for the selected carousel item
+ @
Geocarousel...
Preview Not|
Avaliable
S @ 9

Background

The background editing toolbar allows to add a map as a background of the

section, with the Change media source button <, thatopens the Media Editor

as usual.

=]l

L
Y

. Note

In the GeoCarousel Section the story editor, unlike the Immersive Section and the
Title Section, can only add a map as a background.

Once a map is selected for the background, the editing toolbar appears in the
upper left corner of the section allowing the story editor to manage the
background content.

Insert text here...

+

The Background editing toolbar allows the following actions:

N e =/

* Change media source %, allows to select the media content to use for the

section, clicking on this button the Media Editor opens.

* The Edit map configuration allows to Configure the Map

* Change size x. of the section between Small, Medium, Large or Full

* Align content = on the Left, Center or Right

* Change the background theme /* to setthe colour of the empty

background between Default (same default theme settings of the story, see
Story Settings), Bright, Dark or Custom (allows to customize the color of the

background).

——r

. Warning

The Align content and the Change field theme buttons are disabled if the map size
is full screen.

© OpenStreetMap contrit

Descriptive panel

The Descriptive panel allows to put descriptive content such as text, image, video
or map for the different cards composing the GeoCarousel section. The story
editor can customize it through the Content Toolbar, as it is explained in the

Content section.

i
“

[]

Insert text here...

-

Carousel

The carousel is composed of a list of cards to be associated with a geographic
location. It is located at the bottom of the GeoCarousel section and as soon as the
section is added to the story, it has by default the following empty card ready to be

configured:
+ O
2%
| | Geocarousel...
|| |Preview Not
Avaliable
¥ N

L " n ! !.

Once a card is selected in edit mode, the story editor can perform the following
operations through the Cards editing toolbar:

N m @

* Edit N\, the card: clicking on this button the Edit Card panel opens to allow

adding Thumbnail and Title. An example can be the following:

Add new card thumbnail

Thumbnail

Title

Colorado

Add

* Delete [J the card

* Add marker @ on map or modify the current marker position: clicking on

this button the Map Inline Editor opens, and the story editor can click a point
on map to add a new marker or change its position as follows:

In the upper left corner of the Carousel panel, a Carousel toolbar allows to:

* Add card - to the carousel

* Remove [J the GeoCarousel Section

. Note

Each carousel item as well as its marker on the map is numbered to be better
identified.

GeoCarousel section in View Mode

In a GeoCarousel section, in view Mode, the user can perform the following
operations:

* Select a carousel card to view related descriptive content

* Select a marker on the map to display its carousel card name popup and view
its descriptive content

® Use the left and right arrows < | to browse the different geocarousel content

Media Section

Media Sections are similar to Paragraph Sections but the main difference is that as
soon as the story editor try to add a new Media Section, the Media Editor appears,
asking to define the media that is going to be added. An example of a new Media
Section with an image added can be like the following:

+

Once the first media is added to the Media Section it is possible to add new media,
text contents or web page contents or remove the existing ones as decribed also in
the Paragraph Sections.

www thisiscolossalcom

Web Page Section

Through this kind of sections the story editor can embed third party contents in
the story (like other web pages available on the web). The Web Page Section is
similar to the Paragraph Section and the Media Section: adding this section a
modal window opens to specify the URL of the web page that is going to be added.

URL

https://enwikipedia.org/wiki/List_of_highest_astronomical_observatories|

u

Below an example of a Web Page Section that embed a Wikipedia site page:

WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page

\Afikidata itam

e N !

& Not logged in Talk Contributions Create account Login

Article Talk Read Edit View history | Search Wikipedia

aj

I A X
This November is Wikipedia Asian Month
Join WAM contests and win postcards from Asia.

IR it
[Help with transiations!]

List of highest astronomical observatories

From Wikipedia, the free encyclopedia

This is a list of the highest astronomical observatories in the world,
considering only ground-based observatories and ordered by elevation
above mean sea level. The main list includes only permanent
observatories with facilities constructed at a fixed location, followed by
a supplementary list for temporary observatories such as transportable
telescopes or instrument packages. For large observatories with
numerous telescopes at a single location, only a single entry is
included listing the main elevation of the observatory or of the highest
operational instrument if that information is available.

View showing several of the world's &7
highest observatory sites in Chile,
looking north across the Llano de
Chajnantor and ALMA site, with the
peaks of Cerro Toco (right center) and
Cerro Chajnantor (right) rising above.

Contents [hide]
1 History of high altitude astronomical observatories
2 Highest permanent observatories
3 Highest temporary observatories
4 Other important high altitude observatories

5 See also

It is possible to add or remove multiple Web Page contents in the same way of text
and media contents as it is explained in the Paragraph Sections.

WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page

\Afikidata itam

o N 1

& Not logged in Talk Contributions Create account Login

Article Talk Read Edit View history |Search Wikipedia O\‘
N X

This November is Wikipedia Asian Month
Join WAM contests and win postcards from Asia.

Wicinia
AEzAN Mo

[Help with transiations!]

List of highest astronomical observatories

From Wikipedia, the free encyclopedia

This is a list of the highest astronomical observatories in the world,
considering only ground-based observatories and ordered by elevation
above mean sea level. The main list includes only permanent
observatories with facilities constructed at a fixed location, followed by
a supplementary list for temporary observatories such as transportable
telescopes or instrument packages. For large observatories with
numerous telescopes at a single location, only a single entry is
included listing the main elevation of the observatory or of the highest

S (e FrieY
View showing several of the world's &7
highest observatory sites in Chile,
looking north across the Llano de
Chajnantor and ALMA site, with the
peaks of Cerro Toco (right center) and
Cerro Chajnantor (right) rising above.

operational instrument if that information is available.

Contents [hide]
1 History of high altitude astronomical observatories
2 Highest permanent observatories

3 Highest temporary observ
4 Other important high altitu
5 See also

B aa [

Text Editor Toolbar

With the Text Editor Toolbar it is possible to customize the text by modifying
following aspects:

Font ‘am v B I U § {}

1]
1]
1l
11
N
i

the

o
A

* Font to choose the text font (Inherit, Arial, Georgia, Impact, Tahoma, Time New

Roman, Verdana)

* Block Type by choosing between the available ones (Normal, H1, H2, H3, H4,

H5, H6, Blockquote, Code)

» Text style to insert textin Bold X8 , Italic 7 , Underline XJ or
Strikethrough -

* Monospace { } toinsertthe same space between words

* Alignment —— inside the text window (Left, Center, Right or Justify)
* Color Picker _~ tochange the text color

e Bullet list to create a Unordered list 2=— or Ordered list :=

* Indent/Outdent to indent the text in relation to the left margin or
right margin

* Link ~#” to configure a hyperlink for the selected portion of text. The

to the

GeoStory editor can define hyperlinks to external web pages by choosing the
External link option in the Link target dropdown menu and entering the

related URL. As an alternative, it is also possible to define a hyperlink to other
sections of the same GeoStory by choosing one of the sections available in the

Link target dropdown menu.

ont v Normal v . u vB I U § {}

|
i
il
1

)=

This is a list of the highest astronomical observatories in the world, considering onl
observatories and ordered by elevation above mean sea level. The main list includ
observatories with facilities constructed at a fixed location, followed by a supplem
such as transportable telescopes or instrument package:
observatories with numerous telescopes at a single location, only a single entry is

& od

Link Title

temporary observatories

=|

Link Target
Select Link Target
External Link

Abstract

main elevation of the observatory or of the highest operational instrument if that infl ¢4 arapn section

available.insert text here...

mmersive Content

Media Section

V . Note

In order to setup an hyperlink to an external website, the protocol must be
specified (e.g., http:// or https://).

* Remove <2 toremove the formatting

Image Content Toolbar

As soon as an image content is added, the Image Content Toolbar appears on top of
the image:

\ o fE §

View showing several of the world's highest observatory sites in Chile. looking north across the Llano de Chajnantor and

ALMA site, with the peaks of Cermro Toco (right center) and Cerro Chajnantor (right) rising above,

Through this toolbar, the story editor is able to perform the following operation:
* Change media source %, accessing the Media Editor
* Change size LG choosing between Small, Medium, Large

* Hide caption button E to show/hide the description under the image: this

button is present only if a description has been provided for the image
resource (see the Media Editor tool for example)

. Remove the image content

Video Content Toolbar

As soon as a video content is added, the Video Content Toolbar appears on top of
the video:

+

Through this toolbar, the story editor is able to perform the following operation:

* Change media source %, toopen the Media Editor and change (or

configure) the media content

* Mute video | V| to disable the video audio

|

* Enable Autoplay () to play the video automatically once the user is on it
* Enable Loop i to continuously repeat the video

* Hide caption button ¥ to show/hide the description under the video: this

button is present only if a description has been provided for the video resource
(see the Media Editor tool for example)

. Remove fj the video content

. Note

Inside the Media Editor you can watch a preview of the video before adding it to
the story. The video play will be available only in View Mode of the story: it is not
available in edit mode except in the media editor as a preview.

Map Content Toolbar

As soon as a map content is added, the Map Content Toolbar appears on top of the

map component:

Chico Reno
+ Carson
| _ | Sacramento City
| o vodo
anta Rosa
Oakland dStockton
=\ Sanjose California @
\ .
N Salinas Fresno
S =
\ Visalia
Las \iegas
>\\ »
Bakersfield

‘Santa Maria
\ Lancaster

g arita
2San Bernardino
Aerertes
7 ndio
*
Oceal
K

N2 \Tijvana—c—o
{ - Mexicali

Yuma

Ensenada

US observatories

Provo

St. George
Page

®

Phoenix

Jucson

+

®

Agua Prieta

Colorado Springs
Pueblo

SantaFe
Albuquerque

®

(as Cruces

o
Ciudad Juarez

In particular, through this toolbar, the story editor is able to perform the following

operation:

°* Change media source %, accessing the Media Editor

* Edit map configuration 0 through which it is possible Configure the map

* Change size LG

choosing between Small, Medium, Large

* Hide caption button E to show/hide the description under the map: this

button is present only if a description has been provided for the map resource

(see the Media Editor tool for example)

* Remove {j the map content

Amarillo
Lubbock
Odessa
San An
nStreetMap contributor:

Web Page Content Toolbar

As soon as a Web Page Content is added, the toolbar appears on top of the content

itself:

WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Confribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information

Cite this page
\Aikidata itam

Ladil N

& Notloggedin Talk Contributions Create account Login

Article Talk Read Edit View history | Search Wikipedia

Q|

X

@ This November is Wikipedia Asian Month
Join WAM contests and win postcards from Asia.
oazadl tint
[Help with translations!]

List of highest astronomical observatories

From Wikipedia, the free encyclopedia

This is a list of the highest astronomical observatories in the world,
considering only ground-based observatories and ordered by elevation
above mean sea level. The main list includes only permanent
observatories with facilities constructed at a fixed location, followed by
a supplementary list for temporary observatories such as transportable
telescopes or instrument packages. For large observatories with
numerous telescopes at a single location, only a single entry is
included listing the main elevation of the observatory or of the highest
operational instrument if that information is available.

View showing several of the world's &7
highest observatory sites in Chile,
looking north across the Llano de
Chajnantor and ALMA site, with the
peaks of Cerro Toco (right center) and
Cerro Chajnantor (right) rising above.

Contents [hide]
1 History of high altitude astronomical observatories
2 Highest permanent observatories
3 Highest temporary observatories

4 Other important high altitude observatories

5 See also

+

In particular, through this toolbar, the editor is able to perform the following
operation:

* Change horizontal size <« choosing between Small, Medium, Large and

Full

* Edit web page URL &, accessing the web page windows to change the web

URL

* Change vertical size I choosing between Small, Medium, Large

« Remove the Web Page content

Media Editor Window

The Change media source button %, allows to access the Media Editor:

Services: Current story

Nebula 2

Through this window, you can add or edit three different types of media:

* Images
* Videos

* Maps

Images

In order to add an image, the stroy editor can click on the Images tab in

order to switch to the images section. In this section of the media editor window,
with a click on the Add button , it is possible to define the image settings.

Source

https.//demo.geo-solutions.it/mockups/

Title

Indian

Alternative text

cner all alernatlive L1ex

Description

The Indian Astronomical Observatory star

Credits

In particular, it is possible to insert the following parameters:

* The Source of the image (its URL)
* The Title of the image
* The Alternative text, that appears if the link is broken

* A Description, used to explain the contents of the image. The description is
available in the images preview list and, if the image is added as content in the
Pharagraph section, in the Immersive section or in the Media section, under
the image, as follows:

f s 7
Eim

B&b S|

-+ wE {

Piblg - |

HEam

A

¥gAHo TEP 8

ot

HE

- WEBO |

. EME mIs |

»\K'- S|4 1) /-'
-, /
R L

&

=1
o —

S

_ wvy (o

“hhie : o 8 d3) L’\ é_ oo /7__%_; \ ’_/
s Fwew CME e b Ny T ° 4

"

The indian Astronomical Observatory stands at an altitude of 4,500 m (14,800 ft) on Mount Saraswati in Ladakh,
India

LT

NN

* The Credits, displayed on the bottom-right of the image

. Warning

Source and Title are mandatory fields.

With a click on Save E the image is included in the list of the available images

ready to be selected for the current story. The image also becomes immediately

available on preview.

Services: Current story

Indian

The Indian Astronom..

Chacaltaya

Particle detector at ‘

Mauna Kea

Aerial view of part of.

. Note

It is always possible to change the image settings through the Edit button

also in a second time.

Once selectd in the list, the image can be included in the story by clicking on the

Apply button .

Videos

In order to add a video, the stroy editor can click on the Video tab in
order to switch to the videos section. In this section of the media editor window,

with a click on the Add button , it is possible to define the video settings.

[=

Video URL

https.//youtu be/StDFZpuBgF4

The Best Stargazing is at the Northern

Description

The Best Stargazing is at the Northern

Credits

Enter cred

In particular, it is possible to insert the following parameters:

e The URL of the video
e The Title of the video

* A Description, used to explain the contents of the video. The description is
available in the viedos preview list and it can appear under the video itself if
the video is added as a content of a section (Pharagraph section, Immersive
section or Media section)

* The Credits, displayed on the bottom-right of the video

. Warning

Video URL and Title are mandatory fields.

With a click on Save m the video is included in the list of the available videos

ready to be selected for the current story. The video also becomes immediately

available on preview.

Services: Current story

Astronomer's Parad.

Astronomer’s Paradise

The Best Stargazing..
The Best Stargazing is _

Once selectd in the list, the video can be included in the story by clicking on the

Apply button | Apply

Maps

To add a map to the story, the story editor can click on the Maps tab and

so swich to the map section of the Media Editor. Here the list of maps ready to be
used for the story is available: the editor can search and select a map in the list to
apply it in the story or create a map from scratch by clicking on the Add button

to open the Map Editor.

Once the map is ready, the story editor can click on Ok button | ok |to proceed

with the next step and therefore insert the related map metadata like Thumbnail,

Title and Description.

Senvices

Tile

Description

. Note

The description is available in the maps preview list and it can appear under the
map itself if the map is added as a content of a section (Pharagraph section,
Immersive section or Media section).

With a click on Save button the map is saved and it will be available in the list

of the Current Story maps. The story editor can select it to be used as a map

component in the story by clicking on Apply button | 2pply

Observatories

. Note

By default a drop down list on the top right corner of the Media Editor allows to
switch between maps currently used in the story (so the story editor can use again
a map already present in the story if needed) and existing maps already available
inside the MapStore catalog (that means that also classic maps created in
MapStore can be used inside a Story).

3 Greenwell
3 test widgets sort iss.
3 test_save_cc_opacity

test annotation peint

-Daded 10 of 266 matched

Below is an example of a Map used as a background of a Title Section:

List of Highest Astronomical Observatories

From Wipedia, the free encycicpedia

Configure the map

With the Edit map configuration button g% the Map Inline Editor opens to give

the opportunity to do quick customizations (like basic map settings, layer opacity
and something more) to the map (more advanced customizations then, are allowed
only through the Advanced Map Editor).

X Configure map . ol N (e N
< RS
© Default

© observatories

fgasé Region de \ \ B

Antofogasta ‘ < n‘SéWr

a
- dejujuy
® "
18
sata

¢ ~

\

Reg J Y san Juan
Coquimbo
|

f
La l?/o/a

Ssnjuan :

Layers

The Map Inline Editor opens with the Layers section available, where it is possible
to edit the layers settings (by selecting a layer in the TOC) and the visibility of
layers present in the map:

X Configure map

‘ N N

© Default

© observatories

Iquiquel.-Reg

Regién de
Antofagasto

%

Tucumén

Santiago
A\ Est
~ SanFern

< 4 n
. Sanﬁ\ua_nf g

* Control the layer transparency by scrolling left and right the transparency bar

* Toggle the layer visibility by switching off # and on © the "eye" icon.

Setting

The Setting section allows the user to:

X Configure map

. ‘ N

Zoom In/Out interactions

‘ Top Left

Pan interaction
Identify @

’ PROPERTIES

* Enable/disable the Zoom in/out on the map

* Change the position of the Zoom in/out by choosing one of the options

4

available in the dropdown menu

|
"
I

bl
- ~ Trinid:

‘gaé Regién de

Antofagasta

La Rioja
4 o
{ 1l.

La Riojo

_ deCatam

‘ ‘hﬂa 0

" Este

-~ San Ferna
+ dolValle

X Configure map

. N

Zoom In/Out interactions

Top Left

Top Left
Top Right
Bottom Left

Bottom Right

* Enable/disable the Pan interaction on the map

* Enable/disable the Identify on the map. As reported in the Identify tool
section, also for map sections in a story it is possible to enable the Identify tool
in one of the format supported by MapStore (TEXT, HTML or PROPERTIES)

X Configure map

< N

Zoom In/Out interactions
| Top Left

Pan interaction

Identify @

PROPERTIES

TEXT

HTML

PROPERTIES

. Note

The Identify request is performed as usual when the user clicks on a layer in the
map, as follows:

Advanced map editor

Inside the Map Inline Editor Toolbar the Advanced map editor button is also

available to allow advanced customization to the map: clicking on that button, a
MapStore viewer opens for this purpose.

The available tools to modify the map are the following:

* Adding the Layers by using the s CaTAL Oc button in the Option menu
E as it is explained in the Catalog Services.

* Adding Annotations by clicking on the p= ANNOTATIONS button in
the Option menu E as it is explained in the Adding Annotations.

* Import a map or a vectorial file by clicking on the @& IMPORT button in
the Option menu E as it is explained in the Import files.

* Change Background as it is explained in the Background Selector

* Edit Layers by clicking on the Layers button as it is explained in the
Table of Contents

Once the advanced map editing is complete, it is possible click on Apply to see the
final result in the story.

»»»»»»

B N s -
i+ : . o ' o
§1¥ List of Highest Astronomical Observatories =«

e From Wikipedia the free encyclopedia e’
\ LA
\ | -

Requirements

In this section you can have a glance of the minimum and recommended versions
of the tools needed to build/debug/install MapStore

War Installation

You can download a java web container like Apache Tomcat from and Java JRE

Tool Link Minimum Recommended Maximum
Java link 8 9 111
Tomcat link 8.5 9 91

Debug / Build

These tools needs to be installed (other than Java in versions above above):

Tool Link Minimum Recommended Maximum
npm link 8 8 8.19.42
Node]S link 16 16 16.20.12
Java (JDK) link 8 9 112

Maven link 3.1.0 3.6

python3 link 2.7.9 3.7

https://www.java.com/it/download/
https://tomcat.apache.org/download-80.cgi
https://www.npmjs.com/get-npm
https://nodejs.org/en/
https://www.java.com/en/download/help/develop.html
https://maven.apache.org/download.cgi
https://www.python.org/downloads/

. Notes

Here some notes about some requirements and reasons for max version indicated,
for future improvements and maintenance :
e 1 About Java and Tomcat
» For execution tested on Java v11.

e Build with success with v11, only smoke tests passing on v13, errors with
v16.(Details on issue #6935)

* Running with Tomcat 10 causes this issue #7524.

e e+ note node 14.18.1 / npm 6.14.15 causes this issue on MapStore project
system.

* Node 18 causes webpack issue needs to be solved by changing the hash
algorithm or setting proper flags.

2 About Node]S and NPM:

 If you are using Node >= 12 you can remove the -
max old space size=2048 config for the compile script

e 3 Python is only needed for building documentation.

Running in Production

System requirements

Resource Minimum Recommended

Processor 2 Core 2 Core

Memory 2 GB 4 GB
Database

In production a PostgreSQL database is recommended:

Tool Link Minimum Recommended Maximum

Postgres link 9.6 13 13

https://github.com/geosolutions-it/MapStore2/issues/6935
https://github.com/geosolutions-it/MapStore2/issues/7524
https://github.com/geosolutions-it/mapstore-project/issues/18
https://stackoverflow.com/questions/69394632/webpack-build-failing-with-err-ossl-evp-unsupported
https://www.postgresql.org/

Quick Setup and Run

. Note

Please make sure to have installed all the software as for requirements before to
proceed.

Clone the repository:
git clone https://github.com/geosolutions-it/MapStore2.git
Start the demo locally:

npm cache clean # this is useful to prevent errors on Windows during install
npm install

npm start

Then point your preferred browser to http://localhost:8081.

. Note

This application runs the Java backend at localhost:8080 . Make sure to have both
ports 8080 and 8081 free before to run.

Other useful commands

Run tests
npm test

run test with hot reload
npm run test:watch

#generate test documentation
npm run doc:test

Quick Build and Deploy

Install latest Maven, if needed, from here (version 3.1.0 is required).

http://localhost:8081
https://maven.apache.org/download.cgi

Build the deployable war:
./build.sh [version identifier]

Where version_identifier is an optional identifier of the generated war that will be
shown in the settings panel of the application.

Deploy the generated mapstore.war file (in product/target) to your favourite J2EE
container (e.g. Tomcat).

Here you can find how to setup the database.

Main scripts

Here a summary of the main utility scripts to run and build MapStore.

npm scripts

Command

npm install

npm start

npm run app:start

npm run fe:start

npm run be:start

npm run fe:build

npm run be:build

npm test

npm run test:watch

npm run lint

npm run il8n

npm run jsdoc:build

Description

download dependencies and init the front-end
environment

start development instance (both front end and back-
end)

start development instance (both front end and back-
end)

start front-end dev server

start backend dev server (embedded in tomcat, with
cargo)

build front-end

build backend

run test suite once

run continuous test suite running (useful during
developing)

run ESLint checks

checks missing strings in mandatory i18n files (ref to
en-US)

build JSDoc

Command Description

npm run jsdoc:test build JSDoc in a directory available running npm start
(for test)

npm run jsdoc:clean clean JSDoc

npm run doc:build build MkDocs documentation

npm run doc:start start mkdocs serve to have a live preview while editing
documentation

npm run generate:icons generate icons from svqg files

npm run generate changelog for the MapStore release

generate:changelog

Other scripts are present for backward compatibility, but they are deprecated and
will be removed in the future.

bash scripts

Command Description

/build.sh [version identifier] [profiles] build the deployable war (in product/target)

Where version identifier is an optional identifier of the generated war that will be
shown in the settings panel of the application and profiles is an optional list of
comma delimited building profiles (e.g. printing, ldap).

Infrastructure

MapStore leverages a full separation of concerns between the backend and the
frontend.

The frontend is a Javascript web application communicating with MapStore own
web services using AJAX and external ones through an internal, configurable,

proxy.

The backend is a suite of web services, developed in Java and deployed into a J2EE
container (e.g. Apache Tomcat).

External
Backend Proxy Web

<:> Services
@Ajax @ Ajax

Frontend

Frontend

The frontend is based on the React]S library and the Redux architecture, which is
a specific implementation of the Flux architecture.

https://facebook.github.io/react/
http://rackt.github.io/redux/
http://facebook.github.io/flux/

-—> Dispatcher ——>| Store |——

It allows plugging different mapping libraries (with Leaflet and OpenLayers as
our first implementation targets) abstracting libraries implementation details using
React]S web components and actions based communication.

Backend
AJAX (Axios)
Redux Store |4 1| Actions

Backend

Backend services include at least (but not only) these ones:

* Generic, configurable, HTTP-Proxy to avoid CORS issues when the frontend
tries to communicate with external services, based on the GeoSolutions http-
proxy project.

* Internal storage for non structured resources (json, XML, etc.) based on the
GeoSolutions GeoStore project.

* Configuration services, to allow full application(s) and services configurability

https://github.com/geosolutions-it/http-proxy
https://github.com/geosolutions-it/http-proxy
https://github.com/geosolutions-it/geostore

» Security with the ability to configure authentication using an internal or
external service, and a flexible authorization policy for services and resources
access.

GeoStore HTTP-Proxy Configuration Other

Developing with MapStore

MapStore is both an application and a framework. This guide is both for
developers who want to extend MapStore and for those who want to create their
custom application using MapStore as a framework.

MapStore as an application

MapStore is 99% client side, and uses some Java back-end services

Back-end mainly consists in services included from external projects (GeoStore,
MapFish Print, HTTP-Proxy...) plus some small service owned by MapStore, all

written in Java.

Developing with MapStore as an application means to develop directly on the
project. You can add plugins or improve the existing code base and, hopefully,
send pull requests on GitHub to include your improvements in the main project.

MapStore as a Framework

The recommended way to use MapStore as a framework is to create a project that
includes MapStore as a sub-folder. For this purpose we created a script that
generates the main folder structure and the necessary files Project Creation
Script.

This setup allows to create your application or customizations inside the js
directory and/or add custom back-end services (the set-up allows to create a
project that builds a Java WAR package). Keeping your customization separated
and MapStore as a git sub-modules has the followind advantages:

* Clear separation between the framework and your customization

* Easy framework update: updating the git sub-module.

* Easy customization of MapStore: You can fork the project, if you need hard
customization. If your customization can be included in MapStore, you can do a
pull request to the main project and work on a branch while waiting the pull
request merge.

Folders structure

This is the overall framework folder structure:

+-- package.json
+-- pom.xml
+-- build.sh
+-- .editorconfig
+-- Dockerfile
TP soc
+-- build (build related files)
+-- karma.conf.*.js
+-- tests.webpack.js
+-- webpack.config.js
+-- prod-webpack.config.js
+-- docma-config.json
+-- testConfig.json
PF= ooo
+-- java (java backend modules)
+-- pom.xml
+-- services
+-- web
+-- printing
+-- translations (i18n localization files)
| +-- data.en-US.json
+-- utility (general utility scripts and functions)
| +-- eslint
| +-- build
| +-- projects
| +-- translations
+-- web (frontend module)
+-- client
| +-- index.html (demo application home page)
+-- plugins (React]S smart components with required reducers)
+-- components (React]S dumb components)

+-- <component>-test.jsx

| +-- category

| | +-- <component>.jsx (React]S component)
|

| | +--__tests (unit tests folder)

||

|+

+-- actions (Redux actions)

+-- configs (JSON config files like localConfig.json, pluginsConfig.json, new.json,
newgeostory.json, etc)

+-- epics (redux-observable epics)

+-- reducers (Redux reducers)

+-- stores (Redux stores)

product (the MapStore main application)
P ooo

Developing with MapStore

Due to the dual nature of the project (Java backend and JavaScript frontend)
building and developing using the MapStore framework requires two distinct set
of tools

* Apache Maven for Java

* NPM for JavaScript.

A basic knowledge of both tools is required.

Start developing
To start developing the MapStore framework you have to:

* download developer tools and install frontend dependencies locally:
npm install

After a while (depending on the network bandwidth) the full set of dependencies
and tools will be downloaded to the node_modules sub-folder.

e start the local dev server instances with:
npm start

Then point your preferred browser to http://localhost:8081/?debug=true#/. By
default the frontend works using the local dev server as backend. This
configuration is suggested if you want to develop.

. Note

npm start will run both front-end on port 8081 and back-end on port 8080 (make
sure to have both the ports available). The first time back-end will take a lot to
start, downloading all the dependencies.

If you still want to start only the frontend because you have the backend running

in a tomcat container for example you may simply run

npm start

https://maven.apache.org/
https://www.npmjs.com/
http://localhost:8081/?debug=true#/

See the dedicated section in this page for more info

Frontend

You can run only the front-end running npm run fe:start . Running this script
MapStore will run on port 8081 and will look for the back-end at port 8080 .

If you want to use an online instance of MapStore as backend, instead of the local
one, you can define the environment variable MAPSTORE BACKEND URL to the
desired URL.

export MAPSTORE BACKEND URL=https://dev-mapstore.geosolutionsgroup.com/
mapstore
npm run fe:start # this command lunches only the front-end

. Note

for more customizations on devServer you can edit the build/devServerjs file.

Debugging

The development instance uses file watching and live reload, so each time a
MapStore file is changed, the browser will reload the updated application.

Use your favorite editor / IDE to develop and debug on the browser as needed.
We suggest to use one of the following:

» Visual Studio Code with the following plugins:

* ESLint dbaeumer.vscode-eslint

* EditorConfig for VSCode editorconfig.editorconfig
* Atom with the following plugins:

* editorconfig

* linter

* linter-eslint

* react

* lcovinfo

* minimap & minimap-highlight-selected

* highlight-line & highlight-selected

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig
https://atom.io/

e Sublime Text Editor with the following plugins:
* Babel
e Babel snippets

* Emmet
Redux Dev Tools

When you are running the application locally using npm start you can debug the
application with redux dev tools using the flag ?debug=true

http://localhost:8081/?debug=true#/

It also integrates with the browser's extension, if installed.

This way you can monitor the application's state evolution and the action triggered
by your application.

Unit tests

To run the MapStore frontend test suite you can use:

npm test

You can also have a continuously running watching test runner, that will execute
the complete suite each time a file is changed, launching:

npm run test:watch

Usually during the development you may need to execute less tests, when working
on some specific files.

You can reduce the tests invoked in npm run test:watch execution by editing the file
tests.webpack.js and modifying the directory (/web) and/or the regular expression
that intercept the files to execute.

To run ESLint checks launch:

npm run lint

More information on frontend building tools and configuration is available here

http://www.sublimetext.com/
https://github.com/gaearon/redux-devtools
https://github.com/zalmoxisus/redux-devtools-extension
frontend-building-tools-and-configuration

Backend

In order to have a full running MapStore in development environment, you need to
run also the backend java part locally. This runs automatically with npm start . If
you want to run only the backend, you can use npm run be:start .

The back end will run on port 8080 and will look for the front-end at port 8081. If
you want to change the back-end port, you can set the environment variable
MAPSTORE _BACKEND PORT to the desired port.

export MAPSTORE BACKEND PORT=8082
npm start # or npm run be:start

Defaults Users and Database
Running MapStore backend locally, on start-up you will find the following users:

* admin, with ADMIN role and password admin

* user with USER role with password user

You can login as admin to set-up new users and access to all the features reserved
to ADMIN users.

The database used by default in this mode is H2 on disk. You can find the files of
the database in the directory webapps/mapstore/ starting from your execution
context. Check how to set-up database in the dedicated section of the
documentation.

Running Backend

When we say "running the backend", in fact we say that we are running some sort
of a whole instance of MapStore locally, that can be used as backend for your
frontend dev server, or for debugging of the backend itself.

Embedded tomcat

MapStore is configured to use a maven plugin-in to build and run mapstore locally
in tomcat. To use it you have to:

* npm run be:start
Now you are good to go, and you can start the frontend

Your local backend will now start at http://localhost:8080/mapstore/. If you want to
change the port you can edit the dedicated entry in product/pom.xml, just

http://localhost:8080/mapstore/

remember to change also the dev-server proxy configuration on the frontend in
the same way.

Local tomcat instance

If you prefer, or if you have some problems with mvn cargo:run, you can run
MapStore backend in a tomcat instance instead of using the embedded one. To do
SO, you can :

* download a tomcat standalone here and extract to a folder of your choice

* To generate a war file that will be deployed on your tomcat server, go to the
root of the Mapstore project that was git cloned and run ./build.sh . This might
take some time but at the end a war file named mapstore.war will be generated
into the product/target folder.

* Copy the mapstore.war and then head back to your tomcat folder. Look for a
webapps folder and paste the mapstore.war file there.

» To start tomcat server, go to the terminal, cd into the root of your tomcat
extracted folder and run ./bin/startup.sh (unix systems) or ./bin/startup.bat
(Windows). The server will start on port 8080 and Mapstore will be running at
http://localhost:8080/mapstore . For development purposes we're only interested
in the backend that was started on the tomcat server along with Mapstore.

Even in this case you can connect your frontend to point to this instance of
MapStore.

Debug

To run or debug the server side part of MapStore we suggest to run the backend
in tomcat (embedded or installed) and connect in remote debugging to it. This
guide explains how to do it with Eclipse. This procedure has been tested with
Eclipse Luna.

Enable Remote Debugging

for embedded tomcat you can configure the following:

Linux
export MAVEN OPTS="-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,address=4000,server=y,suspend=n"

Windows
set MAVEN OPTS=-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,address=4000,server=y,suspend=n

https://mapstore.readthedocs.io/en/latest/developer-guide/requirements/

then start tomcat

npm start # or npm run start:app, or npm run be:start (this last only for the backend)

For your local tomcat, you can follow the standard procedure to debug with

tomcat.

Setup eclipse project

* Run eclipse plugin
mvn eclipse:eclipse

* Import the project in eclipse from File --> Import
* Then select Existing project into the Workspace

* Select root directory as MapStore root (to avoid eclipse to iterate over all
node modules directories looking for eclipse project)

e import all projects

Start Debugging with eclipse

 Start Eclipse and open Run --> Debug Configurations

* Create a new Remote Java Application selecting the project "mapstore-

product" setting:
* host localhost
e port 4000
* Click on Debug Remote debugging is now available.

NOTE With some version of eclipse you will have to set suspend=y in mvn options
to make it work. In this case the server will wait for the debug connection at port

4000 (address=4000)

Building and deploying

To create the final war, you have several options:

e full build (including all tests, syntax checks, frontend, backend and
documentation):

./build.sh [version identifier] [profiles]

Where version identifier is an optional identifier of the generated war that will be
shown in the settings panel of the application and profiles is an optional list of
comma delimited building profiles (e.g. printing, ldap, binary)

* separated builds (skipping all the tests and checks, mainly for development
purposes):

build the front-end
npm run fe:build

build the back-end, including the front-end parts build in the previous command
mvn clean install -Dmapstore2.version=[version identifier] [profiles]

In this case we have 2 separated commands that can be run separately, for
instance if you are working on back-end only, so you don't need to re-compile the
front-end part every time.

Building the documentation

MapStore generates 2 types of documentation:
* JSDoc: generated from source code, provides a reference of the API and for
the plugins configurations

* MkDocs: generated from markdown files, provides guides for the developers
and users

API and Plugins documentation (JSDoc)

The API and plugins documentation is automatically generated using docma.
Docma parses the J]SDoc comments in the source code and generates a static
HTML documentation.

http://onury.github.io/docma/

Refer to the existing files to follow the documentation style of various parts of the
application:

* actions

* reducers

e components
* epics

* plugins

Please see http://usejsdoc.org/ for further information about how to write proper
documentation in JSDoc.

To install docma:
npm install -g docma

While developing you can generate the documentation to be accessible in the local
machine by:

npm run jsdoc:test

The resulting doc will be accessible from http://localhost:8081/mapstore/docs/
For the production deploy a different npm task must be used:

npm run jsdoc:build

The documentation will be accessible from the /mapstore/docs/ path

The generated folders can be removed with:

npm run jsdoc:clean

Users and developers documentation (MkDocs)

. Note

Make sure to install the proper python dependencies for Mkdocs. See the
dedicated page here

Build the mkdocs and generate md files to test in local machine by:
npm run doc:build

Start the built-in dev-server of mkdocs to preview and test documentation live by:

https://github.com/geosolutions-it/MapStore2/blob/master/web/client/actions/controls.js
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/reducers/controls.js
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/components/buttons/FullScreenButton.jsx
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/epics/fullscreen.js
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/plugins/Login.jsx
http://usejsdoc.org/
http://localhost:8081/mapstore/docs/

npm run doc:start

Understanding frontend building tools
Frontend building is delegated to NPM and so leverages the Node]S ecosystem.
In particular:

* a package.json file is used to configure frontend dependencies, needed tools

and building scripts

* babel is used for ES6/7 and JSX transpiling integrated with the other tools
(e.g. webpack)

* webpack-dev-server is used to host the development application instance
*» mocha/expect is used as a testing framework (with BDD style unit-tests)

» webpack: as the bundling tool, for development (see webpack.config.js),
deploy (see prod-webpack.config.js) and test (see test.webpack.js)

* karma is used as the test suite runner, with several plugins to allow for custom
reporting, browser running and so on; the test suite running is configured
through different configuration files, for single running or continuous
testing

 istanbul/coveralls are used for code coverage reporting

Including the printing engine in your build
The printing module is not included in official builds by default.

To build your own version of MapStore with the this module, you can use the
printing profile running the build script:

./build.sh [version identifier] printing

For more information or troubleshooting about the printing module you can see
the dedicated section

https://www.npmjs.com/
https://github.com/geosolutions-it/MapStore2/blob/master/package.json
https://babeljs.io/
http://webpack.github.io/docs/webpack-dev-server.html
http://mochajs.org/
https://github.com/mjackson/expect
http://webpack.github.io/
https://github.com/geosolutions-it/MapStore2/blob/master/build/webpack.config.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/prod-webpack.config.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/tests.webpack.js
http://karma-runner.github.io/
https://github.com/geosolutions-it/MapStore2/blob/master/build/karma.conf.single-run.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/karma.conf.continuous-test.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/karma.conf.continuous-test.js
https://gotwarlost.github.io/istanbul/
https://www.npmjs.com/package/coveralls

Main Frontend Technologies

The main tecnologies used on the mapstore 2 are:

* React]S (View)

* Redux (state management)

React]S

React]S 0.16.x is used to develop MapStore. The main purpose of React]S is to
allow writing the View of the application, through the composition of small
components, in a declarative way.

Components are written using a "templating" language, called JSX, that is a sort of
composition of HTML and Javascript code. The difference between JSX and older
approaches like JSP is that JSX templates are mixed with Javascript code inside
javascript files.

React]S component example

Component definition:

class MyComponent extends React.Component {
render() {
return <hl> {this.props.title}</h1>;
b
}

Component usage:

React.render(<MyComponent title="My title"/>, document.body);

Properties, State and Event handlers

Components can define and use properties, like the title one used in the example.
These are immutable, and cannot be changed by component's code.

Components can also use state that can change. When the state changes, the
component is updated (re-rendered) automatically.

class MyComponent extends React.Component {
state = {

https://facebook.github.io/react/index.html
https://react-bootstrap.github.io/introduction.html
https://react-bootstrap.github.io/introduction.html

return {
title: 'CHANGE ME'
I3
Ji5
changeTitle = () => {
this.setState({
title: 'CHANGED'
H;
J5
render() {
return <hl onClick= {this.changeTitle } >{this.state.title}</h1>;

}
¥

In this example, the initial state includes a title property whose value is
CHANGE ME .

When the h1 element is clicked, the state is changed so that title becomes
CHANGED .

The HTML page is automatically updated by React]S, each time the state changes
(each time this.setState is called). For this reason we say that JSX allows to
declaratively describe the View for each possible application state.

Lifecycle hooks

Components can re-define some lifecycle methods, to execute actions in certain
moments of the component life. Lifecycle API is changed in react 16 so please
refer to the official documentation.

Redux

Redux, and its companion react-redux are used to handle the application state and
bind it to React]S components.

Redux promotes a unidirectional dataflow (inspired by the Flux architecture) and
immutable state transformation using reducers, to achieve predictable and
reproducable application behaviour.

A single, global, Store is delegated to contain all the application state.
The state can be changed dispatching Actions to the store.

Each action produces a new state (the state is never changed, a new state is
produced and that is the new application state), through the usage of one or more
reducers.

https://facebook.github.io/react/docs/component-specs.html
http://redux.js.org/index.html
https://github.com/reactjs/react-redux
https://facebook.github.io/flux/

(Smart) Components can be connected to the store and be notified when the
state changes, so that views are automatically updated.

Actions

In Redux, actions are actions descriptors, generated by an action creator. Actions
descriptors are usually defined by an action type and a set of parameters that
specify the action payload.

const CHANGE TITLE= 'CHANGE TITLE";

// action creator
function changeTitle(newTitle) {
return {
type: CHANGE TITLE,
title: newTitle
15
}

Reducers
Reducers are functions that receive an action and the current state and:

* produce a new state, for each recognized action
» produce the current state for unrecognized actions

» produce initial state, if the current state is undefined

function reducer(state = {title: "CHANGE ME"}, action) {
switch (action.type) {
case CHANGE TITLE.:
return {title: action.title};
default:
return state;

Store

The redux store combines different reducers to produce a global state, with a slice
for each used reducer.

var rootReducer = combineReducers({
slicel: reducerl,
slice2: reducer2

1)

var initialState = {slicel: {}, slice2: {}};

var store = createStore(rootReducer, initialState);

The Redux store receives actions, through a dispatch method, and creates a new
application state, using the configured reducers.

store.dispatch(changeTitle('New title'));

You can subscribe to the store, to be notified whenever the state changes.

store.subscribe(function handleChange() {});

Redux Middlewares

Redux data flow is synchronous. To provide asynchronous functionalities (e.g.
Ajax) redux needs a middleware. Actually MapStore uses 2 middlewares for this
purpose:

* Redux thunk (going to be fully replaced by redux-observable)
* Redux Observable

Redux thunk

This middleware allows to perform simple asynchronous flows by returning a
function from the action creator (instead of a action object).

// action creator
function changeTitleAsync() {
return (dispatch, getState) => {
myAsyncPromise.then((newTitle) => {
dispatch({
type: CHANGE TITLE,
title: newTitle
1)
1)
}
}

This middleware is there from the beginning of the MapStore history. During the
years, some better middlewares have been developed for this purpose. We want to
replace it in the future with redux-observable.

Redux Observable and epics

This middleware provides support for side-effects in MapStore using rxjs. The
core object of this middleware is the epic

http://redux.js.org/docs/advanced/Middleware.html

function (action$: Observable<Action>, store: Store): Observable<Action>;

The epic is a function that simply gets as first parameter an Observable (stream)
emitting the actions emitted by redux. It returns another Observable (stream) that
emits actions that will be forwarded to redux too.

So there are 2 streams:

e Actions in

e Actions out

A simple epic example can be the following:

const pingEpic = action$ =>
action$.filter(action => action.type === 'PING')
.mapTo({ type: 'PONG' });

Every time a 'PING' action is emitted, the epic will emit also the 'PONG' action.
See :

* Introduction to Rx]JS for MapStore Developers
* redux-observable site
* rxjs Observable as a reference for methods

* setting up the middleware to integrate epics with your store

Redux and React]S integration

The react-redux library can be used to connect the Redux application state to
React]S components.

This can be done in the following way:

* wrap the React]S root component with the react-redux Provider component,
to bind the Redux store to the React]S view

React.render(
<Provider store={store}>
{() => <App />}
</Provider>,
document.getElementByld('container')

);

* explicitly connect one or more (smart) components to a all or part of the state
(you can also transform the state and have computed properties)

https://docs.google.com/presentation/d/1Ts-yZGc12VMr9oG8xMqwptUmMjdsKI2uZh4Mr5shYhA/edit?usp=sharing
https://redux-observable.js.org/
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
https://redux-observable.js.org/docs/basics/SettingUpTheMiddleware.html

connect(function(state) {
return {
title: state.title,
name: state.namespace + '.' + state.name,
b5
})(App);

The connected component will get automatic access to the configured slice
through properties:

function render() {
return <div><h1> {this.props.title } </h1><p> {this.props.name}</p></div);

}

Plugins Architecture

The architecture of MapStore based on the concept of plugins. Every tool of
MapStore is a plugin, that are the main building blocks of the application.

A plugin in MapStore an entity that can be:

* rendered in the application (via a React components)

* connected to a Redux store, so that some properties are automatically wired
to the standard MapStore state

* wired to standard actions for common events to trigger
In addition a plugin:

* declares some reducers that adds some parts to the global state, if needed

* declares some epics that need to be added to the redux-observable middleare,

if needed

* inject in other plugin react components to be rendered (for communication,

extensions, etc.)
* is fully configurable to be easily customized to a certain level
The plugins are managed by PluginContainer (typically a Page , but not necessarily)

that is a React component that renders the plugins in the application and handle

proper dependencies.
Plugins are used in different contexts:
* Standard plugins Plugins that are used in the standard MapStore application

and that are part of the framework.

* Custom plugins Plugins developed in a custom MapStore project (see Setup
a MapStore Project)

* Extensions: Plugins that can be build and installed in an existing instance of

MapStore (see Extensions)

For more information about how to create a plugin, see Create your plugins

../extensions/
../plugins-howto/

Internationalization

MapStore offers the support for internationalization (I18N). To provide this
functionality MapStore uses react-intl. In this section you can find which
configuration and JS files are involved in the [18N system.

How MapStore chooses the current language

MapStore first checks the browser's language. If it is not supported, MapStore will
be visible in english, if present, or the first language available. Anyway the locale
can be forced using a flag locale=codelLang where codelLang can be one en,it,de...

e.d.
localhost:8081/?locale=en#/

A user can change the selected language from UI. MapStore will load the proper
files to update the page localized in the selected language.

Configuration files

To provide support to a specific language MapStore need to have the necessary
setup in the LocaleUtils js file (see below [section for details about to configure this
file]). In addition you need the proper translations files.

Let's imagine that the variable code is 'en', CODE is 'EN' standing for english. For
each language you need to have messages file containing the localized strings, a
flag image to identify the language and some html fragments (optional) for
some specific plugins.

* Messages: located in web\client\translations folder. For each language there is a
json file named data.code-CODE.json. e.g. data.en-EN.json .

* Flags: located in web\client\components\I18N\images\flags folder. For each
language flag image named code-CODE.png of 16px x 11px is required.

* Fragments: actually only for cookies policy (required only if the Cookie
plugin is present) located in web\client\translations\fragments\cookie folder and
named cookieDetails-code-CODE.html. We recommend to add it for any
language you want to support at least by copying the english version.

https://github.com/yahoo/react-intl

How to configure supported languages in MapStore

You can configure MapStore to provide to the user only a restricted list of
selectable languages by setting "initialState.defaultState.locales" variable in
localConfig.json . €.g :

"defaultState":
{
"locales": {
"supportedLocales": {
"en": {
"code": "en-US",
"description": "English"
Yo
"it": {
"code": "it-IT",
"description": "Italiano"
}

¥
}
¥

Setting locales in localConfig.json file is doable only for supported locales present
in LocaleUtils.js. The default behavior is to use those already configured in
"supportedLocales" object. You can customize the messages by editing the
data.code-CODE.json files.

The locale property determines the language to use for the application. If not
specified, the language will be selected checking the browser's locale first. If the
browser locale is not supported, MapStore will select the first language available

in supportedLocales .

Example of localConfig.json with the optional locale property.

{

"locale": "it-IT", // locale code

"defaultState": {

"locales": {
"supportedLocales": {
"en": {
"code": "en-US",
"description": "English"
be
"it": {
"code": "it-IT",
"description": "Italiano"
}

The property locale could be useful inside custom application where the locale is
stored in other sources rather than using the browser language:

// example
import { getConfigProp } from '@mapstore/framework/utils/ConfigUtils';
import cookies from 'js-cookie';

/] ...
const locale = cookies.get(‘app locale'); // locale code it-IT for example
if (locale) {

setConfigProp('locale’, locale);

}
W coc

How to add a new language

Let's say we want to add the russian language. In order to add a new language to
MapStore you need to follow these steps:

* Update the localConfig.json file in web\client folder adding the new language
entry: Add the following in the initialState.defaultState.locales object

||ru||_ {
code: "ru-RU",
description: "Poccuiickuir"

}

» Update the LocaleUtils js file in web\client\utils : add a param in the ensurelntl()
function like and the relative require i.e: ‘'intl/locale-data/jsonp/ru.js'

require('intl/locale-data/jsonp/ru.js');
* update the addLocaleData() call with the new locale obj i.e.:

const ru = require('react-intl/locale-data/ru');
addLocaleData(|[...en, ...it, ...fr, ...de, ...es, ...rul);

* add the flag image for the selected language inside
web\client\components\I18N\images\flags naming it ru-RU.png

* add the new translations file inside web\client\translations naming it data.ru-
RU.json (remember to change the locale property of this file into ru-RU)

* create a fragment related to the cookie module inside

web\client\translations\fragments\cookie naming it cookieDetails-ru-RU.html

Custom Dependencies

Mapstore has some custom dependencies in order to fix bugs not integrated in the

official libraries yet. All these customized libraries are available on npm registry.

Here is a list of customizations:

library version

wkt- 1.2.1

parser

proj4 2.4.5-
alpha

react- 1.10.1

joyride

issue

#2175

#2175

reason

Fixes axis order
recognition. For this
reason we customized it
with
"@geosolutions@wkt-
parser 1.2.2"

Fixes axis order
recognition. For this
reason we customized it
with
"@geosolutions@proj4
2.4.6" and its wkt-parser
dependency with
"@geosolutions@wkt-
parser 1.2.2". Note that
shpjs will use this
customized version of
proj4 and wkt-parser

is a re-publish on npm of
a fix made here , we
therefore are using
"@geosolutions@react-
joyride 1.10.2"

github

https://
github.com/
geosolutions-
it/wkt-parser/
tree/release

https://
github.com/
geosolutions-
it/proj4js/tree/
release 2.4.6

https://
github.com/
geosolutions-
it/react-
joyride/tree/
release

https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/ddeath/react-joyride/tree/fixed-positioning-and-overlay
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release

library version
mocha 6.2.0-
uncaught
jsdoc 3.4.3
acorn- 4.0.1
jsx
Aliases

issue

#3693

#1978

#1978

reason

Customized in order to
make some test run.
More in detail, we
removed uncaught
exceptions handler
because it was making
some test failing
(waiting for a better
solution). Published
"@geosolutions/mocha
6.2.1-3". mocha is being
moved from

node modules/
@geosolutions/mocha to
node modules/mocha in
order to make the test
be runnable

ES6 syntax not parsed by
Docma, so we published
"@geosolutions/jsdoc
3.4.4" with other related
dependencies also on
our npm, like acorn-jsx,
espree and tv4d

Added support for
instance properties (e.g.
state), we published
"@geosolutions/acorn-jsx
4.0.2"

github

https://
github.com/
geosolutions-
it/mocha/tree/
release v6.2.1

https://
github.com/
geosolutions-
it/jsdoc/tree/
release

https://
github.com/
geosolutions-
it/acorn-jsx/
tree/release

Only proj4 and react-joyride are using aliases in order to maintain original

webpack requires like:

* const proj4 = require("projd");

* const joyride = require('react-joyride').default;

see this for current status of aliases

https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/MapStore2/blob/master/build/buildConfig.js#L82

More info

Here you can find more information about customization

https://github.com/geosolutions-it/MapStore2/issues/4569

Styling and Theming

The look and feel is completely customizable either using one of the included
themes, or building your own. Themes are built using less.

You can find the default theme here: https://github.com/geosolutions-it/
MapStore?2/tree/master/web/client/themes/default

Theme Structure

+-- themes/

| +-- theme-name/
| +-- icons/

| +-- icons.eot
| +-- icons.svg
| +-- icons.ttf
| +-- icons.woff
| +-- icons.woff2
| +-- img/

| +-- less/

| +-- mixins/
| +-- bootstrap.less

| +-- css-properties.less

| +-- theme.less

| +-- mapstore.less

| +-- common.less

| +-- style-module.less

| +-- .less files for all the other modules
| +-- base.less

| +-- bootstrap-theme.less

| +-- bootstrap-variables.less

| +-- icons.less

| +-- ms2-theme.less

| +-- ms-variables.less

| +-- theme.less

| +-- variables.less

theme.less is the entry point for all the main imports and it needs to be properly
required in buildConfig.js or in your webpack.config.js in the themeEntries.

theme.less imports

http://lesscss.org/
https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes/default
https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes/default

file description

base.less contains a declaration of font colors and background defined
for data-ms2-container attribute which is usually the body
tag

icons.less contains font-face declaration for glyphs, it extends the
bootstrap glyphicons to use custom MapStore icons

bootstrap- contains all the less style for bootstrap components
theme.less

ms2-theme.less contains all the less style for MapStore components
variable.less contains the import of mapstore variables and the override

of bootstrap variables

below an example of entry configuration:

entry: {
...other entries,
'‘themes/theme-name': path.join(__dirname, 'path-to’, 'theme-name', 'theme.less')

1

MapStore uses a themeEntries function to automatically create the entries for
default themes that can be found under the web/client/themes directory

const themeEntries = require('./themes.js').themeEntries;

entry: {
...other entries,
...themeEntries
1

Default themes in web/client/themes directory are useful to have an overview of the
structure described above.

Note: we suggest to place the theme folder inside a themes directory for MapStore
project

https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes
https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes

Structure of .less files

Each less file that represent a MapStore plugin or component is composed by two
sections:

* Theme section includes all the styles and classes that should change based
on css variables. All the new declared selector must be included in a special
function called #ms-components-theme . The #ms-components-theme function
provide access to all the available variables of the theme via the @theme-vars
argument.

* Layout section includes all the styles and classes that should not change in a

simple customization.

Example:

// Skekokskokskokskokkokkokk

// Theme

// Skkokskokskokskokkokkokk

#ms-components-theme(@theme-vars) {
// here all the selectors related to the theme
// use the mixins declared in the web/client/theme/default/less/mixins/css-properties.less
// to use one of the @theme-vars

// eg: use the main background and text colors to paint my plugin
.my-plugin-class {
.color-var(@theme-vars[main-color]);
.background-color-var(@theme-vars[main-bg]);

}
}

|| RIS AR

// Layout
[/ FHRRRRkkkokok

// eg: fill all the available space in the parent container with my plugin
.my-plugin-class {

position: absolute;

height: 100%;

width: 100%;
}

// here

ms-variables.less

MapStore uses basic less variables to change theme colors, buttons sizes and
fonts. It possible also to override bootstrap less variable for advanced
customization. Basic variables can be found in the ms-variable.less file

New declarations in MapStore should have the following structure:

global: @ms-rule-value
local: @ms-name-of-plugin--rule-value

* @ms suffix for MapStore variable

* name-of-plugin for local variable it's important to write the name of plugin in
kebab-case

e rule-value value to use in compiled CSS, some examples:
* color generic color variable

e text-color color for text

* background-color color for background

e border-color color for border

less/ directory

The less/ directory contains all the modules needed to create the final CSS of
MapStore.

Each file in this directory is related to a specific plugin or component and the files
are named based on the plugin's name are referring to.

common.less file can be used for generic styles.

inline styles

Inline styles should be applied only for values that change dynamically during the
lifecycle of the application, all others style should be moved to the related .less file.

The main reason of this choice is to allow easier overrides of styles in custom
projects.

Add New Theme

To support a new theme for mapstore product:

1. create a new folder in the themes folder with the name of your theme

2. create less files in the folder (at least theme.less, as the main file and
variables.less , to customize standard variables)

3. add the new theme to the index file, with the id corresponding to the theme
folder name

https://github.com/geosolutions-it/MapStore2/blob/master/web/client/themes/index.js

If you are not using themeEntries a new entry needs to be added in the
buildConfig.js

You can then switch your application to use the theme adding a new section in the

appConfig.js file:

initialState: {
defaultState: {

theme: {
selectedTheme: {
id: <your theme id>

Custom Theme for project

In a mapstore project normally the theme configuration is placed in the themes/
directory

Styles can be overridden declaring the same rules in a less module placed in a

new project.
Below steps to configure a custom theme and override styles:

* add the following files to the themes folder of the project:

+-- themes/

| +-- default/

| +-- less/

| +-- my-custom-module.less
| +-- theme.less

| +-- variables.less

e import in theme.less all the needed less module

@import "../../MapStore2/web/client/themes/default/theme.less";
@import "./variables.less";
@import "./less/my-custom-module.less";

* update webpack configuration to use the custom style (webpack.config.js,
prod-webpack.config.js)

module.exports = require('./MapStore2/buildConfig')(
{

' PROJECTNAME ' path.join(dirname, "js", "app"),

' PROJECTNAME -embedded': path.join(__dirname, "MapStore2", "web", "client",
"product”, "embedded"),

' PROJECTNAME -api': path.join(__dirname, "MapStore2", "web", "client",
"product"”, "api")

b

- themeEntries,
{

"themes/default": path.join(__dirname, "themes", "default", "theme.less")

+ + +

}

* update variables.less to override existing variables

/* change primary color to blue */
@ms-primary: #0000ff;

* update my-custom-module.less to override existing rules or add new rules

/* change the background color of the page*/
-page {

background-color: #d9e6ff;
}

Custom Theme for contexts

You can configure a list of themes to be used inside a context.
In order to do that you have to:

e create the themes in the themes/ folder as described below

* edit ContextCreator plugin in the localConfig.json

example

"name": "ContextCreator",
"cfg": {
"documentationBaseURL": "https://mapstore.geosolutionsgroup.com/mapstore/docs/
api/plugins",
"backToPageDestRoute": "/context-manager",
"backToPageConfirmationMessage": "contextCreator.undo",

"themes": [{
"id": "complete-theme-override",
Iltypell: Illink“,

"href": "dist/themes/complete-theme-override.css",
"defaultVariables": {
"ms-main-color": "#000000",
"ms-main-bg": "#FFFFFF",
"ms-primary-contrast": "#FFFFFF",
"ms-primary": "#078aa3",

"ms-success-contrast": "#FFFFFF",
"ms-success": "#398439"

}
Be
{

"id": "partial-theme-override",

"type": "link",

"href": "dist/themes/partial-theme-override.css"
b
{

"id": "only-css-variables",

"type": "link",

"href": "dist/themes/only-css-variables.css"
}

1,

"basicVariables": {
"ms-main-color": "#000000",
"ms-main-bg": "#FFFFFF",
"ms-primary-contrast": "#FFFFFF",
"ms-primary": "#078aa3",
"ms-success-contrast": "#FFFFFF",
"ms-success": "#398439"

for each theme you can define:

¢ id id of the theme equal to its name

* type values can be

* link will require a href property

* href path to find the css once built

* defaultVariables variables of the theme used to initialize the pickers

(optional)

basicVariables these are the variables used as default values if a theme is not
selected (optional)

Suggested ways to create a custom theme for a
context

Complete theme override

This example will create a complete css file and is not recommended if you want a
light version and you just need to customize the variables (for this check next
paragraph)

Add the following files to the themes folder of the project

+-- theme-name/
+-- theme.less

+-- themes/
I
|
| +-- variables.less

in theme.less put

/*

* This example will contain a complete mapstore theme with some customization
* it will be selectable inside context theme step selector

&/

/*

* it includes the main theme and this will recompile the whole theme
&/

@import "../../MapStore2/web/client/themes/default/theme.less";

/*

* it includes some changes to css variables
&/

@import "./variables.less";

/*
* Note: You can always expand it with new less/css rules
&/

in variables.less you can put the mapstore variables customizations

/*

* A variable that will override the default css one
&

@ms-primary: #2E13FE;

Only css variables

This example is perfect if you just want to customize a few colors of the theme

+-- theme-name/
+-- theme.less

+-- themes/
I
|
| +-- variables.less

in theme.less put

/*

* This example is the lightest version of all three examples

* it will be selectable inside context theme step selector

* this examples is limited to changing the css variables only,

* but you can always expand it as we did for partial-theme-override
&/

/*

* This will import as (reference) https://lesscss.org/features/#import-atrules-feature-
reference

* It's used to import external files, but without adding the imported styles

* to the compiled output unless referenced.
*

*/
@import (reference) "../../MapStore2/web/client/themes/default/theme.less";

/*

* it includes some changes to css variables
*/

@import "./variables.less";

/*

* this will create only one class with the :root selector inside

* it's important to place the variable overrides before calling the css-variable mixin
generator

* which is called .get-root-css-variables

&/

.get-root-css-variables(@ms-theme-vars);

/*
* Note: You can always expand it with new less/css rules
&/

In the variables.less you can do put your variable customizations

partial theme override

+-- themes/
| +-- theme-name/
| +-- less/
| +-- plugin-name.less

/*

* We can use this method when we want to customize some part of the theme
* without the need to include the theme in its completeness

*/

/*

* here you can apply some other overrides, like the size of thumbnails for backgrounds
*/

@import "./less/drawer-menu.less";

/*
* Note: You can always expand it with new less/css rules
*/

Note: These three styles are an example on how is possible to approach on the
mapstore customizations. You could extend/combine them together to create a
more complex theme.

Tips
* When you develop locally
* and you want to reduce the building time

* and you don't need themes that are not the default theme

* then you can comment this in the webpack-config.js

["themes/default"]: path.join(_dirname, "themes", "default", "theme.less")

1%

["themes/complete-theme-override"]: path.join(__dirname, "themes", "complete-
theme-override", "theme.less"),

["themes/partial-theme-override"]: path.join(__dirname, "themes", "partial-theme-
override", "theme.less"),

["themes/only-css-variables"]: path.join(__dirname, "themes", "only-css-variables",
"theme.less")

*/

b

Working with Extensions

The MapStore2 plugins architecture allows building your own independent
modules that will integrate seamlessly into your project.

Extensions are plugins that can be distributed as a separate package (a zip file),
and be installed, activated and used at runtime. Creating an extension is similar to
creating a plugin. If you are not familiar with plugins, please, read the Plugins
HowTo page first.

Developing an extension

The easiest way to develop an extension is to start from the MapStoreExtension
project that gives you a sandbox to create/test and build your extension.

Read the readme of the project to understand how to run, debug and build a new
extension starting from the sampleExtension in the project.

Here you can find some details about the structure extension files, useful for
development and debugging.

An extension example

A MapStore extension is a plugin, with some additional features.

import {connect} from "react-redux";

import Extension from "../components/Extension";
import Rx from "rxjs";
import { changeZoomLevel } from "../../../web/client/actions/map";

export default {
name: "SampleExtension",
component: connect(state => ({
value: state.sampleExtension && state.sampleExtension.value
H, A
onlncrease: () => {
return {
type: INCREASE COUNTER'
B3
}, changeZoomLevel
})(Extension),
reducers: {
sampleExtension: (state = { value: 1 }, action) => {
if (action.type === 'INCREASE_COUNTER') {
return { value: state.value + 1 };

https://github.com/geosolutions-it/MapStoreExtension
https://github.com/geosolutions-it/MapStoreExtension
https://github.com/geosolutions-it/MapStoreExtension/blob/master/README.md

}
return state;
}
)i
epics: {
logCounterValue: (action$, store) =>
action$.ofType('INCREASE COUNTER').switchMap(() => {
/* eslint-disable */
console.log('CURRENT VALUE: ' + store.getState().sampleExtension.value);
/* eslint-enable */
return Rx.Observable.empty();
1
Yo
containers: {
Toolbar: {
name: "SampleExtension",
position: 10,
text: "INC",
doNotHide: true,
action: () => {
return {
type: INCREASE COUNTER'
I3
Bo
priority: 1

As you can see from the code, the most important difference is that you need to
export the plugin descriptor WITHOUT invoking createPlugin on it (this is done in
extensions.js in dev environment and when installed it will be done by the
extensions load system). The extension definition will import or define all the
needed dependencies (components, reducers, epics) as well as the plugin
configuration elements (e.g. containers).

Dynamic import of extension

MapStore supports dynamic import of plugins and extensions.

Dynamically imported plugins or extensions uses lazy-loading: components,
reducers and epics will be loaded once plugin or extension is in the list of plugins
configured for the current page (eg. via localConfig.json or plugins selected to be
included in a context).

. Note

Application context could have plugins configured to be loaded optionally using the
Extensions Library. Such plugins will be loaded only after being directly activated
by the user in the extensions library UI.

Regardless if extension uses lazy-loading or not, its epics will be muted once
extension is not rendered on the page. For more details see Epic state.

There are few changes required to make extension loaded dynamically:

1. Create Module.jsx file in js/extension/plugins/ and populate it with js/extension/
plugins/Extension.jsx content.
2. Update content of js/extension/plugins/Extension.jsx to be like:

import {toModulePlugin} from "@mapstore/utils/ModulePluginsUtils";
import { name } from '../../../config’;

export default toModulePlugin(name, () => import(/* webpackChunkName:
'extensionName' */ './Module'));

3. Update js/extensions.js and remove createPlugin wrapper from Extension export.
File content should look like:

import Extension from './extension/plugins/Extension';
import { name } from '../config';

export default {
[name]: Extension

+;

Distributing your extension as an uploadable module
The sample project allow you to create the final zip file for you.
The final zip file must have this form:

¢ the file named index.js is the main entry point, for the module.
* an index.json file that describes the extension, an example follows

* assets folder, that contains additional bundles (js, css) came out from the
bundle compilation. All additional files (js chunks, css ...) must stay in this
folder.

* optionally, a translations folder with localized message files used by the
extension (in one or more languages of your choice)

my-extension.zip
|— index.js
— index.json
— assets

— css

L— 123.abcd.css
I_ e

I—jS
L— 456.abcd.js
L

L— translations

L— data.en EN.json
I_ e

index.json
The "index.json file should contain all the information about the extension:

* An id that identifies the extension
* A version to show in Ul Semantic versioning is suggested.+
e title and description to display in UI, mnemonic hints for the administrator

* plugins the list of plugins that it adds to the application, with all the data useful
for the context manager. Format of the JSON object for plugins is suggested
here

"id": "a_unique extension identifier",
"version": "1.0.0",
"title": "the title of the description",
"description": "a description of the extension",
"plugins": [{
"name": "MYPlugin",
"title": "extensions.a_unique extension identifier.title",
"description": "",
"defaultConfig": {},

}H

plugins section contains the plugins defined in the extension, and it is needed to be
configured in the context-editor. See Context Editor Configuration
Installing Extensions

Extensions can be uploaded using the context creator UI of MapStore. The storage
and configuration of the uploaded zip bundle is managed by a dedicated MapStore

https://github.com/georchestra/mapstore2-georchestra/issues/15#issuecomment-564974270

backend service, the Upload Service. The Upload Service is responsible for
unzipping the bundle, storing javascript and the other extension assets in the
extensions folder and updating the configuration files needed by MapStore to use
the extension:

* extensions.json (the extensions registry)

* pluginsConfig.json.patch (the context creator plugins catalog patch file)

Updating Extensions

Please refer to the How to update extensions section of user guide to get more
information about extensions update workflow.

Extensions and datadir

Extensions work better if you use a datadir, because when a datadir is configured,
extensions are uploaded inside it, so they can live outside the application main
folder (and you don't risk to overwrite them when you upgrade MapStore to a
newer version).

Extensions for dependent projects

Extensions build in MapStore actually can run only in MapStore product. They can
not be installed in dependent projects. If you have a custom project, and you want
to add support for extensions, you will have to create your build system for
extensions dedicated to your application, to build the Javascript with the correct
paths. Moreover, to enable extensions to work with the datadir in a dependent
project (MapStore product is already configured to use it) you need to configure
(or customize) the following configuration properties in your app.jsx :

Externalize the extensions configuration

Change app.jsx to include the following statement:
ConfigUtils.setConfigProp("extensionsRegistry", "rest/config/load/extensions.json");

Externalize the context plugins configuration

Change app.jsx to include the following statement:

ConfigUtils.setConfigProp("contextPluginsConfiguration", "rest/config/load/
pluginsConfig.json");

Externalize the extensions assets folder

Change app.jsx to include the following statement:

ConfigUtils.setConfigProp("extensionsFolder", "rest/config/loadasset");

Assets are loaded using a different service, /rest/config/loadasset .

Managing drawing interactions conflict in extension

Extension could implement drawing interactions, and it's necessary to prevent a
situation when multiple tools from different plugins or extensions have active
drawing, otherwise it could end up in an unpredicted or buggy behavior.

There are two ways how drawing interaction can be implemented in plugin or
extension:

» Using DrawSupport (e.g. Annotations plugin)

* By intercepting click on the map interactions (e.g. Measure plugin)

Making another plugins aware of your extension starts drawing

If your extension using DrawSupport - you're on the safe side. Extension will
dispatch CHANGE DRAWING STATUS action. This action can be traced by another
plugins or extensions, and they can control their tools accordingly.

If your extension is using CLICK ON MAP action and intercepts it perform any
manipulations on click - you need to make sure that your extension also dispatch
REGISTER EVENT LISTENER action (see Measure plugin as an example) when your
extension activates drawing.

It should also dispatch UNREGISTER EVENT LISTENER once drawing interaction
stops.

Making your extension aware of another plugin drawing

There is a helper utility named shutdownToolOnAnotherToolDrawing . This is a wrapper
for a common approach to dispatch actions that will toggle off drawing
interactions of your extension whenever another plugin or extension starts
drawing.

extensionEpics.js:

export const toggleToolOffOnDrawToolActive = (action$, store) =>
shutdownToolOnAnotherToolDrawing(action$, store, 'yourToolName');

with this code located in extension's epics your tool yourToolName will be closed
whenever:

» feature editor is open

* another plugin or extension starts drawing.
"shutdownToolOnAnotherToolDrawing" supports passing custom callback to

determine whether your tool is active (to prevent garbage action dispatching if it's
already off) and custom callback to list actions to be dispatched.

Using "ResponsiveContainer" for dock panels

Starting with MapStore v2022.02.00, layout improvements have been introduced
which, in addition to other changes, introduce a new sidebar menu to be used
instead of the burger menu.

All extensions using DockPanel or DockablePanel components have to be updated if
their dock panel is rendered on the right side of the screen, next to the new
sidebar menu.

Following changes should be applied (MapTemplates plugin can be a reference for
the changes needs to be applied):

1. Make your extension aware of the map layout changes by getting
corresponding state value using following selector:

createSelector(
state => mapLayoutValuesSelector(state, { height: true, right: true }, true),

(dockStyle) => ({
dockStyle
})

It will get offset from the right and the bottom that needs to be applied to the

ResponsiveContainer

2. Replace DockPanel, DockablePanel , ContainerDimensions (if used) with the
ResponsiveContainer and make sure that dock content is a child of

ResponsiveContainer :

was:

return (
<DockPanel
open={props.active }
position="right"
size={props.size}
bsStyle="primary"
title={<Message msgld="mapTemplates.title"/>}
style={{ height: 'calc(100% - 30px)' }}
onClose={props.onToggleControl } >
{!props.templateslLoaded && <div className="map-templates-
loader"><Loader size={352}/></div>}
{props.templateslLoaded && <MapTemplatesPanel
templates={props.templates}
onMergeTemplate={props.onMergeTemplate }
onReplaceTemplate={props.onReplaceTemplate }
onToggleFavourite= {props.onToggleFavourite }/> }
</DockPanel>

become:

return (

<ResponsivePanel
containerStyle={props.dockStyle }
style={props.dockStyle}
containerld="map-templates-container"
containerClassName="dock-container"
className="map-templates-dock-panel"
open={props.active }
position="right"
size={props.size}
bsStyle="primary"
title={<Message msgld="mapTemplates.title"/>}
onClose= {props.onToggleControl }

{!props.templatesl.oaded && <div className="map-templates-

loader"><Loader size={352}/></div>}

{props.templatesLoaded && <MapTemplatesPanel
templates={props.templates}
onMergeTemplate={props.onMergeTemplate }
onReplaceTemplate={props.onReplaceTemplate }
onToggleFavourite= {props.onToggleFavourite }/> }

</ResponsivePanel >

With the applied changes dock will be rendered properly both for layout with
BurgerMenu and SidebarMenu .

Making other dock panels closed automatically
when extension panel is open

All the dock panels open next to the sidebar should be mutually excluded. Active
dock panel should be closed whenever another panel is open.

Array at state.maplayout.dockPanels.right contains list of panels that can be extended
or modified by extension by dispatching updateDockPanelsList action.

Please note that adding dock into the list will automatically close previously active
panel, so it's a good idea to dispatch the action on app initializing or when dock
panel is open. Measurement plugin can be used as a reference of implementation,

see openMeasureEpic & closeMeasureEpic in epics/measurement.js .

Printing Module

The printing module of MapStore is a back-end service not included by
default in the binary package that allows to create a printable PDF from the
current map.

. Note

The printing module is required by the Print plugin of MapStore, so if you want
to have the Print plugin working in your application, you have to include also the
printing module in your MapStore installation.

Including the printing module in MapStore

Because MapStore doesn't include the printing module by default, to use it you
need to build from the source a MapStore.war that includes it or add the missing
files to an existing MapStore deployed.

Building from the Source

If you want to include the printing module in your MapStore, by building the
source code, you have to add the profile printing (profiles can be added as 2nd
argument of the build.sh script, after the version that is the 1st. If you have more
then one profile, you can add them separated by ,):

./build.sh [version identifier] printing

MapStore projects also allow to use the printing profile to include this module. So
you can use the same printing profile to build your custom MapStore project
including the printing module.

Adding to an existing MapStore

If you have an existing and deployed instance of MapStore and you want to add
the printing module, you can build only the printing extension as a zip running
mvn clean install -Pprintingbundle from the official Mapstore project. The zip bundle
will created in java/printing/target/mapstore-printing.zip .

https://github.com/geosolutions-it/MapStore2

You can copy the content of this zip bundle into the root of mapstore application
(<app root>, for instance webapps/mapstore in Tomcat):

* files from zip directory WEB-INF/classes must be placed in <app root>/WEB-INF/
classes

» files from zip directory WEB-INF/lib must be placed in <app root>/WEB-INF/lib
for the printing configuration files (if they are missing)
* these files must be placed in <app root>/printing

Then restart your java container.

Configuring the print

This printing module includes the MapStore printing engine, that is a fork of
MapPhish print (version 2), with some additional functionalities you can find in the
Wiki page.

' note: The module was originally written for GeoServer, so on the Github wiki
you can find information about downloading and installing it in GeoServer, but if
you include the engine directly in MapStore you don't need any other installation.

MapStore

The MapStore print module on the front-end is implemented by the Print plugin
inside localConfig.json . Make you sure to have this plugin in plugins/(mode) section.
If so, this will will automatically check the presence of the back-end module and
show the entry in the Burger Menu, if the back-end service is present.

In localConfig.json you will find also a printUrl configuration that refers to the
(relative) URL where the main entry point of the application is available. (the
default should enough)

Print Settings

This fork uses the same configuration files of the original library to define the
various print layouts and options. This files is in the directory resources/geoserver/
print , and they will be copied in WEB-INF/classes in the final war file.

* config.yml : The main file that configures the layout. More information about
this configuration file in the original documentaiton

* print_header.png : The header, referred in config.yml

https://github.com/geosolutions-it/MapStore2/tree/master/java/printing/resources/geoserver/print
https://github.com/geosolutions-it/mapfish-print/
http://www.mapfish.org/doc/print/
https://github.com/geosolutions-it/mapfish-print/
http://www.mapfish.org/doc/print/configuration.html

* Arrow north CFCFEsvg the north indicator, referred in config.yml

Troubleshooting

I can not see the "Print" entry in the menu
Please check if:

* "Print" plugin is present in localConfig.json --> plugins --> desktop .

* You are using a desktop browser. The plugin is not designed for a mobile
devices (tablet, smartphone...), for this reason it is not included in plugins -->

mobile

* The service at url http(s)://<your-domain>/<applciation-base-paath>/pdf/info.json is
responding. Example: https://example.com/mapstore/pdf/info.json . The URL of this
info.json is configured (by default as relative URL) in localConfig.json -->
printUrl entry.

* Looking at the JSON returned by the request above, the URLs in the entries
printURL and createURL are reachable, and the domain, (the port) and the
schema (http/https) of these URLs are the same of MapStore.

I have an error printing (using Reverse Proxy/HTTPS)

When you open MapStore from the browser, MapStore do a request to the main
entry point (info.json) of the printing module. This entry point provides a set of
URLs where to find all the print related services. These URLs are generated
starting from the current request.

A common practice is to use a reverse proxy in front of a Java Application Server,
and so MapStore (this is used also to add https, if the reverse proxy is part of a
web server). If this reverse proxy is not properly configured anyway, MapStore
will not be able to correctly generate the URLs of the printing services, and this
may cause an error when you try to print a PDF.

To avoid this problem, you can use several solution, depending on your setup and

your reverse proxy.
Setting up your proxy
Some typical solutions are:

» Using AJP instead of http (this forwards all the information by default)

Example for Apache HTTP server
ProxyPass /mapstore ajp://localhost:8010/mapstore
ProxyPassReverse /mapstore ajp://localhost:8010/mapstore

* Using rewrite engine to rewrite the requests. (apache web server)

example for Apache HTTP server

RewriteEngine On

RewriteCond %{HTTPS} off

RewriteRule ™ https://%{HTTP_HOST}%{REQUEST URI}
RedirectMatch ~/$ /mapstore/

ProxyRequests Off

ProxyPreserveHost On

ProxyVia full

* Using non-standard headers, X-Forwarded-Host and X-Forwarded-Proto .

example for nginx
proxy_set header X-Forwarded-Proto https;

Forcing PRINT BASE_URL of printing module

If, for any reason, you can not modify the proxy configuration, MapStore printing
module provides a system variable PRINT BASE URL that you can set to force the
URLs returned by info.json to be resolved from it.

A useful trick can be to set as a relative URL (relative to MapStore) to make it work
in any context (only for MapStore).

JAVA OPTS= "$JAVA OPTS -DPRINT BASE URL=pdf"
or you can use the absolute URL:

JAVA OPTS= "$JAVA OPTS -DPRINT BASE URL=https://example.com/mapstore/pdf"

How to use a CDN

The LeafletDraw plugin and the MapStore theme are linked via rawgit.com but in
production it should be used a proper CDN.
Once you have a stable version:

* upload the LeafletDraw plugin and the MapStore theme on your CDN

* edit the index.html file to use your published resources.

http://rawgit.com/Leaflet/Leaflet.draw/v0.2.4/dist/
https://github.com/geosolutions-it/MapStore2-theme/tree/master/theme/default
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/index.html

FAQ

Troubleshooting

Autowatch doesn't work on Linux

You should need to increase max user watches variable for inotify.

echo fs.inotify max user watches=524288 | sudo tee -a /etc/sysctl.conf && sudo sysctl -p

Other References

e How to use a CDN

Code conventions

In order to preserve quality, maintainability and testability when you develop in
MapStore you should follow the following rules and best practices.

TL;DR

* Access to the state using state selectors
* Prefer plugins cfg over initialState for plugins configurations

» Use weby/client/libs/ajax in your hooks or in redux-observable for async

Access to the state using state selectors

Is strongly recommended to not access to the state directly inside the
mapStateToProps function of react-redux . Use (or define) selectors in the selectors
directory. This provides the following advantages:

* Selectors can be reused in epics.
* Ready to use optimization with reselect
» Simplify future refactoring

* Easy unit testing and bug identification

Wrapping all the access to the state inside well-defined selector makes easier to
add functionalities and will increase code maintainability. You should always reuse
existing selectors (or create new ones) to access to the application state for core
application functionalities. It will help also future refactoring because any change
to the state structure (from the reducer point of view) or data source (from the
components point of view) requires only changes to the interested selectors.

A selector should be placed into the proper selectors/<state-slice>.js file with the
same name of the relative reducer. When a selector retrieves data from more than
one state slices, you should place it in the selector nearest by concern. For
instance isFeatureGridOpen should be placed into featuregrid

If you don't work on a core functionality, where the state is shared between many
components, defining the selector directly in the plug-in is not denied.

Prefer plugin configuration over initialState

In order to create self contained plugins that can be reused you should prefer to
configure the plugins using cfg . Using initialState should be considered
deprecated. When the configuration is needed at an higher level (e.g. application
state, for epics or to share this information), you should properly initialize the state
of the plugin on your own triggering an action on mount/unmont. (cfg are passed
to the plugin as react props).

Use custom axios version for async requests

Using web/client/libs/ajax (a customized axios with some interceptors) for AJAX
request contains interceptors to support proxyUrl and authenticationRules settings
specified in localConfig.json ,s0 you should prefer to use this enhanced version of
axios.

Using axios + Rx]JS means that you will have to wrap axios calls in something like:
Rx.Observable.defer(() => axios.post(...)).map...

Use defer to allow the usage of RxJS retry. We still not support real AJAX
cancellation at all, but we would like to provide some utility function/operator to
bind axios cancellation functionalities into the Rx]JS flow in the future.

Documentation guidelines

Each new feature/tool in MapStore should be documented in the User Guide in
order to explain the involved functionalities and illustrate how it works.

All new front-end technologies, development procedures, best practices and
guidelines on the involved components in MapStore should be properly
documented too: the Developers Guide must be kept up-to-date for this.

The Developer and User guide documentation are built on the Read the Docs
hosting platform. The MapStore's documentation files are available in the docs/
section of this repository; Mkdocs is used in MapStore as documentation
generator, you can look at the available online documentation for more information
on how to use it (MapStore uses his own customized MkDocs Material theme for
both User and Developer documentations).

General Guidelines

Internal links

When creating internal links between pages (.md files), make sure to use full link
to the paragraph instead of using only the relative path to the file. As using relative
path will not work in exported PDF document.

. Example

Instead of creating a link [FAQ]('../dev-faq/'), use [FAQI('../dev-fag/#faq') or [FAQI('../dev-
fag.md#faq') or [FAQ]('dev-faq.md#faq')

Building documentation

The documentation is built on RTD (Read the Docs) documentation hosting
platform.

But in order to build it locally, there are certain steps that needs to be followed:

1. Python installation

Install Python 3 and pip following the instructions on the python web site for your
operating system.

https://mapstore.readthedocs.io/en/latest/user-guide/home-page/
https://mapstore.readthedocs.io/en/latest/developer-guide/
https://docs.readthedocs.io/en/latest/index.html
https://github.com/geosolutions-it/MapStore2/tree/master/docs
https://docs.readthedocs.io/en/latest/intro/getting-started-with-mkdocs.html
https://docs.readthedocs.io/en/latest/intro/getting-started-with-mkdocs.html#getting-started-with-mkdocs
https://squidfunk.github.io/mkdocs-material/
https://docs.readthedocs.io/en/latest/index.html
https://www.python.org/downloads/
https://www.python.org/downloads/

. Note

Pip is automatically installed when python is downloaded from python.org, if not,
follow this instruction to install it

2. Libraries installation

Install all the libraries/plugins in docs/requirements.txt using pip while matching
the exact version present.

pip install -r docs/requirements.txt

3. Build the documentation
Build the docs using the command mkdocs build .

If you want to generate also the PDF, you need to add set the environment
variable ENABLE PDF EXPORT to 1 before to run mkdocs build . The build with the
PDF option takes around 5 minutes to finish.

export ENABLE PDF EXPORT=1
mkdocs build

This will build the documentation and puts the built files into site folder and the
pdf generated into site\pdf\mapstore documentation.pdf

The documentation can be launched using index.html in site folder

4. Editing the documentation

To live build and test the documentation locally, run the following command:
mkdocs serve

This command will start the built-in dev-server of MkDocs that lets us preview the
documentation as we work on it.

The documentation will be available at http://localhost:8000. Every time you save
some documentation file, the page will be automatically updated.

https://pip.pypa.io/en/stable/installation/
http://localhost:8000

V . Note

make you sure to not have set ENABLE PDF EXPORT=1 while testing live, in order
to avoid build the pdf every time that takes a long time to be generated.

Migration Guidelines

General update checklist

* updating an existing installation
* updating a MapStore project created for a previous version
To update an existing installation you usually have to do nothing except eventually

to execute queries on your database to update the changes to the database
schema.

In case of a project it becomes a little more complicated, depending on the
customization.

This is a list of things to check if you want to update from a previous version valid
for every version.

» Take a list to migration notes below for your version

» Take a look to the release notes

* update your package.json to latest libs versions

* take a look at your custom files to see if there are some changes (e.g.

localConfig.js , proxy.properties)

* Some changes that may need to be ported could be present also in pom.xml
files and in configs directory.

* check for changes also in web/src/main/webapp/WEB-INF/web.xml .

* Optionally check also accessory files like .eslinrc, if you want to keep aligned
with lint standards.

* Follow the instructions below, in order, from your version to the one you want
to update to.

Migration from 2023.02.xx to 2024.01.00

Removing possibility to add custom fonts to the Map

From this version we limited the load of the font to FontAwesome.

If you have changed the property fonts inside Map plugin it will not longer load
the font. A possible fix would be to add the font to the *html files in your
application.

* make sure that the localConfig.json does not have fonts property in Map plugin

The following css is added automatically if needed
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-

awesome.min.css"/> inside the head tag.

Fixing background config

From this version in order to fix default 3d background config a change is needed
here:

* update localConfig.json by adding visibility: false to the Empty Background
entry in

intialState.defaultState.catalog.default.staticServices.default map backgrounds.backgrounds

* update new.json by adding visibility: false to the Empty Background entry.

Adding spatial filter to dashboard widgets

In order to enable the possibility to add in and the spatial filter to the widgets (see
#9098) you have to edit the QueryPanel config in the plugins.dashboard array of the
localConfig.json file by adding:

* useEmbeddedMap: flag to enable the embedded map
* spatialOperations: The list of spatial operations allowed for this plugin

* spatialMethodOptions: the list of spatial methods to use.

"dashboard": [

{
"name": "QueryPanel",
"cfg": {

"toolsOptions": {
"hideCrossLayer": true,
"useEmbeddedMap": true

b

"spatialPanelExpanded": false,

"spatialOperations": [
{"id": "INTERSECTS", "name": "queryform.spatialfilter.operations.intersects"},
{"id": "CONTAINS", "name": "queryform.spatialfilter.operations.contains"},
{"id": "WITHIN", "name": "queryform.spatialfilter.operations.within"}

1,
"spatialMethodOptions": [

https://github.com/geosolutions-it/MapStore2/issues/9098

{"id": "BBOX", "name": "queryform.spatialfiltermethods.box"},

{"id": "Circle", "name": "queryform.spatialfilter methods.circle"},

{"id": "Polygon", "name": "queryform.spatialfilter methods.poly"}
1,

"containerPosition": "columns"

MapFish Print update

The MapFish Print library has been updated to work with the latest GeoTools
version and Java 11 as well as being aligned with the same dependency used by
the official GeoServer printing extension (see this issue https://github.com/
geosolutions-it/mapfish-print/issues/65) For this reason, if you are using the
printing plugin in your project you have to update it by following the following
steps:

* Change the version of the mapfish-print dependency in the project pom.xml
file:

<!-- mapfish-print -->
<dependency >
<groupld>org.mapfish.print</groupld>
<artifactld>print-lib</artifactld>
- <version>geosolutions-2.3-SNAPSHOT </version>
+ <version>2.3-SNAPSHOT </version>

* Add the mvn repository where this library is hosted in the repositories section
of the same pom.xml (usually in web folder of a project)

<repository>
<id>osgeo-snapshot</id>
<name>Open Source Geospatial Foundation Repository</name>
<url>https://repo.osgeo.org/repository/snapshot/</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>

Annotations plugin refactor

The Annotation plugin has been updated to be supported also in 3D maps. This
update introduced some changes:

 All the configurations related to the "Annotations" plugin has been removed
from localConfig.json defaultState entry and moved to the cfg property of the

plugin

https://github.com/geosolutions-it/mapfish-print/issues/65
https://github.com/geosolutions-it/mapfish-print/issues/65

* The annotations reducers is not needed anymore inside the default reducers of
the app

Please update by:

* Removing annotations entry from your localConfig.json defaultState

* If you customized the app, you can remove the annotations reducer from
default reducers.

* If some customizations were applied to the Annotations plugin in defaultState ,
apply these changes to the plugin configuration, following the documentation
of the plugin.

Migration from 2023.01.02 to 2023.02.00

About plugin cfg changes

Starting this release 2023.02.00 we have included a new cfg option the About
plugin called githubUrl

We suggest you to edit About plugin cfg of localConfig.json adding the following

"name": "About"
+ "name": "About",

+ cfg": {

+ "githubUrl": "https://github.com/GITHUB USER/REPO NAME/tree/"
+ 1}

inside configs/pluginsConfig.json you can add this to the About plugin definition

"name": "About",
"glyph": "info-sign",
"title": "plugins.About.title",
"description": "plugins.About.description",
"dependencies": [
"SidebarMenu"
1
Il
"defaultConfig": {
"githubUrl": "https://github.com/GITHUB USER/REPO_NAME/tree/"
}

+ + + +

},

Node]S/NPM upgrade

In this release we updated all our systems to use node 16/NPM 8. This because
Node 12 is actually out of maintenance. We are going to support soon more recent

versions of Node]S solving the related issues. So make you sure to use the correct
version of Node]JS/NPM to build things correctly. See the requirements section of
the document for the details.

Visualization mode in map configuration

The map configuration stores the information related to the visualization mode 2D
or 3D after saving a map. This update include also following changes:

* maptype default state configuration inside the initialState of localConfig.json
needs to be removed. If a MapStore project needs a particular setup (eg. use
only OpenLayers for 2D maps, initialize the app in 3D, ...) it is possible to
override the default map libraries configuration with the new mapType
property in the localConfig.json file, see documentation here.

{
/...
"initialState": {
"defaultState": {
/...
- "maptype": {
- "mapType": "{context.mode === 'desktop' ? 'openlayers' : leaflet'}"
= 2
/...
}
}
..
}

* the changeMapType action has been deprecated in favor of the
changeVisualizationMode action

* the application does not expose the pathname of the viewer with mapType
anymore. Example: the old path /viewer/openlayers/1 becomes /viewer/1

* the app pages inside a MapStore project must be updated with a new entry,
only for projects with custom pages and that are using context applications,
here an example:

import MapViewer from '@mapstore/product/pages/MapViewer';
import productAppConfig from "@mapstore/product/appConfig";

const appConfig = {
...productAppConfig,
pages: [
// my custom pages ...,
{
name: "mapviewer",
path: "/viewer/:mapld/context/:contextId",
component: MapViewer

Clean up of old maven repositories

The old spring maven repositories that do not exist anymore have been removed
from the pom.xml files. They are not needed anymore, so you can remove them
from your pom.xml files too.

- <!-- Spring -->

- <repository>

- <id>spring-release</id>

= <name>Spring Portfolio Release Repository</name>

- <url>https://maven.springframework.org/release</url>
- <snapshots>

- <enabled>false</enabled>

- </snapshots>

- </repository>

- <repository>

- <id>spring-external</id>

- <name>Spring Portfolio External Repository</name>

- <url>https://maven.springframework.org/external </url>
- <snapshots>

- <enabled>false</enabled>

= </snapshots>

- </repository>

New Permalink plugin

As part this release, permalink plugin is added to MapStore. The new plugin is
already configured in standard MapStore application, but if you are working on a
project or if you customized the configuration files, you may need to update them
to introduce the new plugin.

In any case on an existing installation you must update the database adding the
category to make the plugin work.

Add Permalink plugin to localConfig.json

In the case you customized your configs/localConfig.json file in your project/
installation, to add the permalink plugin you will have to update it as following:

* Add the "Permalink" plugin to the pages you want to use this plugin. Pages
plugins are in the plugins section in the root of localConfig.json, so you have to
add "Permalink" entry to desktop, dashboard and geostory arrays, like this:

{
"desktop": [

"Permalink",

1,
"dashboard": [

"Permalink",

1,
"geostory": [

"Permalink",

* To activate the functionality, you must add a new permalink section to plugins
root object of localConfig.json, as shown below

{

"permalink": [
"Permalink",
"FeedbackMask"

1

}

Using Permalink in new contexts

The plugins available for contexts are listed in the file configs/pluginsConfig.json . In
your project/installation, you may need to edit this configuration to make the
plugin selectable for your context. Existing contexts need to be updated
separately, after applying these changes

* Find the "Share" plugin configuration in the plugins array in the root of
pluginsConfig.json configuration file and modify it as shown below (adding
children and autoEnableChildren sections:

"name": "Share",
"glyph": "share",
"title": "plugins.Share.title",
"description": "plugins.Share.description",
"dependencies": [
"SidebarMenu"
1,
"children": [
"Permalink"
1,
"autoEnableChildren": [
"Permalink"

* Add "Permalink" plugin configuration to the plugins array in the root of

pluginsConfig.json

{
"name": "Permalink",
Ilglyphll: Illinkll’

"title": "plugins.Permalink.title",
"description": "plugins.Permalink.description"

19

* the app pages inside a MapStore project must be updated with a new entry,
only for projects using permalink feature, here an example:

import Permalink from '@mapstore/product/pages/Permalink’;
import productAppConfig from "@mapstore/product/appConfig";

const appConfig = {
...productAppConfig,
pages: [
// my custom pages ...,

{

name: "permalink",
path: "/permalink/:pid",
component: Permalink

}

Database Update

Add new category PERMALINK to gs category table. To update your database you
need to apply this SQL scripts to your database

POSTGRESQL

-- New PERMALINK category
INSERT INTO geostore.gs_category(id, name) VALUES
(nextval('geostore.hibernate sequence'), 'PERMALINK') ON CONFLICT DO NOTHING;

H2

-- New PERMALINK category
INSERT INTO gs_category(name) VALUES ('PERMALINK");

ORACLE

-- New PERMALINK category
INSERT INTO gs_category(id, name) VALUES (hibernate sequence.nextval,
‘PERMALINK");

Migration from 2022.02.02 to 2023.01.00
Log4j update to Log4j2

With this release Log4j has been updated to Log4j2. The Log4j API has changed
with version 2. Basically if you customized logging properties, you have to update
the properties file following the log4j properties file migration section.

If you have a downstream project, you will have also to update your dependencies
in pom.xml and your Java code, following the suggestions in log4j2 dependencies and
code update section.

For more information or more details about how to migrate, follow the official

documentation.

I note: A compatibility tier has been added in order to allow to use old
configurations. Anyway it is strongly suggested to update your files as soon as
possible.

log4j2 properties file migration
To have logging properly work on MapStore then it is needed to:

* Rename log4j.properties file to log4j2.properties .

» Edit the properties to configure it according to the log4j2 syntax. See the
Configuration with Properties section on the official documentation page. Below
the old and the new default log4j configuration files are juxtaposed:

log4j.properties

log4j.rootLogger=INFO, fileAppender

log4j.appender.consoleAppender=org.apache.log4j.ConsoleAppender
log4j.appender.consoleAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.consoleAppender.layout.ConversionPattern=%p %d{yyyy-MM-dd
HH:mm:ss.SSS} %c::%M: %L - %m%n

log4j.logger.it.geosolutions.geostore.services.rest=INFO
log4j.logger.org.hibernate=INFO
log4j.logger.com.trg=INFO

File appender
log4j.appender.fileAppender=org.apache.log4j.RollingFileAppender
log4j.appender.fileAppender.layout=org.apache.log4j.PatternLayout

https://logging.apache.org/log4j/2.x/manual/migration.html
https://logging.apache.org/log4j/2.x/manual/migration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html

log4j.appender.fileAppender.layout.ConversionPattern=%p %d{yyyy-MM-dd
HH:mm:ss.SSS} %C{1}.%M() - %m %n
log4j.appender.fileAppender.File=${catalina.base }/logs/mapstore.log

log42.properties

rootLogger.level = INFO
appenders= console, file

appender.console.type = Console

appender.console.name = LogToConsole

appender.console.layout.type = PatternlLayout

appender.console.layout.pattern = %p %d{yyyy-MM-dd HH:mm:ss.SSS} %c::%M:%L -
%m%n

rootLogger.appenderRef.stdout.ref = LogToConsole
rootLogger.appenderRef.console.ref = LogToConsole

appender.file.type = File

appender.file.name = LogToFile

appender.file.fileName=${sys:catalina.base }/logs/mapstore.log
appender.file.layout.type=PatternLayout

appender.file.layout.pattern=%p %d{yyyy-MM-dd HH:mm:ss.SSS} %C{1}.%M() - %m
%n

rootLogger.appenderRef.file.ref = LogToFile

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level= INFO
logger.hibernatel.name=org.hibernate
logger.hibernatel.level=INFO

logger.trgl.name=com.trg

logger.trgl.level=INFO

The main difference applies to how define the Log level on a per package basis. If
in previous version of log4j a single property was defining both the package and
the level now we need two distinct properties, one to define the name (the
package) and the other for the level:

e before

log4j.logger.it.geosolutions.geostore.services.rest=INFO

* now

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level= INFO

Note that the second part of the property key in the log4j2 (restsrv in the example)
can be whatever string of choice, with the only requirement to be the same for the
name and the level property.

log4j2 dependencies and code update

In your downstream project you will have to replace, where you used (typically in
backend and web folders) the following dependencies:

<dependency>
<groupld>log4j</groupld>
<artifactld>log4j</artifactld>
<version>${log4j.version}</version>

</dependency >

<dependency >
<groupld>org.slf4j</groupld>
<artifactld>slf4j-log4jl2</artifactld>
<version>${slf4j.version}</version>

</dependency >

<dependency >
<groupld>org.slf4j</groupld>
<artifactld>jcl-over-slfdj</artifactld>
<version>${slf4j.version}</version>

</dependency >

<dependency>

<groupld>org.slf4j</groupld>
<artifactld>slf4j-api</artifactld>
<version>${slf4j.version} </version>

</dependency >

with

<dependency>
<groupld>org.apache.logging.log4j</groupld>
<artifactld>log4j-core</artifactld>
<version>2.19.0</version>

</dependency>

<dependency>
<groupld>org.apache.logging.log4j</groupld>
<artifactld>log4j-api</artifactld>
<version>2.19.0</version>

</dependency>

<dependency>
<groupld>org.apache.logging.log4j</groupld>
<artifactld>log4j-slf4j-impl</artifactld>
<version>2.19.0</version>

</dependency>

!l note: of course you can use properties of maven to not repeat the version
numbers everytime, or dependency management.

Moreover, if you have some custom code, you will hae to replace the use of
getLogger . Example:

private static final Logger LOGGER = Logger.getLogger(MyClass.class);

with
private static final Logger LOGGER = LogManager.getLogger(MyClass.class);
where LogManager can be imported as:

import org.apache.logging.log4j.LogManager;

Update database schema

This new version introduced the attributes for user groups. This requires an
update to your database applying the scripts available here. You have to apply the
script *-migration-from-v.1.5.0-to-v2.0.0 of your database. For instance on
postgreSQL, you will have to execute the script postgresql/postgresql-migration-from-v.
1.5.0-to-v2.0.0 .

! note: The script assumes you set the search path for your db schema. Usually in
postgres it is geostore . So make you sure to set the proper search path before to
execute the script in postgres. (e.g. SET search path TO geostore;)

I note: If you don't want to or you can not execute the migration script, you can
setin geostore-datasource-ovr.properities the following property to make MapStore
update the database for you

" properties
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=update

Migration from 2022.02.00 to 2022.02.01

Package.json scripts migration

With this release we are refactoring a bit the naming of the scripts maintaining
retro compatibility avoiding builds on ci/cd systems to break. Anyway we suggest
to align them as listed here

The main changes are:

* We have removed travis and mvntest scripts.

* Most of the scripts are now prefixed with app or fe or be to make them more

clear.

https://github.com/geosolutions-it/geostore/tree/master/doc/sql/migration
https://github.com/geosolutions-it/MapStore2/blob/master/utility/projects/projectScripts.json

e Now npm start is an alias of npm run app:start and starts both front-end and
back-end.

Although it is optional we suggest to align your project to these changes. In order
to align your repository you should:

* update your package.json to latest scripts, you can copy them from utility/
projects/projectScripts.json in MapStore2 repository.

* update your build.sh to use the latest scripts, instead of the old ones. See
project/standard/templates/build.sh in MapStore2 repository.

* update in your repository web/pom.xml of your project to receive the backend
property from ENV variables.

@@ -14,6 +14,7 @@
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<tomcat.version>8.5.69</tomcat.version>
+ <tomcat.port>8080</tomcat.port>
</properties>

<dependencies>
@@ -400,7 +401,7 @@
${project.build.directory}/apache-tomcat-${tomcat.version}
</home>
<properties>
- <cargo.servlet.port>8080</cargo.servlet.port>
+ <cargo.servlet.port>${tomcat.port}</cargo.servlet.port>
<cargo.logging>low</cargo.logging>
</properties>
</configuration>
@@ -419,6 +420,18 @@
</plugins>
</build>
<profiles>
<profile>
<id>dev-custom-port</id>
<activation>
<property>
<name>env.MAPSTORE BACKEND PORT</name>
</property>
</activation>
<properties>
<!-- Override only if necessary -->
<tomcat.port>${env.MAPSTORE BACKEND PORT}</tomcat.port>
</properties>
</profile>
<profile>
<id>printing</id>
<activation>

++++++++++++

Migration from 2022.01.02 to 2022.02.00

HTML pages optimization

We removed script and css link to leaflet CDN in favor of a dynamic import of the
libraries in the main bundle, now leaflet is only loaded when the library is selected
as map type of the viewer. You can update the project HTML files by removing
these tags:

- <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/leaflet/1.3.1/
leaflet.css" />

- <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/leaflet.draw/1.0.2/
leaflet.draw.css" />

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/
font-awesome.min.css" />

<link rel="shortcut icon" type="image/png" href="https://cdn.jslibs.mapstore2.geo-
solutions.it/leaflet/favicon.ico" />

<!--script src="https://maps.google.com/maps/api/js?v=3"></script-->

- <script src="https://cdnjs.cloudflare.com/ajax/libs/leaflet/1.3.1/leaflet.js"></script>

- <script src="https://cdnjs.cloudflare.com/ajax/libs/leaflet.draw/1.0.2/leaflet.draw.js"></
script>

We also made asynchronous the script to detect valid browser. This should slightly
improve the initial requests time. You can updated the script in your project as
following:

<script async type="text/javascript" src="https://unpkg.com/bowser@2.7.0/es5.js"
onload="checkBrowser()"></script>
<script type="text/javascript">
function checkBrowser() {
var browserInfo = bowser.getParser(window.navigator.userAgent);
var isValidBrowser = browserInfo.satisfies({
"edge": ">1",
"chrome": ">1",
"safari": ">1",
"firefox": ">1"
1)
if (!isValidBrowser) {
window.location.href = "unsupportedBrowser.html"
document.querySelector("container").style.display = "none";
}
}

</script>

Update plugins.js to make upstream plugins use dynamic import

We've updated plugins.js in MapStore to make most of the plugins use dynamic
import. plugins.js of your project have to be updated separately.

Please use web\client\product\plugins.js file as a reference listing plugins whose
definition can be changed to support dynamic import.

To use dynamic import for plugin, please update its definition to look like:

AnnotationsPlugin: toModulePlugin(‘Annotations’, () => import(/* webpackChunkName:
'‘plugins/annotations' */ '../plugins/Annotations')),

}

See Dynamic import of extension to have more details about transforming
extensions to use dynamic import.

Version plugin has been removed

We no longer maintain the Version plugin since we have moved its content inside
the About plugin (see here for more details)

We suggest you to clean up your project as well:

* remove Version entry it from a local list of plugins.js

* remove Version entries it from a localConfig.json and pluginConfig.json

add About entry into other pages of mapstore plugins array:
» dashboard

* geostory

* mobile

* remove DefinePlugin entries dedicated to git revision retrieved by git-revision-
webpack-plugin , if any, from webpack-config.js or prod.webpack-config.js , because
they have been moved to the file build/BuildUtils.js

* check that in your package.json you have this extends rule

"eslintConfig": {
"extends": [
"@mapstore/eslint-config-mapstore"

1,

* edit the version of the @mapstore/eslint-config-mapstore to 1.0.5 in your
package.json so that the new globals config will be inherited

https://github.com/geosolutions-it/MapStore2/issues/7934#issuecomment-1201433942

. Note

this may fail on gha workflows, in that case we suggest to edit directly your
package.json with globals taken from mapstore framework

Support for OpenID

MapStore introduced support for OpenlID for google and keycloak. In order to
have this functionalities and to be aligned with the latest version of MapStore you
have to update the following files in your projects:

* geostore-spring-security.xml (your custom spring security context) have to be
updated adding the beans and the security:custom-filter entry in the
<security:http> entry, as here below:

<security:csrf disabled="true"/>
<security:custom-filter ref="authenticationTokenProcessingFilter"
before="FORM_LOGIN_FILTER"/>
<security:custom-filter ref="sessionTokenProcessingFilter"
after="FORM_LOGIN FILTER"/>
aF <security:custom-filter ref="keycloakFilter" before="BASIC AUTH FILTER"/>
aF <security:custom-filter ref="googleOpenldFilter" after="BASIC AUTH FILTER"/>
<security:anonymous />
</security:http>

<security:authentication-manager>
<security:authentication-provider ref="'geoStoreUserServiceAuthenticationProvider' /

</security:authentication-manager>
+
+
+ <bean id="preauthenticatedAuthenticationProvider"
class="it.geosolutions.geostore.services.rest.security. PreAuthenticatedAuthenticationProvide1
+ </bean>
+
+ <!-- OAuth2 beans -->
+ <context:annotation-config/>
+
+

<bean id="googleSecurityConfiguration"
class="it.geosolutions.geostore.services.rest.security.oauth2.google. OAuthGoogleSecurityCon

—+
+ <!-- Keycloak -->
+
+

<bean id="keycloakConfig"
class="it.geosolutions.geostore.services.rest.security.keycloak.KeyCloakSecurityConfiguratio:

Y

<!-- END OAuth2 beans-->

+ + + +

<!-- security integration inclusions -->

+ <import resource="classpath*:security-integration-$
{security.integration:default}.xml"/>

</beans>

* web.xml : add the following content to the file:

@@ -34,6 +34,17 @@
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-
class>
</listener>

<!-- Allow to use RequestContextHolder -->
<filter>
<filter-name>springRequestContextFilter</filter-name>
<filter-class>org.springframework.web.filter. RequestContextFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>springRequestContextFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

+++++++++++

<!-- Spring Security Servlet -->
<filter>

* applicationContext.xml for consistency, we added mapstore-ovr.properties files to
be searched in class-path and in the data-dir, as for the other properties files:

@@ -49,6 +49,7 @@
<property name="order" value="10"/>
<property name="locations">
<list>
+ <value>classpath:mapstore-ovr.properties</value>
<value>file:${datadir.location: }/geostore-datasource-ovr.properties</value>
<value>file:${datadir.location: }/mapstore-ovr.properties</value>
</list>

Upgrading the printing engine

The mapfish-print based printing engine has been upgraded to align to the latest

official 2.1.5 in term of functionalities.

An update to the MapStore printing engine context file (applicationContext-print.xml)

is needed for all projects built with the printing profile enabled. The following

sections should be added to the file:

<bean id="configFactory" class="org.mapfish.print.config. ConfigFactory"></bean>
+<bean id="threadResources" class="org.mapfish.print.ThreadResources">

+ <property name="connectionTimeout" value="30000"/>

+ <property name="socketTimeout" value="30000" />

+ <property name="globalParallelFetches" value="200"/>
+ <property name="perHostParallelFetches" value="30" />
+</bean>

<bean id="pdfOutputFactory" class="org.mapfish.print.output.PdfOutputFactory"/>
+

+<bean id="metricRegistry" class="com.codahale.metrics.MetricRegistry" lazy-
init="false"/>

+<bean id="healthCheckRegistry"
class="com.codahale.metrics.health.HealthCheckRegistry" lazy-init="false"/>
+<bean id="loggingMetricsConfigurator"
class="org.mapfish.print.metrics.LoggingMetricsConfigurator" lazy-init="false"/>
+<bean id="jvmMetricsConfigurator"
class="org.mapfish.print.metrics.JvmMetricsConfigurator" lazy-init="false"/>
+<bean id="jmlMetricsReporter" class="org.mapfish.print.metrics.JmxMetricsReporter
lazy-init="false"/>

Also, remember to update your project pom.xml with the updated dependency:

* locate the print-lib dependency in the pom.xml file

* replace the dependency with the following snippet

<dependency >
<groupld>org.mapfish.print</groupld>
<artifactld>print-lib</artifactld>
<version>geosolutions-2.1.0</version>
<exclusions>
<exclusion>
<groupld>commons-codec</groupld>
<artifactld>commons-codec</artifactld>
</exclusion>
<exclusion>
<groupld>com.fasterxml.jackson.core</groupld>
<artifactld>jackson-annotations</artifactld>
</exclusion>
<exclusion>
<groupld>com.fasterxml.jackson.core</groupld>
<artifactld>jackson-core</artifactId>
</exclusion>
<exclusion>
<groupld>com.fasterxml.jackson.core</groupld>
<artifactld>jackson-databind</artifactld>
</exclusion>
<exclusion>
<groupld>org.springframework</groupld>
<artifactld>spring-web</artifactld>
</exclusion>
<exclusion>
<groupld>org.springframework</groupld>
<artifactld>spring-context</artifactld>
</exclusion>
</exclusions>
</dependency >

Finally, to enable printing in different formats than PDF, you should add the
following to your config.yml file (at the top level):

formats:
%1

Replacing BurgerMenu with SidebarMenu

There were several changes applied to the application layout, one of them is the
Sidebar Menu that comes to replace Burger menu on map viewer and in contexts.
Following actions need to be applied to make a switch:

* Update localConfig.json and add "SidebarMenu" entry to the "desktop" section:

{
"desktop": [

"SidebarMenu",

* Remove "BurgerMenu" entry from "desktop" section.
Using Sidebar Menu in new contexts

Contents of your pluginsConfig.json need to be reviewed to allow usage of new
"SidebarMenu" in new contexts. Existing contexts need to be updated separately,
please refer to the next chapter for instructions.

* Find "BurgerMenu" plugin configuration in pluginsConfig.json and remove
"hidden": true line from it:

{
"name": "BurgerMenu",
"glyph": "menu-hamburger",
"title": "plugins.BurgerMenu.title",
"description": "plugins.BurgerMenu.description",
"dependencies": [

"OmniBar"

]
}

* Add SidebarMenu entry to the "plugins" array:

{
"plugins": [

{

"name": "SidebarMenu",
"hidden": true

* Go through all plugins definitions and replace BurgerMenu dependency with
SidebarMenu, €.g.:

"name": "MapExport",
"glyph": "download",
"title": "plugins.MapExport.title",
"description": "plugins.MapExport.description”,
"dependencies": [
"SidebarMenu"
1
b

* Also the StreetView plugin needs to depend from SidebarMenu .

"name": "StreetView",
"glyph": "road",
"title": "plugins.StreetView.title",
"description": "plugins.StreetView.description",
"dependencies": [

"SidebarMenu"
1

Updating existing contexts to use Sidebar Menu

Contexts created in previous versions of MapStore will maintain old Burger Menu.
There are two options allowing to replace it with the new Sidebar Menu:

* Using manual update.

* Using SQL query to update all contexts at once.

Before going with one of the approaches, please make sure that changes to
pluginsConfig.json from previous chapter are applied.

To update context manually:

1. Go to the context manager (#/context-manager) and edit context you want to
update.

2. Move to the step 3: Configure Plugins.

3. Find "Burger Menu" on the right side (enabled plugins) and move it to the left
column.

4. Save context

Note: "Burger Menu" has higher priority over the "Sidebar Menu", so it will
always be used if it's added to the list of enabled plugins of the context.

To update all contexts at once:

This is a sample SQL query that can be executed against the MapStore DB to
replace the Burger Menu with the new Sidebar for existing application contexts
previously created:

UPDATE geostore.gs_stored data SET stored data =
regexp replace(gs stored data.stored data,'{"name":"BurgerMenu"},','{"name":"SidebarMenu
FROM geostore.gs resource
WHERE g¢s_stored data.resource id = gs resource.id AND

gs resource.category id = (SELECT id FROM geostore.gs category WHERE name =
'CONTEXT') AND

gs_stored data.stored data ~ '.*{"name":"BurgerMenu"},.*';

Note: Schema name could vary depending on your installation configuration.

Updating extensions

Please refer to the extensions documentation to know how to update your
extensions.

Using terrain layer type to define 3D map elevation profile

A new terrain layer type has been created in order to provide more options and
versatility when defining an elevation profile for the 3D map terrain. This terrain
layer will substitute the former wms layer (with useForElevation attribute) used to
define the elevation profile.

. Note

The wms layer (with useForElevation attribute) configuration is still needed to show
the elevation data inside the MousePosition plugin and it will display the terrain at
the same time. The terrain layer type allows a more versatile way of handling
elevation but it will work only as terrain visualization in the 3D map viewer.

The additionalLayers object on the localConfig.json file should adhere now to the
terrain layer configuration. Serve the following code as an example:

{
"name": "Map",
"cfg": {
"additionalLayers": [{

"type": "terrain",
"provider": "wms",
"url": "https://host-sample/geoserver/wms",
"name": "workspace:layername", // name of the geoserver resource
"littleendian": false,
"visibility": true

H

. Note

When using terrain layer with wms provider, the format option in layer
configuration is not needed anymore as Mapstore supports only image/bil format
and is used by default

Migration from 2022.01.00 to 2022.01.01

MailingLists plugin has been removed

MailingLists plugin has ben removed from the core of MapStore. This means you
can remove it from your localConfig.json (if present, it will be anyway ignored by
the plugin system).

Migration from 2021.02.02 to 2022.01.00

This release includes several libraries upgrade on the backend side, in particular
the following have been migrated to the latest available versions:

Library Oold New
Spring 3.0.5 5.3.9
Spring-security 3.0.5 5.3.10
CXF 2.3.2 3.44

Hibernate 3.3.2 5.5.0

Library Oold New

JPA 1.0 2.1
hibernate-generic-dao 0.5.1 1.3.0-SNAPSHOT
h2 1.3.168 1.3.175
javax-servlet-api 2.5 3.1.0

This requires also the upgrade of Tomcat to at least version 8.5.x.

Updating projects configuration
Projects need the following to update to this MapStore release:

* update dependencies (in web/pom.xml) copying those in MapStore2/java/web/
pom.xml , in particular (where present):

Dependency Version Notes
mapstore-services 1.3.0 Replaces mapstore-backend
geostore-webapp 1.8.0

* update packagingExcludes in web/pom.xml to this list:

WEB-INF/lib/commons-codec-1.2.jar,
WEB-INF/lib/commons-io-1.1.jar,
WEB-INF/lib/commons-logging-1.0.4.jar,
WEB-INF/lib/commons-pool-1.3.jar,
WEB-INF/lib/slf4j-api-1.5* jar,
WEB-INF/lib/slf4j-log4j12-1.5%.jar,
WEB-INF/lib/spring-tx-5.2.15*%.jar

* upgrade Tomcat to 8.5 or greater

* update your geostore-spring-security.xml file to add the following setting, needed
to disable CSRF validation, that MapStore services do not implement yet:

<security:http ... >

<security:csrf disabled="true"/>

</security:http>
* remove the spring log4j listener from web.xml

<!-- spring context loader
<listener>
<listener-class>org.springframework.web.util. Log4jConfigListener</listener-class>
</listener>-->

* If one of the libraries updated is used in your project, you should align the
version with the newer one to avoid jar duplications

* Some old project may define versions of spring and/or jackson in maven
properties. You can remove these definition and the dependency from main
pom.xml since they should be inherited from spring. In particular you may
need to remove these properties :

- <jackson.version>1.9.10</jackson.version>
- <jackson.databind-version>2.2.3</jackson.databind-version>
- <jackson.annotations-version>2.5.3</jackson.annotations-version>

Upgrading Cesium]S

Cesium]JS has been upgraded to version 1.90 (from 1.17) and included directly in
the mapstore bundle as async import.

Downstream project should update following configurations:

* remove all executions related to the cesium library from the pom.xml

<execution>
<id>html, configuration files and images</id>
<phase>process-classes</phase>
<goals>
<goal>copy-resources</goal>
</goals>
<configuration>
<outputDirectory>${basedir}/target/mapstore </outputDirectory>
<encoding>UTF-8</encoding>
<resources>
<resource>
<directory>${basedir}/../web/client</directory>
<includes>
<include>**/* html</include>
<include>**/* json</include >
<include>**/img/*</include>
<include>product/assets/symbols/*</include>
<include>**/*less</include>
</includes>
<excludes>

<exclude>node modules/*</exclude>
<exclude>node modules/**/*</exclude>
- <exclude>**/libs/Cesium/**/*</exclude>
<exclude>**/test-resources/*</exclude>
</excludes>
</resource>
</resources>
</configuration>
</execution>
-<execution>
- <id>Cesium]JS-navigation</id>
- <phase>process-classes</phase>
- <goals>
- <goal>copy-resources</goal>
- </goals>
- <configuration>
- <outputDirectory>${basedir}/target/mapstore/libs/cesium-navigation</
outputDirectory>
- <encoding>UTF-8</encoding>
- <resources>
- <resource>
- <directory>${basedir}/../web/client/libs/cesium-navigation</directory>
- </resource>
- </resources>
- </configuration>
-</execution>

* remove all the external script and css related to cesium and cesium-navigation
now included as packages

-<script src="https://cesium.com/downloads/cesiumjs/releases/1.42/Build/Cesium/
Cesium.js"></script>

-<link rel="stylesheet" href="https://cesium.com/downloads/cesiumjs/releases/1.42/Build/
Cesium/Widgets/widgets.css" />

-<script src="libs/cesium-navigation/cesium-navigation.js"></script>

-<link rel="stylesheet" href="libs/cesium-navigation/cesium-navigation.css" />

* This step is needed only for custom project with a specific publicPath different
from the default one. In this case you may need to specify what folder deliver
the cesium build (by default dist/cesium). To do that, you can add the
cesiumBaseUrl parameter in the webpack dev and prod configs to the correct
location of the cesium static assets, widgets and workers folder.

Migration from 2021.02.01 to 2021.02.02

Style parsers dynamic import

The style parser libraries introduced a dynamic import to reduce the initial bundle
size. This change reflects to the getStyleParser function provided by the
VectorStyleUtils module. If a downstream project of MapStore is using
getStyleParser it should update it to this new version:

// example

- // old use of parser
- const parser = getStyleParser('sld');

+ // new use of parser

+ getStyleParser('sld')
+ .then((parser) => {
+ // use parser

+ 1)

Migration from 2021.02.00 to 2021.02.01

This update contains a fix for a minor vulnerability found in log4j library. For this
reason you may need to update the dependencies of your project

. Note

This vulnerability is not CVE-2021-44228 but only a couple of smaller ones, that
involve Log4] (CVE-2021-44228 is for Log4]2). Anyway MapStore is not prone to
these vulnerabilities with the default configuration. For more information, see the
dedicated blog post

here the instructions:

Align pom.xml files
Here the changes in pom.xml and web/pom.xml to update:

* Change mapstore-backend into mapstore-services and set the version to 1.2.2

<!-- MapStore backend -->
<dependency >
<groupld>it.geosolutions.mapstore</groupld>
- <artifactld>mapstore-backend</artifactld>
- <version>1.2.1</version>

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://www.geosolutionsgroup.com/blog/geosolutions-lo4shell/

+ <artifactld>mapstore-services</artifactld>
4+ <version>1.2.2</version>
</dependency>

* Set geostore-webapp version to 1.7.1

<dependency>
<groupld>it.geosolutions.geostore </groupld>
<artifactld>geostore-webapp</artifactld>

- <version>1.7.0</version>

aF <version>1.7.1</version>
<type>war</type>
<scope>runtime</scope>
</dependency>

* Set http proxy version to 1.1.1 (should already be there)

<dependency>
<l- .. -->
<groupld>proxy</groupld>
<artifactld>http proxy</artifactld>
- <version>1.1.0</version>
4= <version>1.1.1</version>
<type>war</type>
<scope>runtime</scope>
</dependency>

e Set print-lib version geosolutions-2.0 to version geosolutions-2.0.1

<dependency>
<groupld>org.mapfish.print</groupld>
<artifactld>print-lib</artifactld>
- <version>geosolutions-2.0</version>
+ <version>geosolutions-2.0.1</version>
</dependency>

Migration from 2021.01.04 to 2021.02.00

Theme updates and CSS variables

The theme of MapStore has been updated to support CSS variables for some
aspects of the style, in particular colors and font families. The web/client/themes/
default/variables.less file contains all the available variables described under the

@ms-theme-vars ruleset. It is suggested to :

* update the lesscss variables in the projects because the variables starting with

@ms2- will be deprecated soon:

@ms2-color-text -> @ms-main-color @ms2-color-background -> @ms-main-bg @ms2-

color-shade-lighter -> @ms-main-border-color

@ms2-color-code -> @ms-code-color

@ms2-color-text-placeholder -> @ms-placeholder-color

@ms2-color-disabled -> @ms-disabled-bg @ms2-color-text-disabled -> @ms-disabled-color
@ms2-color-text-primary -> @ms-primary-contrast

@ms2-color-primary -> @ms-primary @ms2-color-info -> @ms-info @ms2-color-success -
> @ms-success @ms2-color-warning -> @ms-warning @ms2-color-danger ->

@ms-danger

* The font family has been update to Noto Sans so all the html need to be updated
removing the previous font link with:

<link rel="preconnect" href="https://fonts.gstatic.com">
<link href="https://fonts.googleapis.com/css2?family=Noto+Sans&display=swap"
rel="stylesheet">

* if you are importing react-select or react-widgets inline css/less in your own
project, you have to remove the import. Now the stile of these libraries is
managed at project level

Project system

During this release MapStore we started an rewrite of the project system,
organized in different phases.

The first phase of this migration has been identified by this pull request. In this
phase we are supporting the backward compatibility as much as possible,
introducing the new project system in parallel with the new one (experimental). In
the future the current script will be deprecated in favor of the new one.

Here below the breaking changes introduced in this release to support this new
system:

This section will tell you how to migrate to support the following changes:

* Minor changes to prod-webpack.config.js
* Move front-end configuration files in configs folder

* Back-end has been reorganized

https://github.com/geosolutions-it/MapStore2/issues/6314
https://github.com/geosolutions-it/MapStore2/pull/6738

Minor changes to prod-webpack.config.js

Minor changes to prod-webpack.config.js :

diff --git a/project/standard/templates/prod-webpack.config.js b/project/standard/templates/
prod-webpack.config.js

index 175bf3398..6d97e2c0f 100644

--- a/project/standard/templates/prod-webpack.config.js

+++ b/project/standard/templates/prod-webpack.config.js

@@ -2,8 +2,8 @@ const path = require("path");

const themeEntries = require('./MapStore2/build/themes.js').themeEntries;

const extractThemesPlugin = require('./MapStore2/build/themes.js').extractThemesPlugin;
-const ModuleFederationPlugin = require('./MapStore2/build/moduleFederation').plugin;
const HtmlWebpackPlugin = require(‘html-webpack-plugin');

+const ModuleFederationPlugin = require('./MapStore2/build/moduleFederation').plugin;

const paths = {
base: dirname,
@@ -24,17 +24,19 @@ module.exports = require('./MapStore2/build/buildConfig')(
paths,
[extractThemesPlugin, ModuleFederationPlugin],
true,
- "dist/",
+ undefined,
' PROJECTNAME ',
[
new HtmlWebpackPlugin({
template: path.join(__dirname, 'indexTemplate.html'),
+ publicPath: 'dist/',
chunks: [' PROJECTNAME '],
inject: "body",
hash: true
1,
new HtmlWebpackPlugin({
template: path.join(__dirname, 'embeddedTemplate.html'),
+ publicPath: 'dist/',
chunks: [' PROJECTNAME -embedded'],
inject: "body",
hash: true,
@@ -42,13 +44,15 @@ module.exports = require('./MapStore2/build/buildConfig')(
1s
new HtmlWebpackPlugin({
template: path.join(__dirname, 'apiTemplate.html'),
+ publicPath: 'dist/',
chunks: [' PROJECTNAME -api'],
- inject: 'head',
aF inject: 'body’,
hash: true,
filename: 'api.html'
s
new HtmlWebpackPlugin({
template: path.join(__dirname, 'geostory-embedded-template.html'),
+ publicPath: 'dist/',
chunks: ['geostory-embedded'],
inject: "body",

hash: true,
@@ -56,6 +60,7 @@ module.exports = require('./MapStore2/build/buildConfig")(
1
new HtmlWebpackPlugin({
template: path.join(__dirname, 'dashboard-embedded-template.html'),
4= publicPath: 'dist/',
chunks: ['dashboard-embedded'],
inject: 'body’,

hash: true,
@@ -63,6 +68,7 @@ module.exports = require('./MapStore2/build/buildConfig')(
})
L
{
+ "@mapstore/patcher": path.resolve(dirname, "node modules", "@mapstore",
"patcher"),

"@mapstore": path.resolve(dirname, "MapStore2", "web", "client"),
"@js": path.resolve(dirname, "js")

}

Move front-end configuration files in configs folder

We suggest you to move them as well from root to configs folder, and align your
app.jsx configuration with the new standard (if you changed the location of
configs). This will allow to use the data dir in an easy way. So:

* Move the following files in configs directory:

* localConfig.json

®* new.json

* pluginsConfig.json

¢ config.json

* simple.json

 If changed something in app.jsx about configuration, align to get the files
moved in config.

* To allow MapStore to copy the correct file in the final war, you have to change

web/pom.xml execution copy-resources for id config files this way (this only if you

didn't customized localConfig.json):

<goal>copy-resources</goal>
</goals>
<goal>copy-resources</goal>
</goals>
<configuration>
- <outputDirectory>${basedir}/target/ PROJECTNAME /MapStore2/web/
client</outputDirectory>
+ <outputDirectory>${basedir}/target/ PROJECTNAME /MapStore2/
web/client/configs</outputDirectory>
<encoding>UTF-8</encoding>
<resources>
<resource>

- <directory>${basedir}/../MapStore2/web/client</directory>

+ <directory>${basedir}/../MapStore2/web/client/configs</
directory>
<includes>
<include>localConfig.json</include>
</includes>

Back-end has been reorganized
In particular:

* all the java code has been moved from web/src/ to the java/ and product/
directories (and release , already existing).

* mapstore-backend has been renamed into mapstore-services .

* Some servlets have been added in order to provide native support to data dir
and make it work with the new configs directory.

So you will have to:

* Align the pom.xml to the latest versions of the libs

* Edit the web.xml and change the *-servlet.xml files to expose the new services

. Note

Future evolution of the project will avoid you to keep your own copies of the pom
files as much as possible, reducing the boilerplate and making migration a lot
easier. For this reasons these migration guidelines will change soon.

Here below the details of the changes.

ALIGN POM.XML FILES TO LATEST VERSIONS OF THE LIBS
Here the changes in pom.xml and ~web/pom.xml to update:

* Change mapstore-backend into mapstore-services and set the version to 1.2.1

<!-- MapStore backend -->
<dependency>
<groupld>it.geosolutions.mapstore</groupld>
- <artifactld>mapstore-backend</artifactId>
- <version>1.1.2</version>
<artifactIld>mapstore-services</artifactld>
+ <version>1.2.1</version>
</dependency>

+

e Set geostore-webapp version to 1.7.0

<dependency >
<groupld>it.geosolutions.geostore</groupld>
<artifactld>geostore-webapp</artifactld>

- <version>1.6.0</version>

+ <version>1.7.0</version>
<type>war</type>
<scope>runtime</scope>
</dependency>

* Set http proxy version to 1.1.0 (should already be there)

<dependency >
<l- ... -->
<groupld>proxy</groupld>
<artifactld>http proxy</artifactld>

- <version>1.1.0</version>

+ <version>1.1-SNAPSHOT</version>
<type>war</type>
<scope>runtime</scope>
</dependency>

EDIT THE WEB.XML AND CHANGE THE *-SERVLET.XML FILES TO EXPOSE THE NEW SERVICES

* Copy from mapstore to folder web/src/main/webapp/WEB-INF/ the files:
* configs-servlet.xml

* extensions-servlet.xml

* loadAssets-servlet.xml

* Remove the old dispatcher-servlet.xml (it has been replaced by loadAssets-
servlet.xml for backward compatibility)

* Align web/src/main/webapp/WEB-INF/web.xml with the new servlets as changes
below (remove dispatcher entry in favour of the following).

@@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp ID" version="2.4"
- xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
+ xmlns:javaee="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
web-app 2 4.xsd">

<!-- pick up all spring application contexts -->

@@ -19,13 +19,16 @@

<context-param>
<param-name>proxyPropPath</param-name>
- <param-value>/proxy.properties</param-value>
+ <param-value>/proxy.properties,${datadirlocation}/proxy.properties</param-
value>

</context-param>

- <!-- spring context loader -->

- <listener>

+ <!-- <context-param> <param-name>log4jConfigl.ocation</param-name> <param-
value>file:${config.dir}/log4j.xml</param-value>

+ </context-param> -->

+

+ <!-- spring context loader -->

+ <listener>
<listener-class>org.springframework.web.util.Log4jConfigListener </listener-class>

</listener>

+ </listener>

<l--
- Loads the root application context of this web app at startup.
@@ -33,8 +36,8 @@
- WebApplicationContextUtils.getWebApplicationContext(servletContext).
-->
<listener>
- <listener-class>org.springframework.web.context.ContextLoaderListener</listener-
class>
- </listener>
+ <listener-class>org.springframework.web.context.ContextLoaderListener</
listener-class>
+ </listener>

<!-- Spring Security Servlet -->
<filter>
@@ -46,7 +49,7 @@
<url-pattern>/rest/*</url-pattern>
</filter-mapping>

- <!-- GZip compression -->
+ <!-- GZip compression -->
<filter>
<filter-name>CompressionFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter. GzipFilter</filter-class>
@@ -65,17 +68,38 @@
</filter-mapping>

<!-- Backend Spring MVC controllers -->
+ <!-- Backward compatibility -->
<servlet>
- <servlet-name>dispatcher</servlet-name>
aF <servlet-name>loadAssets</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
: <servlet-name>dispatcher</servlet-name>
+ <servlet-name>loadAssets</servlet-name>
<url-pattern>/rest/config/*</url-pattern>
</servlet-mapping>
+ <!-- Configs -->
<servlet>
aF <servlet-name>configs</servlet-name>

+

3F <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
<load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>configs</servlet-name>
<url-pattern>/configs/*</url-pattern>
</servlet-mapping>
<!-- Extensions -->
<servlet>
<servlet-name>extensions</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-

++++++++++

+ <load-on-startup>3</load-on-startup>

+ </servlet>

+ <servlet-mapping>

+ <servlet-name>extensions</servlet-name>
+ <url-pattern>/extensions/*</url-pattern>

+ </servlet-mapping>

- <!-- CXF Servlet -->
+ <!-- CXF Servlet -->
<servlet>
<servlet-name>CXFServlet</servlet-name>
<servlet-class>org.apache.cxf.transport.servlet. CXFServlet</servlet-class>

@@ -97,7 +121,7 @@
<url-pattern>/proxy/*</url-pattern>
</servlet-mapping>

- <!-- Printing Servlet -->
+ <!-- Printing Servlet -->
<servlet>
<servlet-name>mapfish.print</servlet-name>
<servlet-class>org.mapfish.print.servlet.MapPrinterServlet</servlet-class>

Data directory has been reorganized and is now available also for product
The new organization of the data directory is:
* configs will contain all json files (localConfig.json, new.json, pluginsConfig.json, ...)

and all the .patch files applied to them.

* extensions folder contains all the data for the extensions, including

extensions.json
* The root contains the properties files to configure database, proxy and other
configs

To organize your old data directory accordingly to the new specification.

* Move all .json and .json.patch files in configs folder (except extensions.json)
* Move the directory dist/extensions to simply extensions .

* The file extensions.json have to be moved in extensions/extensions.json .

* Edit the file extensions/extensions.json changing the paths from dist/extensions/

<Plugin-Name>/... t0 <Plugin-Name>/...
You can set it up by configuring datadirlocation java system property. Changes to
paths or configuration files are not required anymore.
Configurations

* Embedded now uses popup as default. Align localConfig.json plugins -->
embedded --> Identify with the latest one:

{
"name": "Identify",
"cfg": {
"showInMapPopup":true,
"viewerOptions": {
"container": "{context.ReactSwipe}"
}
}
}

Migration from 2021.01.01 to 2021.01.03

Generally speaking this is not properly a breaking change, but more a fix to apply
to your installations. Certificate for 'cesiumjs.org' has expired at 2021.05.05, so to
continue using Cesium]S with MapStore you will have to replace all the URLs like
https://cesiumjs.org/releases/1.17 in https://cesium.com/downloads/cesiumjs/releases/1.17 .
This is the main fix of this minor release. See this pull request on GitHub as a
sample to apply these changes to your project.

Migration from 2021.01.00 to 2021.01.01

Update embedded entry to load the correct configuration

Existing MapStore project could have an issue with the loading of map embedded
page due to the impossibility to change some configuration such as
localConfig.json or translations path in the javascript entry. This issue can be
solved following these steps: 1 - add a custom entry named embedded.jsx in the js/
directory of the project with the content:

import {
setConfigProp,
setLocalConfigurationFile

} from '@mapstore/utils/ConfigUtils’;

https://github.com/geosolutions-it/MapStore2/pull/6856

// Add custom (overriding) translations

// example for additional translations in the project folder

// setConfigProp('translationsPath', ['./MapStore2/web/client/translations', './translations']);
setConfigProp('translationsPath’, './MapStore2/web/client/translations');

// _PROJECTNAME is the name of the project used in the creation process
setConfigProp('themePrefix', ' PROJECTNAME ');

// Use a custom plugins configuration file

/I example if localConfig.json is located in the root of the project

// setLocalConfigurationFile('localConfig.json');
setLocalConfigurationFile('MapStore2/web/client/localConfig.json');

// async load of the standard embedded bundle
import('@mapstore/product/embedded’);

2 - update the path of the embedded entry inside the webpack.config.js and prod-
webpack.config.js files with:

// _PROJECTNAME is the name of the project used in the creation process
' PROJECTNAME -embedded': path.join(__dirname, "js", "embedded"),

Locate plugin configuration

Configuration for Locate plugin has changed and it is not needed anymore inside
the Map plugin

* old localConfig.json configuration needed 'locate' listed as tool inside the Map
plugin and as a separated Locate plugin

/...
{
"name": "Map",
"cfg": {
"tools": ["locate"],
/...
}
Yo
{
"name": "Locate",
/I ...
}
/...

* new localConfig.json configuration removes 'locate' from tools array and it
keeps only the plugin configuration

W <o

||name||: ”Map":
"Cfg”: {
W <o

"name": "Locate",

W <os

Update an existing project to include embedded Dashboards and
GeoStories

Embedded Dashboards and GeoStories need a new set of javascript entries, html
templates and configuration files to make them completely available in an existing
project.

The steps described above assume this structure of the MapStore2 project for the
files that need update:

MapStore2Project/

- js/
[-- ...
|-- dashboardEmbedded.jsx (new)
|-- geostoryEmbedded.jsx (new)
-- MapStore2/

-- web/

|-- pom.xml

-- dashboard-embedded-template.html (new)
-- dashboard-embedded.html (new)

-- geostory-embedded-template.html (new)
-- geostory-embedded.html (new)

I
I
I
|
I
I
I
I
|
|--
|
I
I
I
I
[-- ...
|-- prod-webpack.config.js
|
I

-- webpack.config.js

1) create the entries files for the embedded application named
dashboardEmbedded.jsx and geostoryEmbedded.jsx in the js/ folder with the following
content (see links): - dashboardEmbedded.jsx - geostoryEmbedded.jsx

2) add the html files and templates in the root directory of the project with these
names and content (see links): - dashboard-embedded-template.html - dashboard-
embedded.html - geostory-embedded-template.html - geostory-embedded.html

3) update webpack configuration for development and production with the new
entries and the related configuration:

https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/js/dashboardEmbedded.jsx
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/js/geostoryEmbedded.jsx
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/dashboard-embedded-template.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/dashboard-embedded.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/dashboard-embedded.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/geostory-embedded-template.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/geostory-embedded.html

- webpack.config.js

soseg
module.exports = require('./MapStore2/build/buildConfig")(
{
// other entries...,
// add new embedded entries to entry object

"geostory-embedded": path.join(__dirname, "js", "geostoryEmbedded"),
"dashboard-embedded": path.join(__dirname, "js", "dashboardEmbedded")

- prod-webpack.config.js
g

module.exports = require('./MapStore2/build/buildConfig")(
{
// other entries...,
// add new embedded entries to entry object

"geostory-embedded": path.join(__dirname, "js", "geostoryEmbedded"),
"dashboard-embedded": path.join(_dirname, "js", "dashboardEmbedded")

// new HtmlWebpackPlugin({ ... }),
// add plugin to copy all the embedded html and inject the correct bundle
new HtmlWebpackPlugin({
template: path.join(_dirname, 'geostory-embedded-template.html'),
chunks: ['geostory-embedded'],
inject: "body",
hash: true,
filename: 'geostory-embedded.html'
b,
new HtmlWebpackPlugin({
template: path.join(_dirname, 'dashboard-embedded-template.html'),
chunks: ['dashboard-embedded'],
inject: 'body’,
hash: true,
filename: 'dashboard-embedded.html'
}

...

4) Add configuration to localConfig.json in the plugins section related to Share
functionalities (Only with custom localConfig.json in the project): - Dashboard
share configuration

soseg
"dashboard": [
/...
{
"name": "Share",
"cfg": {
"showAPI": false,
"advancedSettings": false,
"shareUrlRegex": "(h[™ #1*)#\\/dashboard\\/([A-Za-z0-9]*)",
"shareUrlReplaceString": "$1dashboard-embedded.html#/$2",
"embedOptions": {
"showTOCToggle": false,
"showConnectionsParamToggle": true

}

/...

- Dashboard share configuration

e
"geostory": [
/1 ...
{
"name": "Share",
"cfg": {
"embedPanel": true,
"showAPI": false,
"advancedSettings": {
"hideInTab": "embed",
"homeButton": true,
"sectionld": true
B
"shareUrlRegex": "(h[™ #]*)#\\/geostory\\/([~\VI*)\\/([A-Za-z0-9]*)",
"shareUrlReplaceString": "$1geostory-embedded.html#/$3",
"embedOptions": {
"showTOCToggle": false
}
}
Yo
/Il ...

5) update the web/pom.xml to copy all the related resources in the final *.war file
with these new executions

<!-- PROJECTNAME should be equal to the one in use in the project, see other
executions how they define the outputDirectory path -->
<execution>

<id>only dashboard-embedded.html</id>

<phase>process-classes</phase>
<goals>
<goal>copy-resources</goal>
</goals>
<configuration>
<outputDirectory>${basedir}/target/ PROJECTNAME </outputDirectory>
<encoding>UTF-8</encoding>
<resources>
<resource>
<directory>${basedir}/../dist</directory>
<includes>
<include>dashboard-embedded.html</include>
</includes>
<excludes>
<exclude>MapStore2/*</exclude>
<exclude>MapStore2/**/*</exclude>
</excludes>
</resource>
</resources>
</configuration>
</execution>
<execution>
<id>only geostory-embedded.html</id>
<phase>process-classes</phase>
<goals>
<goal>copy-resources</goal>
</goals>
<configuration>
<outputDirectory>${basedir}/target/ PROJECTNAME </outputDirectory>
<encoding>UTF-8</encoding>
<resources>
<resource>
<directory>${basedir}/../dist</directory>
<includes>
<include>geostory-embedded.html </include>
</includes>
<excludes>
<exclude>MapStore2/*</exclude>
<exclude>MapStore2/**/*</exclude>
</excludes>
</resource>
</resources>
</configuration>
</execution>

Migration from 2020.02.00 to 2021.01.00

Update to webpack 5 - Module federation

MapStore migrated to webpack 5 and provided the extension system using
"Webpack Module Federation". Here the steps to update the existing files in your
project.

package.json:

* dev server scripts changed syntax. now you need to use webpack serve instead
of webpack-dev-server . Replace also all --colors with --color in your scripts that
use webpack / webpack-dev-server.

e Align dependencies and devDependencies with MapStore's one, reading the
package.json , as usual.

» To support extensions in your project, you need to add ModuleFederationPlugin
to your prod-webpack.config.js and webpack.config.js

const ModuleFederationPlugin = require('./MapStore/build/moduleFederation').plugin; //
<-- new line
module.exports = require('./buildConfig")(
assign({
"mapstore2": path.join(paths.code, "product", "app"),
"embedded": path.join(paths.code, "product"”, "embedded"),
"ms2-api": path.join(paths.code, "product", "api")
b
require('./examples')
)P
themeEntries,
paths,
extractThemesPlugin,
[extractThemesPlugin, ModuleFederationPlugin], // <-- this parameter has been
changed, now it accepts also array of the plugins you want to add bot in prod and dev

Other the other changes required are applied automatically in buildConfig.js .

Eslint config

Now eslint configuration is shared in a separate npm module. To update your
custom project you have to remove the following files:

* _eslintignore

¢ _eslintconfig

And add to package.json the following entry, in the root:

"eslintConfig": {
"extends": [
"@mapstore/eslint-config-mapstore"
1,
"parserOptions": {
"babelOptions": {
"configFile": "./MapStore2/build/babel.config.js"

}

If you have aproject that includes MapStore as a dependency, you can run
npm run updateDevDeps to finalize the update. Otherwise make you sure to include:

e devDependencies:

* add "@mapstore/eslint-config-mapstore": "1.0.1",
* delete babel-eslint

* dependencies:

e update ""eslint": "7.8.1"

App structure review

From this version some base components of MapStore App (StandardApp,
StandardStore ...) has been restructured and better organized. Here a list of the
breaking change you can find in a depending project

* web/client/product/main.jsx has been updated to new import and export syntax
(removed require and exports.module). So if you are importing it (usually in
your app.jsx) you have to use the import syntax or use require(...).default in
your project. The same for the other files.

* New structure of arguments in web/client/stores/StandardStore.js

const appStore = (

{
initialState = {
defaultState: {},
mobile: {}

2
appReducers = {},

appEpics = {},
rootReducerFunc = ({ state, action, allReducers }) => allReducers(state, action)

)i

plugins = {},

storeOpts = {}
) {

* Moved standard epics, standard reducers and standard rootReducer function
from web/client/stores/StandardStore.js to a separated file web/client/stores/

defaultOptions.js

* loading extensions functionalities inside StandardApp has been moved to an
specific withExtensions HOC, so if you are not using main.js but directly
StandardApp and you need extensions you need to add this HOC to your
StandardApp

Migration from 2020.01.00 to 2020.02.00

New authentication rule for internal services

With this new version the support for uploading extensions has been introduced. A
new entry point needs administration authorization to allow the upload of new
plugins by the administrator. So:

* In localConfig.json add the following entry in the authenticationRules array:

{
"urlPattern": ".*rest/config.*",
"method": "bearer"

}
the final entry should look like this

"authenticationRules": [{
"urlPattern": ".*geostore.*",
"method": "bearer"

A
"urlPattern": ".*rest/config.*",
"method": "bearer"

F

Translation files

» The translations file extension has been changed into JSON. Now translation
files has been renamed from data.<locale> to data.<locale>.json . This change
makes the .json extension mandatory for all translation files. This means that
depending projects with custom translation files should be renabled in the
same name. E.g. data.it-IT have to be renamed as data.it-IT,json

Database Update

Database schema has changed. To update your database you need to apply this
SQL scripts to your database

e Update the user schema run the script available here:

-- Update the geostore database from 1.4.2 model to 1.5.0
-- It adds fields to gs_security for external authorization

-- The script assumes that the tables are located into the schema called "geostore"
-- if you put geostore in a different schema, please edit the following search path.

SET search path TO geostore, public;

-- Tested only with postgres9.1

https://github.com/geosolutions-it/geostore/tree/master/doc/sql/migration/postgresql

-- Run the script with an unprivileged application user allowed to work on schema geostore

alter table gs security add column username varchar(255);
alter table gs_security add column groupname varchar(255);

create index idx_security username on gs_security (username);

create index idx_security groupname on gs security (groupname);
* Add new categories

-- New CONTEXT category

INSERT into geostore.gs category (id ,name) values (

nextval('geostore.hibernate sequence'), 'CONTEXT') ON CONFLICT DO NOTHING;
-- New GEOSTORY category (introduced in 2020.01.00)

INSERT into geostore.gs_category (id ,name) values

(nextval('geostore.hibernate sequence'), 'GEOSTORY') ON CONFLICT DO NOTHING;
-- New TEMPLATE category

INSERT into geostore.gs category (id ,name) values (

nextval('geostore.hibernate sequence'), 'TEMPLATE') ON CONFLICT DO NOTHING;
-- New USERSESSION category

INSERT into geostore.gs category (id ,name) values (

nextval('geostore.hibernate sequence'), 'USERSESSION') ON CONFLICT DO NOTHING;

Backend update
For more details see this commit
new files have been added:

* web/src/main/webapp/WEB-INF/dispatcher-servlet.xml

* web/src/main/resources/mapstore.properties
some files has been changed:

* web/src/main/webapp/WEB-INF/web.xml
* pom.xml

* web/pom.xml

Migration from 2019.02.01 to 2020.01.00

With MapStore 2020.01.00 some dependencies that were previously hosted on
github, have now been published on the npm registry, and package.json has been
updated accordingly. Here is the PR that documents how to update local
package.json and local webpack if not using the mapstore buildConfig/testConfig
common files.

https://github.com/geosolutions-it/MapStore2/commit/4aa7b917abcb09571af5b9999a38e96f52eac4f3#diff-ac81cff563b78256ef26eca8a5103392592c7138987392a6fb3d79167d11bdcfR66
https://github.com/geosolutions-it/MapStore2/pull/4598

After updating package.json run npm install Now you should be able to run
locally with npm start

For more info see the related issue
Moreover a new category has been added for future features, called GEOSTORY.

It is not necessary for this release, but, to follow the update sequence, you can add
it by executing the following line.

INSERT into geostore.gs category (id ,name) values
(nextval('geostore.hibernate sequence'), 'GEOSTORY') ON CONFLICT DO NOTHING;

Migration from 2019.01.00 to 2019.01.01

MapStore 2019.01.01 changes the location of some of the build and test
configuration files. This also affects projects using MapStore build files, sp if you
update MapStore subproject to the 2019.01.01 version you also have to update
some of the project configuration files. In particular:

* webpack.config.js and prod-webpack.config.js:

* update path to themes.js from ./MapStore2/themes.js to ./MapStore2/build/
themes.js

* update path to buildConfig from ./MapStore2/buildConfig to ./MapStore2/
build/buildConfig

* karma.conf.continuous-test.js and karma.config.single-run.js: update
path to testConfig from ./MapStore2/testConfig to ./MapStore2/build/testConfig

Migration from 2017.05.00 to 2018.01.00

MapStore 2018.01.00 introduced theme and js and css versioning. This allows to
auto-invalidates cache files for each version of your software. For custom projects
you could choose to ignore this changes by setting version: "no-version" in your
app.jsx StandardRouter selector:

/...
const routerSelector = createSelector(state => state.locale, (locale) => ({
locale: locale || {},
version: "no-version",
themeCfg: {
theme: "mythheme"
be
pages
)

https://github.com/geosolutions-it/MapStore2/issues/4569

const StandardRouter = connect(routerSelector)(require('../MapStore2/web/client/
components/app/StandardRouter'));
/...

Support js/theme versioning in your project

Take a look to this pull request as reference. Basically versioning is implemented in
2 different ways for css and js files :

* Add at build time the js files inclusion to the files, with proper hashes.

* Load theme css files appending to the URL the ?{version} where version is the
current mapstore2 version The different kind of loading for css files is needed
to continue supporting the theme switching capabilities. For the future we
would like to unify these 2 systems. See this issue.

You have to:

¢ Add the version file to the root (version.txt).

* Create a template for each html file you have. These files will replace the html
files when you build the final war file. These files are like the original ones but
without the [bundle].js file inclusion and without theme css.

* Add HtmlWebpackPlugin for production only, one for each js file. This plugin will
add to the template file the script inclusion (example).

* if you have to include the script in the head (e.g. api.html has some script that
need the js to be loaded before executing the inline scripts), use the option

inject: 'head'

* change each entry point (app.jsx, api.jsx, embedded.jsx ,
yourcoustomentrypoint.jsx) this way (example):

e version reducer in StandardRouter
¢ JoadVersion action in initialActions

e version and loadAfterTheme selectors to StandardRouter state.

// Example
const {versionSelector} = require('../MapStore2/web/client/selectors/version');
const {loadVersion} = require('../MapStore2/web/client/actions/version');
const version = require('../MapStore2/web/client/actions/version');
/l...
StandardRouter = connect (state => ({
locale: state.locale || {},
pages,
version : versionSelector(state),
loadAfterTheme: loadAfterThemeSelector(state)
1) (require('../MapStore2/web/client/components/app/StandardRouter"))
const appStore = require('../MapStore2/web/client/stores/StandardStore').bind(null,
initialState, {

https://github.com/geosolutions-it/MapStore2/pull/2538/files
https://github.com/geosolutions-it/MapStore2/issues/2554
https://github.com/geosolutions-it/MapStore2/pull/2538/files#diff-9d452e0b96db9be8d604c4c9dde575b4
https://github.com/geosolutions-it/MapStore2/pull/2538/files#diff-3bea50c2662e64129704ae694b587042

/...
version: version

1
/I ...
const appConfig = {
/...
initialActions: [loadVersion]

}

* Add to your pom.xml some execution steps to replace html files with the ones
generated in 'dist' directory. (example). And copy version.txt

* Override the version file in your build process (e.g. you can use the commit
hash)

Migration from 2017.05.00 to 2017.03.00 and
previews

In 2017.03.00 the createProject.js script created only a custom project. From
version 2017.04.00 we changed the script to generate 2 kind of projects:

* custom: the previous version

* standard: mapstore standard
Standard project wants to help to generate a project that is basically the MapStore
product, where you can add your own plugins and customize your theme (before
this you had to create a project similar to MapStore on your own) Depending on
our usage of custom project, this may introduce some breaking changes. If you
previously included some file from product folder, now app.jsx has been changed

to call main.jsx . Please take a look on how the main product uses this to migrate
your changes inside your custom project.

Migration from 2017.01.00 to 2017.02.00

The version 2017.02.00 has many improvements and changes:

e introduced redux-observable
e updated webpack to version 2
e updated react-intl to version 2.x

e updated react to [version 15.4.2] (https://facebook.github.io/react/blog/
2016/04/07/react-v15.html)

e updated react-bootstrap to version 0.30.7

https://github.com/geosolutions-it/MapStore2/pull/2538/files#diff-eef89535a29b4a95a42d9de83cb53681
https://facebook.github.io/react/blog/2016/04/07/react-v15.html
https://facebook.github.io/react/blog/2016/04/07/react-v15.html

We suggest you to:

* align your package.json with the latest version of 2017.02.00.
* update your webpack files (see below).
* update your tests to react 15 version. see upgrade guide

» Update your react-bootstrap custom components with the new one (see below).

Side Effect Management - Introduced redux-observable

To manage complex asynchronous operations the thunk middleware is not enough.
When we started with MapStore there was no alternative to thunk. Now we have
some options. After a spike (results available here) we chose to use redux-
observable. For the future, we strongly recommend to use this library to perform
asynchronous tasks.

Introducing this library will allow to :

* remove business logic from the components event handlers

* now all new actionCreators should return pure actions. All async stuff will be
deferred to the epics.

* avoid bouncing between components and state to trigger side effect
* speed up development with rxjs functionalities
» Existing thunk integration will be maintained since all the thunks will be

replaced.

If you are using the Plugin system and the StandardStore, you may have only to
include the missing new dependencies in your package.json (redux-observable
and an updated version of redux).

Check the current package.json to get he most recent versions. For testing we
included also redux-mockup-store as a dependency, but you are free to test your
epics as you want.

For more complex integrations check this pull request to see how to integrate
redux-observable or follow the guide on the redux-observable site.

Webpack update to version 2

We updated webpack (old one is deprecated), check this pull request to find out
how to update your webpack files. here a list of what we had to update:

* module.loaders are now module.rules

https://facebook.github.io/react/blog/2016/04/07/react-v15.html#upgrade-guide
https://github.com/geosolutions-it/MapStore2/issues/1420
https://github.com/geosolutions-it/MapStore2/pull/1471
https://redux-observable.js.org/
https://github.com/geosolutions-it/MapStore2/pull/1491

* update your package.json with latest versions of webpack, webpack plugins
and karma libs and integrations (Take a look to the changes on package.json in
the pull request if you want a detailed list of what to update in this case).

* change your test proxy configuration with the new one.

More details on the webpack site.

react-intl update to 2.x

See this pull request for the details. You should only have to update your
package.json

react update to 15.4.2

Check this pull request to see how to:

* update your package.json

* update your tests

React Bootstrap update

The version we are using is not documented anymore, and not too much
compatible with react 15 (too many warnings). So this update can not be
postponed anymore. The bigger change in this case is that the Input component do
not exists anymore. You will have to replace all your Input with the proper
components, and update the package.json . See this pull request for details.

https://webpack.js.org/migrate/
https://github.com/geosolutions-it/MapStore2/pull/1495/files
https://github.com/geosolutions-it/MapStore2/pull/1511

How to release

To create a new MapStore release, you need to:

* Create an issue of type Mapstore Release on GitHub by clicking here with the
title of the release.

e Follow the checklist in the issue created.

Here below some details about changelog generation and naming conventions.

Changelog generation

Generate new changelog by running this:

npm run generate:changelog <oldReleaseNumber> <newReleaseNumber>

usage
generate:changelog 2022.01.00 2022.02.00

Release Checklist

naming conventions
release and tag

* vYYYY.XX.mm name of the release and tag. (e.g. v2022.01.01)
* YYYY is the year,

* XX is the incremental number of the release for the current year (starting
from 01)

* mm is an incremental value (starting from 00) to increment for minor releases
stable branch

* YYYY.XX.xx name of stable branch (e.g. 2022.01.xx)
* YYYY is the year

* XX is the incremental number of the release for the current year (starting
from 01)

e xx is the fixed text xx

https://github.com/geosolutions-it/MapStore2/issues/new?assignees=&labels=internal&template=release_steps.md&title=

Developer Generic Guidelines

This guide wants to provide general information and suggestions about how to
write code for MapStore. It contains a practical guide to write plugins for
MapStore, then some general information about writing redux actions, reducers
and redux-observble epics, with some hints specific of MapStore.

Still to do:

* Writing enhancers
* Writing components

* Using JS API
Work in progress:

e Extensions

Creating a MapStore2 plugin

The MapStore2 plugins architecture allows building your own independent
modules that will integrate seamlessly into your project.

Creating a plugin is like assembling and connecting several pieces together into an
atomic module. This happens by writing a plugin module, a React]S JSX file
exporting the plugin descriptor.

Introduction

During this tutorial, you will learn how to create and configure plugins in a
MapStore project. If you don't know how to work with MapStore projects, please
read the Projects Guide. For this tutorial, a "standard project" is used.

A plugin example
js/plugins/Sample.jsx

Plugins are react component exported with the createPlugin function

import React from "react";
import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Sample = () => {
const style = {
position: "absolute",
top: 100,
left: 100,
zIndex: 2000
b3
return (
<div style={style}>
Sample
</div>
);
15

export default createPlugin("Sample", {
component: Sample

H;

Being a component with a name (Sample in our case) you can include it in your
project by creating a plugins js file.

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/framework#createPlugin

js/plugins.js

import SamplePlugin from "./plugins/Sample";

export const plugins = {
/...
SamplePlugin,
/...

15

export default {
plugins
bs

Note The chosen component name is always suffixed with Plugin when imported
in the plugins js file.

Include the plugin.js from your app.jsx either replacing the plugins import from
the product or extending it:

Jjs/app.jsx

import m2Plugins from "@mapstore/product/plugins";
import customPlugins from "./plugins";
import main from "@mapstore/product/main";

const allPlugins = {
...m2Plugins,
plugins: {
...customPlugins.plugins,
...m2Plugins.plugins
}
bs

main(appConfig, allPlugins);

Then you have to configure it properly so that is enabled in one or more
application modes / pages:

localConfig.json

"plugins": {
"desktop": [{ "name": "Sample" }, ...],

Note: to enable a plugin you need to do two things:

e import it in the plugins.js file

* configure it in localConfig.json (remove the Plugins suffix here)

If one is missing, the plugin won't appear. To globally remove a plugin from your
project the preferred way is removing it from plugins.js, because this will reduce
the global javascript size of your application.

You can also specify plugins properties in the configuration, using the cfg
property:

localConfig.json (2)

"plugins": {
"desktop": [{
"name": "Sample",
"cfg": {
"myproperty": "myvalue"

A store connected plugin example

A plugin component is a smart component (connected to the Redux store) so that
properties can be taken from the global state, as needed.

js/plugins/Sample.jsx (1)

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const SampleComponent = ({
style,
Zoom
3 =>{
return (
<div style={style}>
Zoom: {zoom}
</div>

SampleComponent.propTypes = {
style: PropTypes.object,
zoom: PropTypes.number

}

SampleComponent.defaultProps = {
style: {
position: "absolute",
top: 100,
left: 100,
zIndex: 2000

};

const Sample = connect((state) => {
return {
// connected property
zoom: state?.map?.present?.zoom
Y5
})(SampleComponent);

export default createPlugin("Sample", {
component: Sample

;i

A plugin can use actions to update the global state.

js/plugins/Sample.jsx (2)

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";
import { changeZoomLevel } from "@mapstore/actions/map";

const SampleComponent = ({
style,
zoom,
onZoom
B =>A{
return (
<div style={style}>
Zoom: {zoom}
<button onClick={() => onZoom(zoom + 1)}>
Increase
</button>
</div>
)8
b5

SampleComponent.propTypes = {
style: PropTypes.object,
zoom: PropTypes.number,
onZoom: PropTypes.func

};

SampleComponent.defaultProps = {

style: {
position: "absolute",
top: 100,
left: 100,
zIndex: 2000
b
onZoom: () => {}
b5
const Sample = connect((state) => {
return {
zoom: state?.map?.present?.zoom
bs
A

// connected action
onZoom: changeZoomLevel
})(SampleComponent);

export default createPlugin("Sample", {
component: Sample

D;

A plugin can define its own state fragments and the related reducers. You will also
be able to define your own actions.

js/actions/sample.js

export const UPDATE SOMETHING = "SAMPLE:UPDATE SOMETHING";
export const updateSomething = (payload) => ({

type: UPDATE _SOMETHING,

payload
1)

js/reducers/sample.js

import { UPDATE SOMETHING } from "@js/actions/sample";
function sample(
state = { text: "Initial Text" },
action
) A
switch (action.type) {
case UPDATE SOMETHING:
return {
text: action.payload
Y5
default:
return state;
}
}

export default sample;

js/plugins/Sample.jsx (3)

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

import { updateSomething } from "@js/actions/sample";
import sample from "@js/reducers/sample";

const SampleComponent = ({
style,
text,
onUpdate
b =>A{
return (
<div style={style}>
Text: {text}
<button
onClick={() => onUpdate("Updated Text")}
>
Update
</button>
</div>
)5
b5

SampleComponent.propTypes = {
style: PropTypes.object,
text: PropTypes.string,
onUpdate: PropTypes.func

};

SampleComponent.defaultProps = {
style: {
position: "absolute",
top: 100,
left: 100,
zIndex: 2000
B
text: ",
onUpdate: () => {}
Y5

const Sample = connect((state) => {
return {
// connected property
text: state?.sample?.text

13

A
/I connected action
onUpdate: updateSomething

})(SampleComponent);

export default createPlugin("Sample", {

component: Sample,
reducers: {
sample
}
1)

Data fetching and side effects

Side effects should be limited as much as possible, but there are cases where a
side effect cannot be avoided. In particular we need to asynchronously load the
data from external web services or files.

To handle data fetching a plugin can define Epics. To have more detail about epics
look at the Epics developers guide section of this documentation.

js/actions/sample.js

// custom action
export const LOAD DATA = "SAMPLE:LOAD DATA";
export const LOADED DATA = "SAMPLE:LOADED DATA";
export const LOAD ERROR = "SAMPLE:LOAD ERROR";
export const loadData = () => ({

type: LOAD DATA
1)

export const loadedData = (payload) => ({
type: LOADED DATA,
payload

H;

export const loadError = (error) => ({
type: LOAD ERROR,
error

s
js/reducers/sample.js

import { LOADED DATA, LOAD ERROR } from "@js/actions/sample";
function sample(
state = { text: "Initial Text" },
action
) {
switch (action.type) {
case LOADED DATA:
return {
text: action.payload
b3
case LOAD ERROR:
return {
error: action.error
Iis
default:

./writing-epics

return state;
}
}

export default sample;

js/epics/sample.js

import { Observable } from "rxjs";
import axios from "axios";

import {
LOAD_ DATA,
loadedData,
loadError
} from "@js/actions/sample";

export const loadDataEpic = (action$) =>
action$.ofType(LOAD DATA)
.switchMap(() => {
return Observable.defer(() =>
axios.get("version.txt")

.switchMap((response) =>
Observable.of{(
loadedData(response.data)
)
)
.catch(e =>
Observable.of(
loadError(e.message)

;i

export default {
loadDataEpic
¥

js/plugins/Sample.jsx

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

import { loadData } from "@js/actions/sample";
import sampleEpics from "@js/epics/sample";
import sample from "@js/reducers/sample";

const SideEffectComponent = ({
style,
text,
onLoad

H=>{

return (
<div style={style}>
Text: {text}
<button onClick={() => onLoad() }>
Load
</button>
</div>
);
15

SideEffectComponent.propTypes = {
style: PropTypes.object,
text: PropTypes.string,
onLoad: PropTypes.func

Vs

SideEffectComponent.defaultProps = {
style: {
position: "absolute",
top: 100,
left: 100,
zIndex: 2000
B
texit: s,
onLoad: () => {}
Iis

const Sample = connect((state) => {
return {
text: state?.sample?.text

b3

hA
// connected action
onl.oad: loadData

})(SideEffectComponent);

export default createPlugin("Sample", {
component: Sample,
reducers: {
sample

be
epics: sampleEpics

b;

Plugin Containers

It is possible to define Container plugins, that are able to receive a list of items
from the plugins system automatically. Think of menus or toolbars that can
dynamically configure their items / tools from the configuration.

In addition to those "user defined" containers, there is always a root container.
When no container is specified for a plugin, it will be included in the root

container.

js/plugins/Container.jsx

import React from "react";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Container = ({
style,
items
N =>{
return (
<div style={style}>
{items.map(item => {
// item.plugin is the plugin React]S component
const Item = item.plugin;
return (
<Item
key={item.id}
id={item.id}
name={item.name}
/>
)z
bt
</div>
)8
b5

Container.propTypes = {
style: PropTypes.object,
items: PropTypes.array

};

Container.defaultProps = {
style: {
position: "absolute",
top: 100,
left: 100,
zIndex: 2000
B
items: []

15

export default createPlugin("Container"”, {
component: Container

H;

Plugins for other plugins

Since we have containers, we can build plugins that can be contained in one or
more container plugins.

js/plugins/Sample.jsx

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";
import sample from "@js/reducers/sample";

const SampleComponent = ({
text
H=>{
return (
<div>
Text: {text}
</div>
Js
i

SampleComponent.propTypes = {
text: PropTypes.string
Iis

SampleComponent.defaultProps = {
text: ""

};

const Sample = connect((state) => {
return {
text: state?.sample?.text
15
})(SampleComponent);

export default createPlugin("Sample", {
component: Sample,
reducers: {
sample
B
containers: {
// we support the previously defined Container Plugin as a
// possible container for this plugin
Container: {
name: "Sample",
id: "sample-tool",
priority: 1
}
}
1)

Each section defines a possible container for the plugin, as the name of another
plugin (Container in the example). The properties in it define the plugin behaviour
in relation to the container (e.g. id of the item).

Containers will receive a list of items similar to this:

items = [{ plugin: Sample, name: "Sample", id: "sample-tool", ... }]

Notice that also container related properties can be overridden in the application

configuration, using the override property:

localConfig.json
{
"plugins": {
"desktop": [{

"name": "Sample",
"override": {
"Container": {
"name": "Another Sample"

Plugins Configuration

We have already mentioned that plugins can be configured through the
localConfig.json file. The simplest configuration needed to include the plugin in a
particular application mode is accomplished by listing a JSON object specifying the
name property of the plugin in the plugins array of the chosen mode/page:

localConfig.json

"plugins": {
"desktop": [{ "name": "Sample" }, ...],

It is possible to customize a plugin configuration adding a cfg property to the
plugin JSON object. All the cfg properties are passed as props to the main

component of the plugin.

"plugins": {
"desktop": [{
"name": "Sample",
"cfg": {

"text": "my text"

Dynamic configuration

Configuration can also dynamically change when the application state changes.
This is accomplished by using expressions in configuration values. An expression
is a value of the following form:

"property": "{expression}"

The expression itself is javascript code (supported by the browser, babel
transpiled code is not supported here) where you can use the following variables:

* request: request URL parsed by the url library
* context: anything defined in plugins.js requires section

* state: a function usable to extract values from the application state (e.g.
state('map.present.zoom' to get current zoom))

Note that not all the application state is available through the state function, only
the monitored state is. To add new fragments the monitored state, you can add the
following to localConfig.json:

"monitorState": [
{"name": "router", "path": "router.location.pathname"},
{"name": "browser", "path": "browser"},

{"name": "featuregridmode", "path": "featuregrid.mode"}

The default monitored state is:

"monitorState": [
{"name": "router", "path": "router.location.pathname"},

{"name": "browser", "path": "browser"},
{"name": "geostorymode", "path": "geostory.mode"},
{"name": "featuregridmode", "path": "featuregrid.mode"},

{"name": "userrole", "path": "security.user.role"},
{"name": "printEnabled", "path": "print.capabilities"}

https://www.npmjs.com/package/url

Example

"plugins": {
"desktop": [{
"name": "Sample",
"cfg": {
"text": "{state('mapType') === 'leaflet' ? 'Leaflet Map': 'OpenLayers Map'}"
}

Container configuration

Each plugin can define a list of supported containers, but it's the plugin system
that decides which ones will be used at runtime based on:

* container existence: if a container is not configured, it will not be used

* between the existing ones, the ones with the highest priority property value
will be chosen; note that a plugin can be included in more than one container if
they have the same priority

Example

/...
import { createPlugin } from "@mapstore/utils/PluginsUtils";
/.

export default createPlugin("Sample", {
component: Sample,
containers: {
Containerl: {
name: "Sample",
id: "sample-tool",
priority: 1,
/...
Bo
Container2: {
name: "Sample",
id: "sample-tool",
priority: 2,

/...

B

Container3: {
name: "Sample",
id: "sample-tool",
priority: 3,
/.

}

}
s

If all the containers exist, Container3 will be chosen, the one with highest priority,if
not Container2 will be used, and so on.

To explicitly configure plugins containment and introduce custom behaviours
(overriding default properties), the override configuration property is available.
Using it, you can override the relation between a plugin and its supported

containers.

We can change containers relation like this:

{
"plugins": {

"desktop": [{
"name": "Sample",
"override": {

"Container1": {
"name": "custom name",
"priority": 4

}

}
1}, .0
}
}

This will force the plugin system to choose Containerl instead of Container3, and
will override the name property.

There is also a set of options to (dynamically) add/exclude containers:
* showlIn: can be used to add a plugin to a container or more than one, in

addition to the default one (it is an array of container plugin names)

* hideFrom: can be used to exclude a plugin from a given container or more
than one (it is an array of container plugin names)

* doNotHide: can be used to show a plugin in the root container, in addition to
the default one

* alwaysRender: can be used to always renders the component in the given
container, regardless the priority

Note that also these properties accept dynamic expressions.

js/plugins/Container.jsx

import React from "react";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Container = ({
items
3 =>{
const style = {
zIndex: 1000,
border: "solid black 1px",
width: "200px",
height: "200px",
position: "absolute",
top: "100px",
left: "100px"
15
return (
<div style={style}>
{items.map(item => {
// item.plugin is the plugin React]S component
const Item = item.plugin;
return (
<Item
key={item.id}
id={item.id}
name={item.name}
/>
)8
b
</div>
)8
Iz

Container.propTypes = {
items: PropTypes.array

};

Container.defaultProps = {
items: []

};
export default createPlugin("Container", {

component: Container

s

js/plugins/ContainerOther.jsx

import React from "react";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const ContainerOther = ({
items
N =>{
const style = {
zIndex: 1000,
border: "solid red 1px",
width: "200px",
height: "200px",
position: "absolute",

top: "100px",
left: "100px"
};
return (

<div style={style}>
{items.map(item => {
// item.plugin is the plugin React]S component
const Item = item.plugin;
return (
<Item
key={item.id}
id={item.id}
name={item.name}
/>
)3
b}
</div>
)8
b3

ContainerOther.propTypes = {
items: PropTypes.array

};

ContainerOther.defaultProps = {
items: []

15

export default createPlugin("ContainerOther", {
component: ContainerOther

H;

js/plugins/Sample.jsx

import React from "react";
import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Sample = () => {
return (
<div>Hello</div>

);

export default createPlugin("Sample", {
component: Sample,
containers: {
Container: {
name: "Sample",
id: "sample-tool",
priority: 1
B
ContainerOther: {
name: "Sample",
id: "sample-tool",
priority: 1
}
}
1)

With this configuration the sample plugin will be shown in both Container and
ContainerOther plugins (they have the same priority, so both are picked).

We can change this using showIn or hideFrom in localConfig.json :

localConfig.json - showIn and hideFrom examples

{
"plugins": {
"desktop": [{
"name": "Sample",
"showIn": ["Container"]
| A
}
}
or
{
"plugins": {
"desktop": [{
"name": "Sample",
"hideFrom": ["ContainerOther"]
1}, .0
}

We can also add the plugin to the root container, using the doNotHide property
(note that this is a container property, so we have to use an override for it):

localConfig.json - doNotHide example

"plugins": {
"desktop": [{
"name": "Sample",
"showlIn": ["Container"],
"override": {
"Container": {
"doNotHide": true

Conditionally disabling plugins

Dynamic expression can also be used to enable a plugin only when a specific
application state is met, using the disablePluginlIf property.

"plugins": {
"desktop": [{
"name": "Sample",
"cfg": {
"disablePluginIf": "{state('mapType') === 'cesium'}"
}

The plugin will be disabled in 3D mode.

Lazy loading plugins

You can lazy load your plugins components using the react lazy and Suspense API.
This is especially useful for plugins that include components with big external
libraries.

js/plugins/Sample.jsx

import React, { useState, lazy, Suspense } from "react";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const LazySampleComponent = lazy(() => import("@js/components/
LazySampleComponent"));

const Sample = () => {
// this local state could be moved to redux state
// as explained in previous sections
const [enabled, setEnabled] = useState(false);
const style = {
position: "absolute",
top: 100,
left: 100,
zIndex: 2000
15
return (
<div style={style}>
<button onClick={() => setEnabled(enabled) } >Load plugin</button>
{enabled
? <Suspense fallback="Loading...">
<LazySampleComponent />
</Suspense>
:null}
</div>
);
¥

export default createPlugin("Sample", {
component: Sample

H;

Testing plugins

As we already mentioned a plugin is a collection of entities that should already
have unit tests (components, reducers, actions, selectors, epics). We can limit
plugins testing to testing the interactions between these different entities, for
example:

» connection of the redux state to the plugins properties

* epics that are related to the plugin lifecycle

* containment relations between plugins

To ease writing a plugin unit test, an helper is available (pluginsTestUtils) that can
be used to:

* create a plugin connected with a redux store (getPluginForTest), initialized
with plugin's defined reducers and epics, and with a given initial state

* get access to the redux store
* get access to the list of actions dispatched to the store

* get access to the list of containers plugins supported by the plugin (you can
limit this list by passing your plugins definitions to getPluginForTest)

Examples

js/plugins/__tests /MyPlugin-test.js

import expect from "expect";
import React from "react";
import ReactDOM from "react-dom";

import MyPlugin from "../MyPlugin";
import { getPluginForTest } from "@mapstore/plugins/ tests /pluginsTestUtils";

const initialState = {};

describe("MyPlugin Test", () => {
beforeEach((done) => {
document.body.innerHTML = "<div id=\"container\"></div>";
setTimeout(done);

;s

afterEach((done) => {
ReactDOM.unmountComponentAtNode(document.getElementByld("container"));
document.body.innerHTML = "*;
setTimeout(done);

H;

it("creates MyPlugin with default configuration", () => {
const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState);
ReactDOM.render(<Plugin />, document.getElementByld("container"));
expect(document.getElementByld("<my plugin id>")).toBeTruthy();
expect(...);

1)

/I use pluginCfg to override plugins properties

it("creates MyPlugin with custom configuration", () => {
const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState);
ReactDOM.render(<Plugin pluginCfg={{

property: "value"

}}/>, document.getElementBylId("container"));
expect(document.getElementByld("<my plugin id>")).toBeTruthy();
expect(...);

b;

// test connected epics looking at the actions array
it("test plugin epics", () => {
const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState);
ReactDOM.render(<Plugin/>, document.getElementById("container"));
store.dispatch({
type: ACTION CAPTURED BY AN EPIC,
payload

s

expect(actions.filter(action => action.type ===
ACTION LAUNCHED BY AN EPIC).length).toBe(1);
H;

// test supported containers
it("test containers", () => {
const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState,

{
MyContainerPlugin: {}
s
ReactDOM.render(<Plugin/>, document.getElementById("container"));
expect(Object.keys(containers)).toContain("MyContainer");
;i
H;

General Guidelines

Components
* Define the plugin component(s) into dedicated JSX file(s), so that they can be
reused outside of the plugin

* Connect the component(s) in the plugin JSX file

State

* Define your own state fragment (and related actions and reducers) to handle
internal state, and use existing actions and state fragments from MapStore2 to
interact with the framework

Selectors

* Use existing selectors when possible to connect the state, eventually using
reselect to compose them together or with your own selectors

General

* Avoid as much as possible direct interactions between different plugins;
plugins are meant to be independent modules, so they should be able to work if
other plugins appear / disappear from the application configuration

* Interact with other plugins and the application itself using actions and state
sharing

* Creating side effects to make plugins interact in more strict ways should not be
done at the plugin level, orchestrating different plugins should be delegated at
the top (application) level

» Use containers configuration to combine plugins in containers

Writing Epics

Most of the asynchronous operations we are doing in MapStore2 are implemented
using epics. This guide gives the developer the base concepts about epics and
provides the best practices to write and add your epics to a MapStore?2 project.

Base Concepts

Epics are the core element of the redux middleware called redux-observable.
redux-observable is based on Rx]JS.

Rx]S is a library for reactive programming using Observables, to make it easier
to compose asynchronous or callback-based code.

stream The concept of stream is "sequence of data made available over time.".

—-ar-b-Co-de-Xeee|->

a, b, ¢, d are emitted values
X is an error

| is the 'completed' signal
---> is the timeline

Observable is the core entity of RxJS and, more generically, of the whole reactive
programming paradigm. Basically it is an entity that emits events and can be
subscribed to, so that subscribers can intercept the events emitted. This is the
entity that implements the concept of stream (so stream and Observable are
almost used as synonym).

Subscribing to observables can be hard, so Rx]Js provides a lot of operators to
help manipulating and combining observables (so, streams). Here an example of
how operators allow manipulating an event stream to count clicks:

clickStream: ---c----c--C----C------ c--> <-- Stream of clicks

vvvvv map(c becomes 1) vvvv <-- operator that transforms each event into a
P

el el e Ry B 1--> <-- new stream returned by the operator

VVVVVVVVV scan(+) vvvvvvvvv <-- operator that does the sum
counterStream: ---1----2--3----4------ 5--> <-- click count stream returned by the operator

The final stream can be finally subscribed to update, for instance, a counter on the
UL

https://github.com/reduxjs/redux
https://redux-observable.js.org/

Versions

At the time of writing this documentation MapStore2 is using RxJS 5.1.1 and
redux-observable 0.19.0. So make you sure to check the correct documentation
about the current versions of these libraries.

What is an epic
An epic is basically nothing more than:
a function that returns a stream of redux actions to emit.

A simple epic in mapstore can be this one:

const fetchUserEpic = (action$, store) => action$
.0fType(MAP CONFIG LOADED)
filter(() => isMapLoadConfigurationEnabled(store.getState()))
-map({
type: NOTIFICATION,
message: "Map Loaded"

s

The epic function has 2 arguments:

* action$: the stream of redux actions. Every time an action is triggered through
redux, it is emitted as an event on the action$ stream.

* store . A small version of the redux store, that contains essentially only one
important method called getState() . This method returns the current redux
state object.

This function must return a new stream that emits the actions we want to
dispatch to redux. The redux-observable middleware subscribes to the action
streams returned by the epics so the actions will be automatically triggered on
redux.

NOTE: redux-observable middleware is already added to the MapStore2's
StandardStore and StandardApp, so a developer should only take care of
creating his own epics and add them to MapStore.

Typically the stream returned by an epic is always listening for new actions and
dispatches other actions:

actions in, actions out.

Let's analyze the epic reported as first example:

It returns a stream (arrow function (=>) implicit return) manipulating the action$
stream. It first filters out all the unwanted actions catching only the

MAP CONFIG LOADED action types, then another filter checks the state to verify
some condition (typically a selector can be used to check the state).

NOTE: redux-observable adds an operator to rxjs called ofType that simply
filters the actions of certain types, passed as argument, but it is not a part of
standard Rx]JS operators.

The events that passed the 2 filters then hit the map operator. The map operator
simply returns the (action) object:

{
type: NOTIFICATION,

message: "Map Loaded"

}

This object will be emitted on the returning stream and so the action will be
triggered in redux.

Of course instead of emitting the plain object, you can use an action creator, like
this:

const notifyMapLoaded = (action$, store) => action$
.ofType(MAP CONFIG LOADED)
filter(() => isMapLoadConfigurationEnabled(store.getState()))
.map(info({
message: "Map Loaded"

1)

Create complex data flows triggered by actions

Typical operators to start creating a complex data flow are:

* switchMap
* mergeMap
* exhaustMap, forkJoin and many others...

The base concept of all these solutions is to create one or more new streams (using
a function passed as argument) and then emit the events on the final Observer.

Note: Creating Higher order observables (that are basically streams of streams)
and merging their events is a common pattern in Rx]Js, so, mergeMap and

http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-method-switchMap
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-method-mergeMap
https://gianttoast.gitbooks.io/rxjs-observables/content/higher-order-observables.html

switchMap are simpler shortcuts to increase readability and maintainability of
the code:

* mergeMap() is just map() + mergeAll()

* switchMap() is just map() + switch().

Example:

const countDown = action$ => action$
.0fType(START COUNTDOWN)
.switchMap(({seconds}) =>
Rx.Observable.interval(1000)
.map((value) => updateTime(seconds - value))
.takeUntil(Rx.Observable.timer(seconds * 1000))

---{seconds: 5}----------------—--—---—- > action in
vv switchMap VVVVVVVVVVVVVVVVVVVVVVVVVV
-------------- {5}--{4}--{3}--{2}--{1}--> action out

In this epic, every time START COUNTDOWN action is performed, the switchMap
operator's argument function will be executed. The argument function of
switchMap must return an Observable. Every value emitted on this stream will be
projected on the main flow.

So on the first START COUNTDOWN the timer starts (Rx.Observable.interval(1000)).
The timer will emit an incremental value (0, 1, 2, ...) every 1000 milliseconds. This
value is used to trigger another action to emit on redux (using an action creator
called updateTime , for instance).

At the end the stream will be closed after the n seconds because of the takeUntil:
.takeUntil(Rx.Observable.timer(seconds * 1000)) unsubscribes the observable when the
stream passed as function emits a value.

switchMap operator unsubscribes its observable (so stops getting events from it)
even if another event comes on the main stream (so in this case another
START COUNTDOWN action).

-—-{seconds: 5}------ {seconds: 5}------------------—---- > action in
VVVVVVVVVVVVVVVVV switchMap VVVVVVVVVVVVVVVVVVVVVVVVVVVV
-------------- {5}-{4}----------{5}--{4}--{3}--{2}--{1}--> action out

If you don't want to stop listening you may need to use mergeMap instead.

Imagine to have to modify the epic above to manage many countdowns, identified
by an id. In this case a START COUNTDOWN event should not stop the ones
already started. You can do it using mergeMap .

const countDown = action$ => action$

.ofType(START COUNTDOWN)

// mergeMap do not stops the flows already created.

.mergeMap(({seconds, id}) => // the id of the new countdown is in the action

Rx.Observable.interval(1000)

// emit an action that updates the coundown for the specific id
.map((value) => updateTime(seconds - value, id))
.takeUntil(Rx.Observable.timer(seconds * 1000))

In this case the streams will look like this:

---{sec: 5,id: A}----{sec: 5, id: B} > action in
VVVVVVVVVVVVVVVVVVVVVVVVVV SwitchMap VVVVVVVVVVVVVVVVVVVVVVVVVV
............... A...A...A. . A.B.A.B..B..B..B... id

-------------- {5}--{4}-+{3}-{2}-{5}-{1}-{4}-{3}--{2}-{1}-> value

Doing AJAX

Ajax calls in MapStore should all pass by libs/ajax.js . This is an axios instance that
adds the support for using proxies or CORS.

Axios is a library that uses ES6 Promises to do ajax calls. Luckily Rx]s allows to use
Promises instead of streams in most of the cases. In the other cases, there is a
specific operator called defer thatyou can use to wrap your Promise into a stream.

NOTE: It is perfectly normal to consider the concept of Promise as a special case
of a stream, that emit only one value, then closes.

So, every time you have to do an ajax call, you will need to use axios:

Example with defer :

const axios = require('../libs/ajax");
const fetchDataEpic = (action$, store) => action$
.ofType(FETCH_DATA)
.switchMap(
Rx.Observable.defer(() => axios.get("MY DATA")) // defer gets a function
map(response => dataFetched(response.data))

Epic state: muted / unmuted

All the epics attached to plugins or extension will be registered once plugin is
loaded.

Each registered epic can be in one of two possible states:

muted: no reaction to the actions that comes in unmuted: reacting to the listed

actions

* Whenever new epic is registered it will be in unmuted state by default.

* Epic will become muted whenever there is no plugin/extension on the page
listing that specific epic in plugin definition. In other words, if there are
Extensionl and Plugin2 , both are adding epic called testEpic and both plugin
and extension are not added to the current page plugins in pluginsConfig, then
epic will become muted.

Muted epics: how to mute internal streams

MapStore will mute all the epics whenever corresponding plugin or extension is
not rendered on the page. Though, it might be the case that one of your epics will
return internal stream, like in example below:

export const dummyEpic = (action$, store) => action$.ofType(ACTION)
.switchMap(() => {
return Rx.Observable.interval(1000)
.switchMap(() => {
console.log('TEST");
return Rx.Observable.empty();
1)
1)

In this case, internal stream should be muted explicitly.

Each epic receives third argument type of object, having property called
pluginRenderStreams$. Combined with semaphore it allows to mute internal stream

whenever epic is muted:

export const dummyEpic = (action$, store, { pluginRenderStream$ }) =>
action$.ofType(ACTION)
.switchMap(() => {
return Rx.Observable.interval(1000)
.let(semaphore(pluginRenderStream$.startWith(true)))
.switchMap(() => {
console.log('TEST");
return Rx.Observable.empty();
1)
b;

Writing Actions and Reducers

=
T

Ly| -.+) {2 "Hey, Checkout this awesome documentation for actions and
reducers!"

T/

What are actions?

Quoting the redux documentation they are:

Actions are payloads of information that send data from your application to your
store.

They are simply plain JavaScript objects

/* trigger the panning action of the map to a center point */
const center = [42.3, 36.5];
export const PAN TO = 'MAP:PAN TO';

{
type: PAN TO,
center

They must have type property, typically a constant with a string value, but any
other properties are optional

Why we use them

We need them to trigger changes to the application's store via reducers. To do that
we use Action Creators

Action Creators

They are simply function that returns actions objects

const defaultValue = [42.3, 36.5];

/*

* by convention, use an initial name (the action filename)

* in order to describe better the action type, in this case MAP
* separated by a colon : and the action constant name

*/

https://redux.js.org/basics/actions

export const PAN TO = 'MAP:PAN TO';

export const panTo = (center = defaultValue) => ({
type: PAN TO,
center

D;

Note: Stick to es6 import/export module system and when possible provide a
default value for the parameters

These action creators are used in the connected components or in MapStore2
plugins But actions by themselves are not enough we need Reducers that
intercepts those actions and change the state accordingly.

Note: Remember to put all the actions .js files in the web/client/actions folder or in
js/actions if you are working with custom plugins

Reducers

Again quoting redux documentation they are:

Reducers specify how the application's state changes in response to actions sent
to the store.

Reducers are pure functions that take the previous state and an action and return
a new state

(previousState, action) => newState

let's see an example:

// @mapstore is an alias for dir name/web/client (see webpack.config.js)
import {PAN TO} from '@mapstore/actions/map';

export default function map(state, action) {
switch (action.type) {
case PAN TO: {
return {
...State,
center: action.center
Iz
}
default: return state;
}
}

As you can see we are changing the center of the map that triggers the panning
action of the mapping library

https://redux.js.org/basics/reducers

And that's it we have wrote an action and a reducers that make the map panning
around.

Note: Remember to put all the reducers .js files in the web/client/reducers folder
or in js/reducers if you are working with custom plugins

Advanced usage and tips

Sometimes you need to change a value of an item which is stored inside an array
or in a nested object.

Let's imagine we have this object in the store:

layer: {
features: [object 1, object 2, ...object n]

}

And we have created an action that holds the id of the object to change and some
properties

export const UPDATE LAYER FEATURE = 'LAYER:UPDATE LAYER FEATURE'
export const updateFeature = (id, props = {}) => ({type: UPDATE LAYER FEATURE, id,
props})

Then in the reducer we can have different implementations. Here we show the one
using arrayUpdate from @mapstore/utils/ImmutableUtils for updating objects in
array

import {UPDATE LAYER FEATURE} from '@mapstore/actions/layer’;
import {find} from 'lodash’;
const defaultState = {
features: [{ id: 1, type: "Feature", geometry: { type : "Point", coordinates: [1, 2]} }]
Iis

export default function layer(state = defaultState, action) {
switch (action.type) {
case UPDATE LAYER FEATURE: {
// let's assume that action.props = {newProp: "newValue"}
const feature = find(state.features, {id: action.id});
// merging the old feature object with the new prop while replacing the existing
element in the array
const newFeature = {...feature, ...action.props};
return arrayUpdate("features", newFeature, {id: action.id}, state);
// after this you expect to find the new properties in the feature specified by the id
}

default: return state;

Testing

Tests in mapstore are stored in tests folder at the same level where actions/
reducer are. The file name is the same of the action/reducer with a '-test' suffix

actions/map.js
actions/ tests /map-test.js
or

reducers/map.js
reducers/ tests /map-test.js

We use expect as testing library, therefore we suggest to have a look there.

How to test an action

Typically you want to test the type and the params return from the action creator

let's test the mapTo action:

// copyright section
import expect from 'expect';
import {panTo, PAN TO} from '@mapstore/actions/map’;
describe('Test correctness of the map actions', () => {
it('testing panTo', () => {
const center = [2, 3];
const returnValue = panTo(center);
expect(returnValue.type).toEqual(PAN TO);
expect(returnValue.center).toEqual(center);

s
;i

In order to speed up the unit test runner, you can:

* change the path in tests.webpack.js (custom/standard project) or
build\tests.webpack.js (framework) to point to the folder parent of tests for
example '/js/actions' for custom/standard project or '../web/client/actions' for
framework

e then run this command: npm run test:watch

This allows to run only the tests contained to the specified path. Note: When all
tests are successfully passing remember to restore it to its original value.

How to test a reducer

Here things can become more complicated depending on your reducer but in
general you want to test all cases

https://github.com/mjackson/expect

// copyright section
import expect from 'expect';
import {panTo} from '@mapstore/actions/map';
import map from '@js/reducers/map'; // the one created before not the one present in
@mapstore/reducers
describe('Test correctness of the map reducers', () => {
it('testing PAN TO', () => {
const center = [2, 3];
const state = map({}, panTo(center));

// here you have to check that state has changed accordingly
expect(state.center).toEqual(center);
1)
1)

Here for speedup testing you can again modify the tests.webpack.js (custom/
standard project) or build\tests.webpack.js (framework) in order to point to the
reducers folder and then running npm run test:watch

Actions and epics

Actions are not only used by redux to update the store (through the reducers), but
also for triggering side effects workflows managed by epics

For more details see Writing epics

Configuring MapStore

MapStore (and every application developed with MapStore) allows customization
through configuration. To understand how to configure MapStore you have to
know that the back-end and the front-end of MapStore have two different
configuration systems.

This separation allows to:

* Make mapstore configuration system live also as a front-end only framework

* Keep the power of customization provided by spring on the back-end

Back-end Configuration Files

They are .properties files or .xml files, and they allow to configure the various
parts of the back-end. They are located in java/web/src/main/resources and they will
be copied in MapStore.war under the directory /WEB-INF/classes .

* proxy.properties : configuration for the internal proxy (for cross-origin
requests). More information here.

* geostore-datasource-ovr.properties : provides settings for the database.

* log4j2.properties : configuration for back-end logging

* sample-categories.xml : initial set of categories for back-end resources (MAP,
DASHBOARD, GEOSTORY...)

* mapstore.properties : allow specific overrides to front-end files, See
externalization system for more details

Except for mapstore.properties and ldap.properties , all these files are simply
overrides of original configuration files coming from the included sub-applications
part of the back-end. In WEB-INF/classes you will find also some other useful files
coming from the original application:

Back-end security configuration files

Back-end security can be configured to use different authentication strategies.
Maven profiles can be used to switch between these different strategies.

https://github.com/geosolutions-it/http-proxy/wiki/Configuring-Http-Proxy

Depending on the chosen profile a different file will be copied from the product/
config folder to override WEB-INF/classes/geostore-spring-security.xml in the final
package. In particular:

* default: db\geostore-spring-security-db.xml (geostore database)

* ldap: ldap\geostore-spring-security-ldap.xml (LDAP source)

Specific configuration files are available to configure connection details for the
chosen profile.

For example, if using LDAP, look at LDAP integration.

Log4j2 configuration file

Below will be presented some basic pointers to configure logging through the
log4j2.properties file. For more informations see the official documentation page.

The following is the default MapStore log4j2.properties file.

rootLogger.level = INFO
appenders= console, file

appender.console.type = Console

appender.console.name = LogToConsole

appender.console.layout.type = PatternLayout

appender.console.layout.pattern = %p %d{yyyy-MM-dd HH:mm:ss.SSS} %c::%M:%L -
%m%n

rootLogger.appenderRef.stdout.ref = LogToConsole
rootLogger.appenderRef.console.ref = LogToConsole

appender.file.type = File

appender.file.name = LogToFile

appender.file.fileName=${sys:catalina.base }/logs/mapstore.log
appender.file.layout.type=PatternLayout

appender.file.layout.pattern=%p %d{yyyy-MM-dd HH:mm:ss.SSS} %C{1}.%M() - %m
%n

rootLogger.appenderRef.file.ref = LogToFile

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level= INFO
logger.hibernatel.name=org.hibernate
logger.hibernatel.level=INFO

logger.trgl.name=com.trg

logger.trgl.level=INFO

The first two properties defines the rootLogger level and appenders declarations.

https://logging.apache.org/log4j/2.x/manual/configuration.html

rootLogger.level = INFO
appenders= console, file

The following properties configure two appenders: one that writes log messages to
the console and the other to a log file. In both cases a pattern layout has been
configured through a conversion pattern strings to format the log messages (more
details about patterned layouts are available here). For the file appender we have
configured as well the location of the log file to which writing log messages
(property appender.file.fileName). Note the ${sys:catalina.base} variable, used as a
placeholder of the root folder of the tomcat instance where MapStore is deployed.

appender.console.type = Console

appender.console.name = LogToConsole

appender.console.layout.type = PatternlLayout

appender.console.layout.pattern = %p %d{yyyy-MM-dd HH:mm:ss.SSS} %c::%M:%L -
%m%n

rootLogger.appenderRef.stdout.ref = LogToConsole
rootLogger.appenderRef.console.ref = LogToConsole

appender.file.type = File

appender.file.name = LogToFile

appender.file.fileName=${sys:catalina.base }/logs/mapstore.log
appender.file.layout.type=PatternLayout

appender.file.layout.pattern=%p %d{yyyy-MM-dd HH:mm:ss.SSS} %C{1}.%M() - %m
%n

rootLogger.appenderRef.file.ref = LogToFile

In the final section of the properties file the loggers for specific package name are
configured. In this case the syntax is logger.{a name of choice}.name to declare the
package to which the configured logger belongs and logger.{a name of choice}.level
to declare the log level of that logger.

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level= INFO
logger.hibernatel.name=org.hibernate
logger.hibernatel.level=INFO

logger.trgl.name=com.trg

logger.trgl.level=INFO

Front-end Configurations Files

They are JSON files that will be loaded via HTTP from the client, keeping most of
the framework working also in an html-only context (when used with different
back-ends or no-backend). These JSON files are located in web/client/configs
directory and they will be copied in the configs of the war file.

https://logging.apache.org/log4j/2.x/manual/layouts.html

Several configuration files (at development and / or run time) are available to
configure all the different aspects of an application.

* localConfig.json : Dedicated to the application configuration. Defines all general
settings of the front-end part, with all the plugins for all the pages. See
Application Configuration for more information.

* new.json Can be customized to set-up the initial new map, setting the
backgrounds, initial position .. See Maps configuration for more information.

* pluginsConfig.json : Allows to configure the context editor plugins list. See
Context Editor Configuration for more information.

Externalize Configurations

Typically configuration customization should stay outside the effective application
installation directory to simplify future updates. Updates in fact are usually
replacement of the old application file package with the newer one. Changes
applied directly inside the application package may be so removed on every
update. For this reason MapStore provides a externalization system for both the
configuration systems. See Externalize Configuration section to learn how to do
this.

Application configuration

The application will load by default it will load the localConfig.json which is now
stored in the configs\ folder

You can load a custom configuration by passing the localConfig argument in query
string:

localhost:8081/?localConfig=myConfig#/viewer/openlayers/0

The localConfig file contains the main information about URLs to load and plugins
to load in the various modes.

This is the main structure:

// URL of geoStore
"geoStoreUrl": "rest/geostore/",
// printURL the url of the print service, if any
"printUrl": "/geoserver-test/pdf/info.json",
// a string or an object for the proxy URL.
"proxyUrl": {
// if it is an object, the url entry holds the url to the proxy
"url": "/MapStore2/proxy/?url=",
// useCORS array contains a list of services that support CORS and so do not need a
proxy
"useCORS": ["http://mnominatim.openstreetmap.org", "https://
nominatim.openstreetmap.org"]
b
// JSON file where uploaded extensions are configured
"extensionsRegistry": "extensions.json",
// URL of the folder from where extensions bundles and other assets are loaded
"extensionsFolder": "",
/I API keys for bing and mapquest services
"bingApiKey",
// force dates to be in this specified format. use moment js format pattern
"forceDateFormat": "YYYY-MM-DD",
// force time to be in this specified format. use moment js format pattern
"forceTimeFormat": "hh:mm A",
"mapquestApiKey",
// list of actions types that are available to be launched dynamically from query param
(#3817)
"initialActionsWhiteList": ["ZOOM TO_ EXTENT", "ADD LAYER", ...],
// path to the translation files directory (if different from default)
"translationsPath",
// if true, every ajax and mapping request will be authenticated with the configurations if
match a rule (default: true)
"useAuthenticationRules": true
// the authentication rules to match
"authenticationRules": [

{ /] every rule has a "urlPattern’ regex to match
"urlPattern": ".*geostore.*",
// and a authentication “method” to use (basic, authkey, browserWithCredentials)
"method": "basic"
A
"urlPattern": "\\/geoserver.*",
"method": "authkey"
Bl
/I flag for postponing mapstore 2 load time after theme
"loadAfterTheme": false,
/1 if defined, WMS layer styles localization will be added
"localizedLayerStyles": {
// name of the ENV parameter variable that is needed for localization proposes
"name": "mapstore language"
by
// flag for abandon map edit confirm popup, by default is enabled
"unsavedMapChangesDialog": false,
// optional flag to set default coordinate format (decimal, aeronautical)
"defaultCoordinateFormat": "aeronautical”,
// optionals misc settings
"miscSettings": {
// Use POST requests for each WMS length URL highter than this value.
"maxURLLength": 5000,
// Custom path to home page
"homePath": '/home'
b
// optional state initializer (it will override the one defined in appConfig.js)
"initialState": {
// default initial state for every mode (will override initialState imposed by plugins
reducers)
"defaultState": {

/I if you want to customize the supported locales put here the languages you want
and follow instruction linked below
"locales": {
"supportedLocales": {
"it": {
"code": "it-IT",
"description": "Italiano"
b
"en": {
"code": "en-US",
"description": "English"
}
}
}
b

// mobile override (defined properties will override default in mobile mode)
"mobile": {

}
Ii-

// allows to apply map options configuration to all the Map plugins instances defined in
the plugins configuration.

// The mapOptions in the plugin configuration have priority so they will overrides this
global config

"defaultMapOptions": {

"openlayers": { ... },
"leaflet": { ... },
"cesium": { ... }
2
// allow to define the default visualization mode of the app and
// which 2D or 3D map library should be used based on the device
// the configuration below is the default one
// note: this configuration does not support expressions
"mapType": {
// the default visualization mode of the app, it could be "2D" or "3D"
"defaultVisualizationMode": "2D",
// map library to use based on the visualization mode and device

// structure -> { visualizationModes: { [visualizationMode]: { [deviceType]:
mapLibrary } } }

"visualizationModes": {
"2D": {
"desktop": "openlayers",
"mobile": "leaflet"
B
"3D": {
"desktop": "cesium",
"mobile": "cesium"
}
}
1y
"plugins": {
// plugins to load for the mobile mode
"mobile": [...]
// plugins to load for the desktop mode
"desktop": [...]
// plugins to load for the embedded mode
"embedded": [...]
// plugins to load for the myMode mode
"myMode": [...]

If you are building your own app, you can choose to create your custom modes or

force one of them by passing the mode parameter in the query string.

For adding a new locale or configuring currently supported locales, go check this
out.

For configuring plugins, see the Configuring Plugins Section and the plugin

reference page

Explanation of some config properties

* loadAfterTheme is a flag that allows to load mapstore.js after the theme

which can be versioned or not(default.css). default is false

* initialState is an object that will initialize the state with some default values
and this WILL OVERRIDE the initialState imposed by plugins & reducers.

* projectionDefs is an array of objects that contain definitions for Coordinate
Reference Systems

initialState configuration
It can contain:

1. a defaultState valid for every mode

2. a piece of state for each mode (mobile, desktop, embedded)
Catalog Tool configuration

Inside defaultState you can set default catalog services adding the following key

"catalog": {
"default": {
"newService": {
"url": "",
"type": "wms",
"title": ",
"isNew": true,
"editable": true,
"autoload": false
Bo
"selectedService": "Demo CSW Service",
"services": {
"Demo CSW Service": {
"url": "https://demo.geo-solutions.it/geoserver/csw",
"type": "csw",
"title": "A title for Demo CSW Service",
"autoload": true
Yo
"Demo WMS Service": {
"url": "https://demo.geo-solutions.it/geoserver/wms",
"layerOptions": {
"tileSize": 512
B
"format": "image/png8"
"type": "wms",
"title": "A title for Demo WMS Service",
"autoload": false
B
"Demo WMTS Service": {
"url": "https://demo.geo-solutions.it/geoserver/gwc/service/wmts",
"type": "wmts",
"title": "A title for Demo WMTS Service",
"autoload": false

Set selectedService value to one of the ID of the services object ("Demo CSW
Service" for example).

This will become the default service opened and used in the catalog panel.
For each service set the key of the service as the ID.

"ID CATALOG SERVICE": {
"url": "the url pointing to the catalog web service",
"type": "the type of webservice used. (this need to be consistent with the web service
pointed by the url)",
"title": "the label used for recognizing the catalog service",
"autoload": "if true, when selected or when catalog panel is opened it will trigger an
automatic search of the layers. if false, search must be manually performed."
"readOnly": "if true, makes the service not editable from catalog plugin"
"titleMsgId": "optional, string used to localize the title of the service, the string must be
present in translations",
"format": "image/png8" // the image format to use by default for layers coming from this
catalog (or tiles).
"layerOptions": { // optional
"format": "image/png8", // image format needs to be configured also inside layerOptions
"serverType": "geoserver or no-vendor, depending on this some geoserver vendor
extensions will be used for WMS requests.",
"tileSize": 512 // determine the default tile size for the catalog, valid for WMS and
CSW catalogs
b
"filter": { // applicable only for CSW service
"staticFilter": "filter is always applied, even when search text is NOT PRESENT",
"dynamicFilter": "filter is used when search text is PRESENT and is applied in "AND"
with staticFilter. The template is used with ${searchText} placeholder to append search
string"
}
}

CSW service

filter - For both static and dynamic filter, input only xml element contained within
(i.e. Do not enclose the filter value in)

Example:

"filter": { // Default filter values

"staticFilter": "<ogc:Or><ogc:PropertylsEqualTo><ogc:PropertyName>dc:type</
ogc:PropertyName><ogc:Literal>dataset</ogc:Literal></
ogc:PropertylsEqualTo><ogc:PropertylsEqualTo><ogc:PropertyName>dc:type</
ogc:PropertyName> <ogc:Literal>http://purl.org/dc/dcmitype/Dataset</ogc:Literal></
ogc:PropertylsEqualTo></ogc:Or>",

"dynamicFilter": "<ogc:PropertylsLike wildCard='%" singleChar="' "' escapeChar="\
\'><ogc:PropertyName>csw:AnyText</ogc:PropertyName><ogc:Literal>%${searchText}
%</ogc:Literal></ogc:PropertylsLike>"

}
}

Be careful to use unique IDs
Future implementations will try to detect the type from the url.
newService is used internally as the starting object for an empty service.

projectionDefs configuration

Custom CRS can be configured here, at root level of localConfig.json file. For
example:

"projectionDefs": [{
"code": "EPSG:3003",
"def": "+proj=tmerc +lat 0=0 +lon_0=9 +k=0.9996 +x 0=1500000 +y_ 0=0
+ellps=intl+towgs84=-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68 +units=m +no defs",
"extent": [1241482.0019, 973563.1609, 1830078.9331, 5215189.0853],
"worldExtent": [6.6500, 8.8000, 12.0000, 47.0500]
}H

Explanation of these properties:

* code - a code string that will identify the added projection
* def - projection definition in PRO]J.4 format
* extent - projected bounds of the projection

* world Extent - bounds of the projection in WGS84

These parameters for a projection of interest can be found on epsg.io

CRS Selector configuration

CRS Selector is a plugin, that is configured in the plugins section. It should look
like this:

https://epsg.io

"plugins": {

"desktop": [
A
"name": "CRSSelector",
"cfg": {
"additional CRS": {
"EPSG:3003": {
label: "Monte Mario"
}
B
"filterAllowedCRS": [
"EPSG:4326",
"EPSG:3857"
L
"allowedRoles": [
"ADMIN"
|
}
A
|
}

Configuration parameters are to be placed in the "cfg" object. These parameters
are:

* additionalCRS - object, that contains additional Coordinate Reference
Systems. This configuration parameter lets you specify which projections,
defined in projectionDefs, should be displayed in the CRS Selector, alongside
default projections. Every additional CRS is a property of additionalCRS
object. The name of that property is a code of a corresponding projection
definition in projectionDefs. The value of that property is an object with the
following properties:

* label - a string, that will be displayed in the CRS Selector as a name of the
projection

* filterAllowedCRS - which default projections are to be available in the
selector. Default projections are:

« EPSG:3857
*» EPSG:4326

* allowedRoles - CRS Selector will be accessible only to these roles. By default,
CRS Selector will be available for any logged in user.

Search plugin configuration

The search plugin provides several configurations to customize the services
behind the search bar in the map:

» Allow to configure more many services to use in parallel, in the services array.
* Natively supports nominatim and WFS protcols

* Allows to register your own custom services to develop and use in your
custom project

» Allows to configure services in cascade, typically when you have a hierarchical
data structures (e.g. search for municipality, then for street name, than for
house number, or search state,then region, then specific feature, and so on...)

Following you can find some examples of the various configurations. For more
details about the properties, please check to plugin API documentation: https://
mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Search

Nominatim configuration:

{
"type": "nominatim",
"searchTextTemplate": "${properties.display name}", // text to use as searchText when
an item is selected. Gets the result properties.
"options": {
"polygon geojson": 1,
"limit": 3

WEFS configuration:

"plugins": {

"desktop": [
.
"name": "Search",
"cfg": {
"showCoordinatesSearchOption": false,
"maxResults": 20,
"searchOptions": {
"services": [{
"type": "wfs",
"priority": 3,
"displayName": "${properties.propToDisplay}",
"subTitle": " (a subtitle for the results coming from this service [can contain
expressions like ${properties.propForSubtitle}])",
"options": {
"url": "/geoserver/wfs",
"typeName": "workspace:layer",
"queriableAttributes": ["attribute to query"],
"sortBy": "id",

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Search
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Search

"srsName": "EPSG:4326",
"maxFeatures": 20,
"blacklist": ["... an array of strings to exclude from the final search filter "]

}

WEFS configuration with nested services:

"plugins": {

"desktop": [
Ao
"name": "Search",
"cfg": {
"showCoordinatesSearchOption": false,
"maxResults": 20,
"searchOptions": {
"services": [{
"type": "wfs",
"priority": 3,
"displayName": "${properties.propToDisplay}",
"subTitle": " (a subtitle for the results coming from this service [can contain
expressions like ${properties.propForSubtitle}])",
"options": {
"url": "/geoserver/wfs",
"typeName": "workspace:layer",
"queriableAttributes": ["attribute to query"],
"sortBy": "id",
"srsName": "EPSG:4326",
"maxFeatures": 20,
"blacklist": ["... an array of strings to exclude from the final search filter "]

¥

"nestedPlaceholder": "the placeholder will be displayed in the input text, after you
have performed the first search",
"then": [{
"type": "wfs",
"priority": 1,
"displayName": "${properties.propToDisplay} ${properties.propToDisplay}",
"subTitle": " (a subtitle for the results coming from this service [can contain
expressions like ${properties.propForSubtitle}])",
"searchTextTemplate": "${properties.propToDisplay}",
"options": {

"staticFilter": " AND SOMEPROP = '${properties. OLDPROP}", // will be
appended to the original filter, it gets the properties of the current selected item (of the
parent service)

"url": "/geoserver/wfs",

"typeName": "workspace:layer",

"queriableAttributes": ["attribute to query"],

"srsName": "EPSG:4326",

"maxFeatures": 10

}H

Custom services configuration:

"type": "custom Service Name",
"searchTextTemplate": "${properties.propToDisplay}",
"displayName": "${properties.propToDisplay}",
"subTitle": " (a subtitle for the results coming from this service [can contain expressions
like ${properties.propForSubtitle}])",
"options": {
"pathname": "/path/to/service",
"idVia": "${properties.code}"
2
"priority": 2,
"geomService" : {
"type": "wfs",
"options": {
"url": "/geoserver/wfs",
"typeName": "workspace:layer",
"srsName": "EPSG:4326",
"staticFilter": "ID = ${properties.code}"

Configuring plugins

To configure the plugins used by your application, a dedicated section is available
in the localConfig.json configuration file:

"plugins": {

}

Inside the plugins section, several modes can be configured (e.g. desktop or
mobile), each one with its own list of plugins:

"plugins": {
"mobile": [...],
"desktop": [...]

}

Each plugin can be simply listed (and the default configuration is used):

"plugins": {

"desktop": ["Map", "MousePosition", "Toolbar", "TOC"]
}

or fully configured:

"plugins": {

"desktop": [{
Ilnamell: IIMaplll

}
}

]
}

Dynamic configuration

Configuration properties of plugins can use expressions, so that they are
dynamically bound to the application state.

An expression is anything between curly brackets ({...}) that is a javascript
expression, where the monitored state of the application is available as a set of

variables.

To define the monitored state, you have to add a monitorState property in
localConfig.json.

{

"monitorState": [{"name": "mapType", "path": "mapType.mapType"}]

Where:

* name is the name of the variable that can be used in expressions

* path is a javascript object path to the state fragment to be monitored (e.g.
map.present.zoom)

When you have a monitored state, you can use it in configuration properties this
way: Be sure to write a valid javascript expression.

"Cfg“: {

"myProp": "{state('mapType') === 'openlayers' ? 1 : 2}"

Expressions are supported in cfg properties and in hideFrom and showIn
sections.

In addition to monitored state also the page request parameters are available as
variables to be used in expressions.

Look at the plugin reference page for a list of available configuration properties.

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins

Map Configuration

By default MapStore is able to open maps with this path in the URL:
http://localhost:8081/#viewer/<mapld>

Where:

* mapld can be a number or a string.
A number represents standard maps, stored on the database.

* A string instead represents a static json file in the root of the application.
The first case can be used to load a map from the maps database, using its id.

There is a special mapld, O (zero), that is used to load a basic OSM map for demo
purposes.

http://localhost:8081/#viewer/openlayers/0

The configuration of this map is stored in the static config.json file in the root of the
project.

The second case can be used to define standard map contexts.

This is used for the new map. If you're logged in and allowed to create maps,
when you try to create a new map you will see the the application will bring you to
the URL:

http://localhost:8081/#viewer/openlayers/new

This page uses the new.json file as a template configuration to start creating a new
map. You can find this file in web/client/configs directory for standard MapStore or
in configs/ folder for a custom projects. You can edit new.json to customize this
initial template. It typically contains the map backgrounds you want to use for all
the new maps (identified by the special property "group": "background").

If you have enabled the datadir, then you can externalize the new.json or
config.json files. (see here for more details)

new.json and config.json are special cases, but you can configure your own static
map context creating these json files in the root of the project, for instance
mycontext.json and accessing them at the URL:

http://localhost:8081/#viewer/openlayers/mycontext

important note: new.json and config.json are special files and don't require the
version. For other map context, you must specify the version of the map file type
in the root of the json file:

{
"version": 2,
/...

}

These static map contexts are accessible by anyone. If you want to customize
standard maps (that are listed in home page and where you can define) manually,
you will have to edit the maps using the GeoStore REST API.

Map options
The following options define the map options (projection, position, layers):

* projection: {string} expressed in EPSG values

* units: {string} uom of the coordinates

* center: [object] center of the map with starting point in the bottom-left corner
* zoom: {number} level of zoom

* resolutions: {number[]} resolutions for each level of zoom

* scales: {number[]} scales used to compute the map resolutions

* maxExtent: {number[]} max bbox of the map expressed [minx, miny, maxx,
maxy]

layers: {object[]} list of layers to be loaded on the map

groups {object[]} : contains information about the layer groups

visualizationMode: {string} defines if the map should be visualized in "2D" or
II3DII

viewerOptions: {object} could contain viewer specific properties, eg. camera
orientation and camera position for 3D visualization mode

ie.
{
"'version": 2,
"projection": "EPSG:900913",
Ilunitsll: Ilmlll

"center": {"x": 1000000.000000, "y": 5528000.000000, "crs": "EPSG:900913"},
"zoom": 15,

https://github.com/geosolutions-it/geostore/wiki/REST-API

"visualizationMode": "2D",
"'viewerOptions": {
"cameraPosition": {
"longitude": 0,
"latitude": O,
"height": 0
Yo
"orientation": {
"heading": O,
"pitch": 0,
"roll": O
}
Yo
"mapOptions": {
"view": {
"scales": [175000, 125000, 100000, 75000, 50000, 25000, 10000, 5000, 25001,
"resolutions": [
84666.66666666688,
42333.33333333344,
21166.66666666672,
10583.33333333336,
5291.66666666668,
2645.83333333334,
1322.91666666667,
661.458333333335000,
529.166666666668000,
396.875000000001000,
264.583333333334000,
132.291666666667000,
66.145833333333500,
39.687500000000100,
26.458333333333400,
13.229166666666700,
6.614583333333350,
3.968750000000010,
2.645833333333340,
1.322916666666670,
0.661458333333335
1
}
B
"maxExtent": [
-20037508.34, -20037508.34,
20037508.34, 20037508.34
1,
"layers": [{...},{...}]
}

. Note

The option to configure a list of scale denominators allow to have them in human
friendly format, and calculate the map resolutions from scales.

Warning

If the scales and resolutions property are declared, in the same json object, the
scales have priority. In the array, the values have be in descending order.

Warning

Actually the custom resolution values are valid for one single CRS. It's therefore
suggested to avoid to add this parameter when multiple CRSs in the same map
configuration are needed.

Layers options

Every layer has it's own properties. Anyway there are some options valid for every
layer:

* title : {object|string} the title of the layer, can be an object to supportil8n.
* type: {string} the type of the layer. Can be wms, wmts, osm ...

* name : {string} the name is used as general reference to the layer, or as title, if
the title is not specified. Anyway, it's usage depends on the specific layer type.

e group: {string}: the group of the layer (in the TOC). Nested groups can be
indicated using /.i.e. Group/SubGroup . A special group, background, is used to
identify background layers. These layers will not be available in the TOC, but
only in the background switcher, and only one layer of this group can be
visible.

* thumbURL : {string} : the URL of the thumbnail for the layer, used in the
background switcher (if the layer is a background layer)

* visibility : {boolean} : indicates if the layer is visible or not

* queriable : {boolean} : Indicates if the layer is queriable (e.g. getFeaturelnfo). If
not present the default is true for every layer that have some implementation
available (WMS, WMTS). Usually used to set it explicitly to false, where the
query service is not available.

* hideLoading : {boolean}. If true, loading events will be ignored (useful to hide
loading with some layers that have problems or trigger errors loading some
tiles or if they do not have any kind of loading.).

* minResolution : {number} : layer is visible if zoom resolution is greater or equal
than this value (inclusive)

* maxResolution : {number} : layer is visible if zoom resolution is less than this
value (exclusive)

* disableResolutionLimits : {boolean} : this property disables the effect of
minResolution and maxResolution if set to true

ie.

"title": "Open Street Map",
"name": "mapnik",
"group": "background",
"visibility": false,

"hidden": true

Localized titles: In these configuration files you can localize titles using an object
instead of a string in the title entry. In this case the title object has this shape:

title: {

'default': 'Meteorite Landings from NASA Open Data Portal', // default title, used in
case the localized entry is not present

'it-IT': 'Atterraggi meteoriti', // one string for each IETF language tag you want to
support.

'en-US': 'Meteorite Landings’,

'fr-FR': 'Débarquements de météorites'

1z

The layers can belong to the background group, in this case they will be available in
the background switcher, and only one layer of this group can be visible at the
same time.

"format": "image/jpeg",

"name": "workspace:layername",

"params": {},

"singleTile": false,

"title": "My WMS Background",

"type": "wms",

"group": "background",

"thumbURL": "http://some.wms.service/geoserver/ows?
SERVICE=WMS&REQUEST=GetMap&VERSION=1.3.0&LAYERS=1rv%3Arv1&STYLES=&FOR

"url": "http://some.wms.service/geoserver/ows",

"visibility": false

1

In the case of the background the thumbURL is used to show a preview of the layer
in the background switcher.

Layer types

* wms : WMS - Web Mapping Service layers

* osm : OpenStreetMap layers format

* tileprovider : Some other mixed specific tile providers
* wmts : WMTS: Web Map Tile Service layers

* bing : Bing Maps layers

* google : Google Maps layers

* mapquest : MapQuest layers

e graticule : Vector layer that shows a coordinates grid over the map, with
optional labels

* empty : special type for empty background

* 3dtiles : 3d tiles layers
* terrain: layers that define the elevation profile of the terrain

* cog : Cloud Optimized GeoTIFF layers

WMS

ie.

"type": "wms",
"url": "http..." // URL of the WMS Service
"name": "TEST:-TEST", // The name of the layer
"format": "image/png8" // format
"title": "Open Street Map",
"name": "mapnik",
"group": "background"”,
"visibility": false,
"params": {}, // can be used to add parameters to the request, or override the default
ones
"layerFilter": {} // a layer filter object, to filter the layer
"search": {}, // object to configure the features URL in the layer
"fields": [{"name": "attrl", "alias": "Attribute 1", "type": "string"},{...}] // array of fields
"credits": { // optional
"imageUrl": "somePic.png", // URL for the image to put in attribution
"link": "http://someURL.org", // URL where attribution have to link to
"title": "text to render" // title to show (as image title or as text)
}
}

Details:

e url : the URL of the WMS service

* name : name of the layer

* format : the format of the WMS requests to use
* params : an object with additional parameters to add to the WMS request
* layerFilter : an object to filter the layer. See LayerFilter for details.

* search : an object to configure the search features service. It is used to link a
WEFS service, typically with this shape: {url: 'http://some.wfs.service', type: 'wfs'} .

* fields : if the layer has a wfs service configured, this can contain the fields
(attributes) of the features, with custom configuration (e.g. aliases, types, etc.).
See Fields for details.

e credits : includes the information to show in attribution.(imageUrl, link, title).

FIELDS

The fields array is used to configure the attributes of the features of the layer.
They can be used in the Identify tool, in the FeatureGrid plugin, in the FeatureInfo
popup, etc. It is supported by wms and wfs layers. The supported attributes are:

¢ name : the name of the attribute

* alias : the alias of the attribute (used in the Identify tool, in the FeatureGrid
plugin, in the Featurelnfo popup, etc.). If not present, the name will be used. It
can be an object to supportil8n.

* type : the type of the attribute. Supported types are: string, number, date,
boolean . If not present, the default type is string.

* filterRenderer : an object to configure the filter renderer in feature grid (for
custom projects)

* name : the name of the filter renderer (for custom projects)

* featureGridFormatter : an object to configure the feature grid formatter in
feature grid.

* name : the name of the feature grid formatter .

* config : the configuration of the feature grid formatter.

Example:

{
"fields": [{
"name": "attrl",
"alias": "Attribute 1",
"type": "string",
"filterRenderer": {
"name": "customFilterRenderer"
)i
"featureGridFormatter": {

"name": "customFeatureGridFormatter",
"config": {

../LayerFilter/

"someConfig": "someValue"

}

}

BA

"name": "attr2",

"alias": {
"default": "Attribute 2",
"en-US": "Attribute 2",
"it-IT": "Attributo 2"

Bo

"type": "number"

}

MULTIPLE URLS

This feature is not yet fully supported by all the plugins, but OpenLayers supports
it so if you put an array of urls instead of a single string in the layer url. Some
other feature will break, for example the layer properties will stop working, so it is
safe to use only on background layers.

{

"type": "wms",

"url": [
"https://a.maps.geosolutionsgroup.com/geoserver/wms",
"https://b.maps.geosolutionsgroup.com/geoserver/wms",
"https://c.maps.geosolutionsgroup.com/geoserver/wms",
"https://d.maps.geosolutionsgroup.com/geoserver/wms",
"https://e.maps.geosolutionsgroup.com/geoserver/wms",
"https://f.maps.geosolutionsgroup.com/geoserver/wms"

1,

"visibility": true,

"opacity": 1,

"title": "OSM",

"name": "osm:osm",

"group": "Meteo",

"format": "image/png8",

"bbox": {
"bounds": {"minx": -180, "miny": -90, "maxx": 180, "maxy": 90},
"crs": "EPSG:4326"

SPECIAL CASE - THE ELEVATION LAYER

. Note

This type of layer configuration is still needed to show the elevation data inside the
MousePosition plugin. The terrain layer section shows a more versatile way of
handling elevation but it will work only as visualization in the 3D map viewer.

WMS layers can be configured to be used as a source for elevation related
functions.

This requires:

* a GeoServer WMS service with the DDS/BIL plugin

* A WMS layer configured with BIL 16 bit output in big endian mode and
-9999 nodata value

* a static layer in the Map plugin configuration (use the additionalLayers
configuration option):

in localConfig.json

{
"name": "Map",
"cfg": {
"additionalLayers": [{
“url": "http...",
"format": "application/bil16",

||type||: ”Wms ,

"name": "elevation",
"littleendian": false,
"visibility": true,
"useForElevation": true

}

The layer will be used for:

* showing elevation in the MousePosition plugin (requires showElevation: true in
the plugin configuration)

* as a TerrainProvider if the maptype is Cesium

in localConfig.json

{

"name": "MousePosition",
"Cfg“: {
"showElevation": true,

WMTS

The WMTS Layer configuration has a availableTileMatrixSets object that lists all the
available tile matrix sets for the specific layer. Every entry of

https://docs.geoserver.org/stable/en/user/community/dds/index.html

availableTileMatrixSets , identified by the ID of the tile matrix set, contains the crs
and one of tileMatrixSet or tileMatrixSetLink . The first contains the definition of the
tile matrix set, while the second contain the path to the tile matrix set definition in
the JSON of the map configuration. This object can also optionally contain a limits
entry, containing the specific limits of the layer inside the tile matrix set.

{
"type": "wmts",
"availableTileMatrixSets": {
"google3857": {
"crs": "EPSG:3857",
"tileMatrixSetLink": "sources['https://sampleServer.org/wmts/1.0.0/
WMTSCapabilities.xml'].tileMatrixSet['EPSG:3857']"
}
}

The sources entry of the map configuration usually contains the tile matrix sets
definitions of the layers of the map, stored by their capabilitiesURL (if
capabilitiesURL is not present it will use the url of the layer, in case of multiple
URLs, the first one.).

A WMTS layer has also a requestEncoding entry that can be valued with RESTful or
KVP . In case of RESTful the URL is a template where to place the request
parameters (see the example below), while in the KVP case the request
parameters will be passed in the query string. See the WMTS standard for more
details.

e.g. (RESTful):

{
"version": 2,
/.
"map": {
/I ...
"layers": [
// WMTS layer sample
{
"id": "bmapoberflaeche 11",
"name": "layer name",
/...
"type": "wmts",
"url": [// MULTIPLE URLS are allowed
"https://maps1.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix }/{TileRow}/
{TileCol}.jpeg",
"https://maps2.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
{TileCol}.jpeg",
"https://maps3.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix }/{TileRow}/
{TileCol}.jpeg",
"https://maps4.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
{TileCol}.jpeg",
"https://maps.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix }/{TileRow}/

{TileCol}.jpeg"
1.
"allowedSRS": {
"EPSG:3857": true
Yo
"availableTileMatrixSets": {
"google3857": {
"crs": "EPSG:3857",
"tileMatrixSetLink": "sources| 'https://sampleServer.org/wmts/1.0.0/
WMTSCapabilities.xml'].tileMatrixSet['EPSG:3857']"
}
Yo
// KVP (By default) or RESTful
"requestEncoding": "RESTful",
// identifier for the source
"capabilitiesURL": "https://sampleServer.org/wmts/1.0.0/WMTSCapabilities.xml",
}
1,
"sources": {
// source of the layer above
"https://sampleServer.org/wmts/1.0.0/WMTSCapabilities.xml": {
"tileMatrixSet": {
"google3857": {
"ows:Identifier": "google3857",
"ows:BoundingBox": {
"$": {
"crs": "urn:ogc:def:crs:EPSG:6.18.3:3857"
b
"ows:LowerCorner": "977650 5838030",
"ows:UpperCorner": 1913530 6281290"
B
"ows:SupportedCRS": "urn:ogc:def:crs:EPSG:6.18.3:3857",
"WellKnownScaleSet": "urn:ogc:def:wkss:OGC:1.0:GoogleMapsCompatible",
"TileMatrix": [
{
"ows:Identifier": "0",
"ScaleDenominator": "559082264.029",
"TopLeftCorner": "-20037508.3428 20037508.3428",
"TileWidth": "256",
"TileHeight": "256",
"MatrixWidth": "1",
"MatrixHeight": "1"
B

"ows:Identifier": "1",
"ScaleDenominator": "279541132.015",
"TopLeftCorner": "-20037508.3428 20037508.3428",
"TileWidth": "256",
"TileHeight": "256",
"MatrixWidth": "2",
"MatrixHeight": "2"
1
// ...more levels
|
}
}
}

e.g. (KVP)

{
"version": 2,
"map": {
/.
"projection": "EPSG:900913",
"layers": [
/...
{
// requestEncoding is KVP by default
"id": "EMSA:S52 Standard 6",
"name": "EMSA:S52 Standard",
"description": "S52 Standard",
"title": "S52 Standard",
"type": "wmts",
// if the capabilitiesURL is not present, the "url" will be used to identify the source.
// (for retro-compatibility with existing layers)
"url": "http://some.domain/geoserver/gwc/service/wmts",

"bbox": {
"crs": "EPSG:4326",
"bounds": {
"minx": "-180.0",
"miny": "-79.99999999999945",
"maxx": "180.0",
"maxy": "83.99999999999999"
}
Bs

// list of allowed SRS
"allowedSRS": {
"EPSG:4326": true,
"EPSG:3857": true,
"EPSG:900913": true
by
"availableTileMatrixSets": {
"EPSG:32761": {
"crs": "EPSG:32761",
"tileMatrixSetLink": "sources| 'http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:32761']"
b
"EPSG:3857": {
"crs": "EPSG:3857",
"tileMatrixSetLink": "sources| 'http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:3857']"
2
"EPSG:4326": {
"crs": "EPSG:4326",
"tileMatrixSetLink": "sources| 'http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:4326']"
by
"EPSG:32661": {
"crs": "EPSG:32661",

"tileMatrixSetLink": "sources|'http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:32661']"
be
"EPSG:3395": {
"crs": "EPSG:3395",
"tileMatrixSetLink": "sources|['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:3395']"
by
"EPSG:900913": {
"crs": "EPSG:900913",
// these ranges limit the tiles available for the grid level

"limits": [
{

"identifier": "EPSG:900913:0",
"ranges": {
"cols": {

"min": "0",
"max": "0"
1
"rows": {
"min": "0",
"max": "0"
}
}
2
{

"identifier": "EPSG:900913:1",
"ranges": {
"cols": {

"min": "0",
"max": "1"
2
"rows": {
"min": "0",
"max": "1"
}
}
i
{

"identifier": "EPSG:900913:2",
"ranges": {
"cols": {

"min": "0",
"max": "3"
1
"rows": {
"min": "0",
"max": "3"
}
}
}
1,

"tileMatrixSetLink": "sources['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:900913']"
}
}
}

1,
/I ...
"sources": {
"http://some.domain/geoserver/gwc/service/wmts": {
"tileMatrixSet": {
"EPSG:32761": {/*...*%/},
"EPSG:3857": {/*...*/},
"EPSG:4326": {/*...*/},
"EPSG:32661": {/*...*%/},
"EPSG:3395": {/*...*/},
"EPSG:900913": {
"ows:Identifier": "EPSG:900913",
// the supported CRS
"ows:SupportedCRS": "urn:ogc:def:crs:EPSG::900913",
"TileMatrix": [
{
"ows:Identifier": "EPSG:900913:0",
"ScaleDenominator": "5.590822639508929E8",
"TopLeftCorner": "-2.003750834E7 2.0037508E7",
"TileWidth": "256",
"TileHeight": "256",
"MatrixWidth": "1",
"MatrixHeight": "1"
Be

"ows:Identifier": "EPSG:900913:1",
"ScaleDenominator": "2.7954113197544646E8",
"TopLeftCorner": "-2.003750834E7 2.0037508E7",
"TileWidth": "256",

"TileHeight": "256",

"MatrixWidth": "2",

"MatrixHeight": "2"

"ows:Identifier": "EPSG:900913:2",
"ScaleDenominator": "1.3977056598772323E8",
"TopLeftCorner": "-2.003750834E7 2.0037508E7",
"TileWidth": "256",

"TileHeight": "256",

"MatrixWidth": "4",

"MatrixHeight": "4"

e.g. (embed tileMatrixSet without link to sources)

{
"version": 2,
Ilmapll: {
/...
"projection": "EPSG:900913",

"layers": [

/.

{
// requestEncoding is KVP by default
"id": "EMSA:S52 Standard 6",
"name": "EMSA:S52 Standard",
"description": "S52 Standard",
"title": "S52 Standard",
"type": "wmts",
// if the capabilitiesURL is not present, the “url” will be used to identify the source.
/I (for retro-compatibility with existing layers)
"url": "http://some.domain/geoserver/gwc/service/wmts",

"bbox": {
"crs": "EPSG:4326",
"bounds": {
"minx": "-180.0",
"miny": "-79.99999999999945",
"maxx": "180.0",
"maxy": "83.99999999999999"
}
Yo

// list of allowed SRS
"allowedSRS": {
"EPSG:3857": true,
"EPSG:900913": true
Yo
"availableTileMatrixSets": {
"EPSG:900913": {
"crs": "EPSG:900913",
"tileMatrixSet": {
"ows:Identifier": "EPSG:900913",
"ows:SupportedCRS": "urn:ogc:def:crs:EPSG::900913",
"TileMatrix": [
{
"ows:Identifier": "EPSG:900913:0",
"ScaleDenominator": "5.590822639508929E8",
"TopLeftCorner": "-2.003750834E7 2.0037508E7",
"TileWidth": "256",
"TileHeight": "256",
"MatrixWidth": "1",
"MatrixHeight": "1"

"ows:Identifier": "EPSG:900913:1",
"ScaleDenominator": "2.7954113197544646E8",
"TopLeftCorner": "-2.003750834E7 2.0037508E7",
"TileWidth": "256",
"TileHeight": "256",
"MatrixWidth": "2",
"MatrixHeight": "2"

By

"ows:Identifier": "EPSG:900913:2",
"ScaleDenominator": "1.3977056598772323E8",
"TopLeftCorner": "-2.003750834E7 2.0037508E7",
"TileWidth": "256",

"TileHeight": "256",

"MatrixWidth": "4",
"MatrixHeight": "4"

Bing
TODO

Google

. Note

The use of Google maps tiles in MapStore is not enabled and maintained due to

licensing reasons. If your usage conditions respect the google license, you can
enable the google layers by:

* Adding <script src="https://maps.google.com/maps/api/js?v=3"></script> to all html
files you need it.
e Add your API-KEY to the request

e Fix the code, if needed.

example:

"type": "google",

"title": "Google HYBRID",
"name": "HYBRID",
"source": "google",
"group": "background"”,
"visibility": false

OSM

example:

"type": "osm",

"title": "Open Street Map",
"name": "mapnik",
"source": "osm",

"group": "background",

"visibility": true

}

TileProvider

TileProvider is a shortcut to easily configure many different layer sources. It's
enough to add provider property and 'tileprovider' as type property to the layer
configuration object. provider should be in the form of ProviderName.VariantName .

ie.

{
"type": "tileprovider",
"title": "Title",
"provider": "Stamen.Toner", // "ProviderName.VariantName"
"name": "Name",
"group": "GroupName",
"visibility": false

}

Options passed in configuration object, if already configured by TileProvider, will
be overridden.

Openlayers' TileProvider at the moment doesn't support minZoom configuration
property and high resolution map.

In case of missing provider or if provider: "custom", the tile provider can be
customized and configured internally. You can configure the url as a template,
than you can configure options add specific options (maxNativeZoom , subdomains).

"type": "tileprovider",
"title": "Title",
"provider": "custom", // or undefined
"name": "Name",
"group": "GroupName",
"visibility": false,
"url": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",
"options": {
"subdomains": ["a", "b"]
}
}

PROVIDERS AND VARIANTS

This is a not maintained list of providers and variants. For the most updated list
check the code here

Some of them may need some additional configuration or API keys.

https://github.com/geosolutions-it/MapStore2/blob/master/web/client/utils/ConfigProvider.js

OpenStreetMap.Mapnik
OpenStreetMap.BlackAndWhite
OpenStreetMap.DE
OpenStreetMap.France
OpenStreetMap.HOT
Thunderforest.OpenCycleMap
Thunderforest.Transport
Thunderforest.TransportDark
Thunderforest.Landscape
Thunderforest.Outdoors
OpenMapSurfer.Roads
OpenMapSurfer. AdminBounds
OpenMapSurfer.Grayscale
Hydda.Full

Hydda.Base
Hydda.RoadsAndLabels
MapQuestOpen.OSM
MapQuestOpen.Aerial
MapQuestOpen.HybridOverlay
Stamen.Toner
Stamen.TonerBackground
Stamen.TonerHybrid
Stamen.TonerLines
Stamen.TonerLabels
Stamen.TonerLite
Stamen.Watercolor
Stamen.Terrain
Stamen.TerrainBackground
Stamen.TopOSMRelief
Stamen.TopOSMFeatures
Esri.WorldStreetMap
Esri.DeLorme
Esri.WorldTopoMap
Esri.WorldImagery
Esri.WorldTerrain
Esri.WorldShadedRelief
Esri.WorldPhysical
Esri.OceanBasemap
Esri.NatGeoWorldMap
Esri.WorldGrayCanvas
OpenWeatherMap.Clouds
OpenWeatherMap.CloudsClassic
OpenWeatherMap.Precipitation
OpenWeatherMap.PrecipitationClassic
OpenWeatherMap.Rain
OpenWeatherMap.RainClassic
OpenWeatherMap.Pressure
OpenWeatherMap.PressureContour
OpenWeatherMap.Wind
OpenWeatherMap.Temperature
OpenWeatherMap. Snow
HERE.normalDay
HERE.normalDayCustom
HERE.normalDayGrey
HERE.normalDayMobile
HERE.normalDayGreyMobile
HERE.normalDayTransit

HERE.normalDayTransitMobile
HERE.normalNight
HERE.normalNightMobile
HERE.normalNightGrey
HERE.normalNightGreyMobile
HERE.carnavDayGrey
HERE.hybridDay
HERE.hybridDayMobile
HERE.pedestrianDay
HERE.pedestrianNight
HERE.satelliteDay
HERE.terrainDay
HERE.terrainDayMobile
Acetate.basemap

Acetate.terrain

Acetate.all

Acetate.foreground
Acetate.roads

Acetate.labels
Acetate.hillshading
CartoDB.Positron
CartoDB.PositronNoLabels
CartoDB.PositronOnlyLabels
CartoDB.DarkMatter
CartoDB.DarkMatterNoLabels
CartoDB.DarkMatterOnlyLabels
HikeBike.HikeBike
HikeBike.HillShading
BasemapAT.basemap
BasemapAT.grau
BasemapAT.overlay
BasemapAT.highdpi
BasemapAT.orthofoto
NASAGIBS.ModisTerraTrueColorCR
NASAGIBS.ModisTerraBands367CR
NASAGIBS.ViirsEarthAtNight2012
NASAGIBS.ModisTerralLSTDay
NASAGIBS.ModisTerraSnowCover
NASAGIBS.ModisTerraAOD
NASAGIBS.ModisTerraChlorophyll
NLS.OS 1900

NLS.OS 1920

NLS.OS opendata

NLS.OS 6inch 1st

NLS.OS_6inch

NLS.OS 25k

NLS.OS npe

NLS.OS 7th

NLS.OS London

NLS.GSGS Ireland
PDOK.brtachtergrondkaart
PDOK.brtachtergrondkaartgrijs
PDOK.brtachtergrondkaartpastel
PDOK.brtachtergrondkaartwater
PDOK.luchtfotoRGB
PDOK.luchtfotoIR

Vector

The layer type vector is the type used for imported data (geojson, shapefile) or for
annotations. Generally speaking, any vector data added directly to the map. This is
the typical fields of a vector layer

{
"type":"vector",
"features":[
{
"type":"Feature",
"geometry": {
"type":"Point",
"coordinates":[
12.516431808471681,
41.89817370656741
|
Bo
"properties":{
Bo
"id":0
}
1,
"style":{
"weight":5,
"radius":10,
"opacity":1,
"fillOpacity":0.1,
"color":"rgba(0, 0, 255, 1)",
"fillColor":"rgba(0, 0, 255, 0.1)"
}

"hideLoading":true

* features : features in GeoJSON format.
* style : the style object of the layer. See vector style for details.
* styleName : name of a style to use (e.g. "marker").

* hideLoading : boolean. if true, the loading will not be taken into account.
WEFS Layer

A vector layer, whose data source is a WFS service. The configuration has
properties in common with both WMS and vector layers. it contains the search
entry that allows to browse the data on the server side. The styling system is the
same of the vector layer.

This layer differs from the "vector" because all the loading/filtering/querying
operations are applied directly using the WFS service, without storing anything
locally.

../vector-style/

"type":"wfs",
"search":{
"url":"https://myserver.org/geoserver/wfs",
"type":"wfs"
b
"fields": [{"name": "attrl", "alias": "Attribute 1", "type": "string"}1],
"name":"workspace:layer",
"styleName":"marker",

"url":"https://myserver.org/geoserver/wfs"

* name : the name of the layer in the WFS service.
* style : the style object of the layer. See vector style for details.
* url : the url of the WFS service.

* fields : if the layer has a wfs service configured, this can contain the fields
(attributes) of the features, with custom configuration (e.g. aliases, types, etc.)

Graticule

ie.

"type": "graticule",
"labels": true,
"frame": true, // adds a frame to the map, to better highlight labels
"frameRatio": 0.07, // frame percentage size (7%)
"style": { // style for the grid lines
"color": "#000000",
"weight": 1,
"lineDash": [0.5, 4],
"opacity": 0.5
B
"frameStyle": { // style for the optional frame
"color": "#000000",
"weight": 1,
"fillColor": "#FFFFFF"
B
"labelXStyle": { // style for X coordinates labels
"color": "#000000",
"font": "sans-serif",
"fontWeight": "bold",
"fontSize": "20",
"labelOutlineColor": "#FFFFFF",
"labelOutlineWidth": 2
by
"labelYStyle": { // style for Y coordinates labels
"color": "#000000",
"font": "sans-serif",
"fontWeight": "bold",
"fontSize": "20",
"labelOutlineColor": "#FFFFFF",

../vector-style/

"labelOutlineWidth": 2,
"rotation": 90,
"verticalAlign": "top",

"textAlign": "center"

3D tiles

This type of layer shows 3d tiles version 1.0 inside the Cesium viewer. This layer
will not be visible inside 2d map viewer types: openlayer or leaflet. See
specification for more info about 3d tiles here.

i.e.

"type": "3dtiles",
"url": "http..." // URL of tileset.json file
"title": "3D tiles layer",
"visibility": true,
// optional
"heightOffset": 0, // height offest applied to the complete tileset
"style": {

"format": "3dtiles",

"body": { // 3d tiles style

"color": "color('#43a2ca', 1)"

}

}
}

The style body object for the format 3dtiles accepts rules described in the 3d tiles
styling specification version 1.0 available here.

Terrain

terrain layer allows the customization of the elevation profile of the globe mesh in
the Cesium 3d viewer. Currently Mapstore supports three different types of
terrain providers. If no terrain layer is defined the default elevation profile for the
globe would be the ellipsoid that provides a rather flat profile.

The other two available terrain providers are the wms (that supports DDL/BIL
types of assets) and the cesium (that support resources compliant with the Cesium
terrain format).

In order to create a wms based mesh there are some requirements that need to be
fulfilled:
* a GeoServer WMS service with the DDS/BIL plugin

* A WMS layer configured with BIL 16 bit output in big endian mode and
-9999 nodata value

https://www.ogc.org/standards/3DTiles
https://github.com/CesiumGS/3d-tiles/tree/1.0/specification/Styling
https://cesium.com/learn/cesiumjs/ref-doc/TerrainProvider.html
https://cesium.com/learn/cesiumjs/ref-doc/EllipsoidTerrainProvider.html
https://docs.geoserver.org/stable/en/user/community/dds/index.html

. BIlLTerrainProvider is used to parse wms based mesh. Supports three ways in
parsing the metadata of the layer

a. Layer configuration with sufficient metadata of the layer. This prevents a
call to getCapabilities eventually improving performance of the parsing of
the layer. Mandatory fields are url, name, crs.

“type": "terrain",

"provider": "wms",

"url": "http://hot-sample/geoserver/wms",

"name": "workspace:layername",

"littleEndian": false,

"visibility": true,

“crs": "CRS:84" // Supports only CRS:84 | EPSG:4326 | EPSG:3857 | OSGE0:41001
}

b. Layer configuration of geoserver layer with layer name prefixed with
workspace, then the getCapabilities is requested only for that layer

{

"type": "terrain",

"provider": "wms",

"url": "https://host-sample/geoserver/wms", // 'geoserver' url

"name": "workspace:layername", // name of the geoserver resource with
workspace prefixed

"littleEndian": false

}

c. Layer configuration of geoserver layer with layer name not prefixed with
workspace then getCapabilities is requested in global scope.

"type": "terrain",

"provider": "wms",

"url": "https://host-sample/geoserver/wms",
"name": "layername",

"littleEndian": false

. Note

With wms as provider, the format option is not needed, as Mapstore supports only
image/bil format and is used by default

Generic layer configuration of type terrain and provide wms as follows. The layer
configuration needs to point to the geoserver resource and define the type of layer
and the type of provider, here all available properties:

"type": "terrain",

"provider": "wms",

"url": "https://host-sample/geoserver/wms",

"name": "workspace:layername", // name of the geoserver resource

"littleEndian": false, // defines whether buffer is in little or big endian

"visibility": true,

// optional properties

"crs": "CRS:84", // projection of the layer, support only CRS:84 | EPSG:4326 | EPSG:3857 |
OSGEO0:41001

"version": "1.3.0", // version used for the WMS request

"heightMapWidth": 65, // width of a tile in pixels, default value 65

"heightMapHeight": 65, // height of a tile in pixels, default value 65

"waterMask": false,

"offset": 0, // offset of the tiles (in meters)

"highest": 12000, // highest altitude in the tiles (in meters)

"lowest": -500, // lowest altitude in the tiles

"sampleTerrainZoomLevel": 18 // zoom level used to perform sampleTerrain and get the
height value given a point, used by measure components

}

The terrain layer of cesium type allows using Cesium terrain format compliant
services (like Cesium Ion resources or MapTiler meshes). The options attributte
allows for further customization of the terrain properties (see available options on
the Cesium documentation for the cesium terrain provider)

"type": "terrain",
"provider": "cesium",
"url": "https://terrain-provider-service-url/?key={apiKey}",
"visibility": true,
"options": {
// requestVertexNormals, requestWatermask, credit...

}
}

In order to use these layers they need to be added to the additionalLayers in
localConfig.json . The globe only accepts one terrain provider so in case of adding
more than one the last one will take precedence and be used to create the
elevation profile.

"name": "Map",
"cfg": {
"additionalLayers": [{

"type": "terrain",
"provider": "wms
"url": "https://host-sample/geoserver/wms",
"name": "workspace:layername", // name of the geoserver resource
"littleEndian": false,

"visibility": true,

n
’

https://cloud.maptiler.com/tiles/terrain-quantized-mesh-v2/
https://cesium.com/learn/cesiumjs/ref-doc/CesiumTerrainProvider.html

"crs": "CRS:84"
1
}
}

Cloud Optimized GeoTIFF (COG)

ie.

"type": "cog",

"title": "Title",

"group": "background",

"visibility": false,

"name": "Name",

"sources": [
{ "url": "https://host-sample/cogl.tif" },
{ "url": "https://host-sample/cog2.tif" }

Layer groups

Inside the map configuration, near the layers entry, you can find also the groups

entry. This array contains information about the groups in the TOC. A group entry
has this shape:

* id: the id of the group.
* expanded : boolean that keeps the status (expanded/collapsed) of the group.

* title : a string or an object (for i18n) with the title of the group. i18n object
format is the same of layer's title.

"title": {
"default": "Root Group",
"it-IT": "Gruppo radice",
"en-US": "Root Group",
"de-DE": "Wurzelgruppe",
"fr-FR": "Groupe Racine",
"es-ES": "Grupo Raiz"

be

ie.

{
"id": "GROUP _ID",
"title": "Some default title"
"expanded": true

}

Other supported formats

The JSON format above is the standard MapStore format. Anyway MapStore
allows to import/export different kinds of formats for maps.

Web Map Context

MapStore provides support for OGC Web Map Context(WMC) files. They can be
imported either using Import plugin functionality, or from within a context using
Map Templates plugin. MapStore maps can also be exported in WMC format
through Export plugin.

The important thing to remember when exporting MapStore maps to WMC format
is that it only supports WMS layers, meaning any non-WMS layers(such as tiled
OSM backgrounds for example) will not be preserved in the resulting WMC file.
The exact way in which the conversion happens is described in further detail
throughout this document.

WMC File Structure

WMC context file generated by MapStore is an XML file with the following
structure:

<?xml version="1.0" encoding="UTF-8"?>
<ViewContext xmlns="http://www.opengis.net/context" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" version="1.1.0" xsi:schemal.ocation="http://www.opengis.net/
context http://schemas.opengis.net/context/1.1.0/context.xsd">
<General>
<Title>MapStore Context</Title>
<Abstract>This is a map exported from MapStore2.</Abstract>
<BoundingBox minx="-20037508.34" miny="-20037508.34" maxx="20037508.34"
maxy="20037508.34" SRS="EPSG:900913"/>
<Extension>
<!--general extensions go here-->
</Extension>
</General >
<LayerList>
<Layer queryable="0" hidden="0">
<Name>topp:states</Name>
<Title>USA Population</Title>
<Server service="0GC:WMS" version="1.3.0">
<OnlineResource xmlns:xlink="http://www.w3.0rg/1999/xlink" xlink:type="simple
xlink:href="https://demo.geo-solutions.it/geoserver/wms"/>
</Server>
<DimensionList>
<Dimension name="elevation" units="EPSG:5030" unitSymbol="m" default="0.0"
multipleValues="1">0.0,200.0,400.0,600.0</Dimension>
<Dimension name="time" units="IS08601" default="current"
multipleValues="1">2016-02-23T03:00:00.000Z,2016-02-23T06:00:00.000Z</Dimension>
<!--...other dimensions-->
</DimensionlList>

<FormatList>
<Format current="1">image/png</Format>
<!--...other formats-->
</FormatList>
<StyleList>
<Style>
<Name>population</Name>
<Title>Population in the United States</Title>
<LegendURL width="81" height="80" format="image/png">
<OnlineResource xmlns:xlink="http://www.w3.0rg/1999/xlink"
xlink:type="simple" xlink:href="https://demo.geo-solutions.it:443/geoserver/topp/states/
ows?
service=WMS &request=GetLegendGraphic&format=image%2Fpng&width=20«
>
</LegendURL>
</Style>
<!--...other styles-->
</StyleList>
<Extension>
<!--layer extensions go here-->
</Extension>
<!--...other layers-->
</LayerList>
</ViewContext>

More information about each of the elements in the example above can be looked
up in OGC WMC implementation specification

Apart from standard WMC XML elements, MapStore provides support for various
extensions. These are placed inside Extension tag, and are not gueranteed to be
supported outside MapStore, as they are not a part of OGC Web Map Context
specification. MapStore provides two types of extensions: openlayers and
mapstore-specific elements. WMC can have an Extension element inside General,
and each of the Layer elements. Supported extensions in General are:

Openlayers:

* maxExtent if present, it's attributes are used as map's bounding box, instead of
the values specified in BoundingBox tag. The values are assumed to be in a
projection, specified in SRS attribute of BoundingBox

<ol:maxExtent xmlns:ol="http://openlayers.org/context" minx="-20037508.34"
miny="-20037508.34" maxx="20037508.34" maxy="20037508.34"/>

MapStore specific:

* GroupList defines a mapstore group list. Contains Group elements that describe
a particular layer group:

<ms:GroupList xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context">
<ms:Group xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context"

http://portal.opengeospatial.org/files/?artifact_id=8618

id="Default" title="Default" expanded="true"/>
</ms:GroupList>

e center defines a center of map view

<ms:center xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context"
x="1.5" y="2.5" crs="EPSG:3857"/>

* zoom map zoom level

<ms:zoom xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context">7</
ms:zoom>

Supported extensions for each Layer element are:
Openlayers:

* maxExtent if present, used for the value of layer's bbox. Values are assumed to

be in a projection, specified in SRS attribute of "BoundingBox'
* singleTile specifies layer's "singleTile" property value
* transparent is layer transparent or not, true by default
* isBaseLayer if true, the layer is put into "backgrounds" group
* opacity layer's opacity value
<ol:maxExtent xmlns:ol="http://openlayers.org/context" minx="-13885038.382960921"
miny="2870337.130793682" maxx="-7455049.489182421" maxy="6338174.0557576185"/>
<ol:singleTile xmlns:ol="http://openlayers.org/context">false</ol:singleTile>
<ol:transparent xmlns:ol="http://openlayers.org/context">true</ol:transparent>

<ol:isBaseLayer xmlns:ol="http://openlayers.org/context">false</ol:isBaseLayer>
<ol:opacity xmlns:ol="http://openlayers.org/context">1</ol:opacity>

Cesium:

* tileDiscardPolicy sets a policy for discarding (missing/broken) tiles (https://
cesium.com/learn/cesiumjs/ref-doc/TileDiscardPolicy.html). If it is not specified
the NeverTileDiscardPolicy will be used. If "none" is specified, no policy at all
will be set.

MapStore specific:

* group specifies to which group, among listed in "GroupList" element, the layer
belongs to

* search JSON describing a filter that is applied to the layer

https://cesium.com/learn/cesiumjs/ref-doc/TileDiscardPolicy.html
https://cesium.com/learn/cesiumjs/ref-doc/TileDiscardPolicy.html

* DimensionList contains Dimension elements that describe dimensions that
cannot be described using standard "Dimension" tag. Currently supports
dimensions of multidim-extension type:

e CatalogServices contains Service elements that describe services available for
use in Catalog.

<ms:DimensionList xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/
context">
<ms:Dimension xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context"
xmlns:xlink="http://www.w3.0rg/1999/xlink" name="time" type="multidim-extension"
xlink:type="simple" xlink:href="https://cloudsdi.geo-solutions.it/geoserver/gwc/service/
wmts"/>
</ms:DimensionList>
<ms:CatalogServices selectedService="gs stable csw">
<ms:Service serviceName="gs stable csw">
<ms:Attribute name="url" type="string">https://gs-stable.geosolutionsgroup.com/
geoserver/csw</ms:Attribute>
<ms:Attribute name="type" type="string">csw</ms:Attribute>
<ms:Attribute name="title" type="string">GeoSolutions GeoServer CSW</
ms:Attribute>
<ms:Attribute name="autoload" type="boolean">true</ms:Attribute>
</ms:Service>
<ms:Service serviceName="gs stable wms">
<ms:Attribute name="url" type="string">https://gs-stable.geosolutionsgroup.com/
geoserver/wms</ms:Attribute>
<ms:Attribute name="type" type="string">wms</ms:Attribute>
<ms:Attribute name="title" type="string">GeoSolutions GeoServer WMS</
ms:Attribute>
<ms:Attribute name="autoload" type="boolean">false</ms:Attribute>
</ms:Service>
<ms:Service serviceName="gs stable wmts">
<ms:Attribute name="url" type="string">https://gs-stable.geosolutionsgroup.com/
geoserver/gwc/service/wmts</ms:Attribute>
<ms:Attribute name="type" type="string">wmts</ms:Attribute>
<ms:Attribute name="title" type="string">GeoSolutions GeoServer WMTS</
ms:Attribute>
<ms:Attribute name="autoload" type="boolean">false</ms:Attribute>
</ms:Service>
</ms:CatalogServices>

Note, that during the exporting process, some sort of fallback for dimensions,
listed as extensions, is provided inside the standard DimensionList tag whenever
possible, to ensure interoperability with other geospatial software. When such a
context is imported back into MapStore, the values of dimensions inside extensions
will override the ones specified inside the standard DimensionList tag.

Also note, that the extension elements would be read correctly only if they belong
to appropriate XML namespaces:

* http://openlayers.org/context for openlayers extensions

* https://mapstore.geosolutionsgroup.com/mapstore/context for mapstore specific
extensions

Usage inside MapTemplates plugin

As stated previously, WMC files can be used as map templates inside contexts.
New WMC templates can be uploaded in context creation tool, after enabling the
MapTemplates plugin for a context. When the context is loaded, for every template
inside MapTemplates there are two options available:

* Replace map with this template replace the currently loaded map with the one
described by the template. Upon loading, the map will zoom to the extent
specified in maxExtent extension or in BoundingBox tag. If the template has no
visible background layers available, the default empty background will be
added and set to be visible automatically.

* Add this template to map merges layers and groups inside the template with the
current map configuration. If the WMC template does not contain GroupList
extension, a new group with the name extracted from Title tag of the template
will be created and will contain all the layers of the template. Zoom and
projection will remain unchanged.

Other considerations

Due to the limitations posed by WMC format the conversion process will not
preserve the map state in it's entirety. The only supported way to do this is to
export to MapStore JSON format. The WMC export option presumably should be
used in cases when the WMS layers inside a MapStore map need to be used in
some way with a different geospatial software suite, or to import such layers from
outside MapStore or if you already have WMC context files that you want to use.

Additional map configuration options

Map configuration also contains the following additional options:

* catalogServices object describing services configuration for Catalog
* widgetsConfig configuration of map widgets

* maplnfoConfiguration map info configuration options

* dimensionData contains map time information

* currentTime currently selected time; the beginning of a time range if offsetTime
is set

* offsetTime the end of a time range

e timelineData timeline options

* selectedLayer selected layer id; if not present time cursor will be unlocked

* mapViews map views options

mapViews

Example:

{
"mapViews": {
"active": true,
"selectedld": "view.id.01",
"views": [
{
"id": "view.id.01",
"title": "Title",
"description": "<p>Description</p>",
"duration": 10,
"flyTo": true,
"center": {
"longitude": 8.93690091201193,
"latitude": 44.39522451776296,
"height": -0.0022900843616703204
B
"cameraPosition": {
"longitude": 8.93925651181738,
"latitude": 44.38698231953802,
"height": 655.705914040523
Bo
"zoom": 17.89659156734602,
"bbox": [
8.920925393119584,
44.39084055670365,
8.948118718933738,
44.40554444092288
I®
"mask": {
"enabled": true,
"resourceld": "resource.id.01",
"inverse": true,
"offset": 10000
2
"terrain": {
"clippingLayerResourceld": "resource.id.02",
"clippingPolygonFeatureld": "feature.id.01",
"clippingPolygonUnion": true
2
"globeTranslucency": {
"enabled": true,
"fadeByDistance": false,
"nearDistance": 500,
"farDistance": 50000,
"opacity": 0.5
2

"layers": [

{
"id": "layer.id.01",
"visibility": true,
"opacity": 0.5

b

{
"id": "layer.id.04",
"visibility": true,
"clippingLayerResourceld": "resource.id.02",
"clippingPolygonFeatureld": "feature.id.01",
"clippingPolygonUnion": false

1
}
1,
"resources": [
{
"id": "resource.id.01",
"data": {
"type": "vector",
"name": "mask",
"title": "Mask",
"id": "layer.id.02"
}
B
{
"id": "resource.id.02",
"data": {
"type": "wfs",
"url": "/service/wfs",
"name": "clip",
"title": "Clip",
"id": "layer.id.03"

The mapViews properties

Name Type Description

active boolean if true the map view tool will be active at initialization
selectedld string id of the selected view

views array array of views configurations (see below)

resources array resources configurations (see below)

View configuration object

Name

id

title

description

duration

flyTo

center

cameraPosition

zoom

bbox

mask

mask.enabled

mask.resourceld

mask.inverse

mask.offset

Type

string

string

string

number

boolean

object

object

number

array

object

boolean

string

boolean

number

Description

identifier of the view

title of the view

an html string to describe the

view

when playing, duration in
seconds of the view

enable animation transition
during navigation

center target position as

point of view position as

zoom level

bounding box in WGS84 as
[minx, miny, maxx, maxy]

optional configuration for the
3D tiles mask

if true enables the mask

identifier of a resource
configuration in the resources
array

if true enables the inverse
mask

offset in meters for the
inverse mask

Name

terrain

terrain.clippingLayerResourceld

terrain.clippingPolygonFeatureld

terrain.clippingPolygonUnion

globeTranslucency

globeTranslucency.enabled

globeTranslucency.opacity

globeTranslucency.fadeByDistance

globeTranslucency.nearDistance

globeTranslucency.farDistance

Type

object

string

string

boolean

object

boolean

number

boolean

number

number

Description

optional configurations for
terrain clipping

identifier of a resource
configuration in the resources
array

identifier of a polygonal
feature available in the
selected layer source to use
to apply the clipping

if true it applies inverse
clipping

optional configuration for the
globe translucency

if true enables translucency

opacity of the globe
translucency, it should be a
value between 0 and 1 where
1 is fully opaque

if true the translucency is
visible only between the
nearDistance and farDistance

values

when fadeByDistance is true it
indicates the minimum
distance to apply
translucency

when fadeByDistance is true it
indicates the maximum
distance to apply
translucency

Name Type Description

layers array array of layer configuration
overrides, default properties
override visibility and opacity

Resource object configuration

Name Type Description
id string identifier for the resource
data object properties related to the layer used for the resource (wfs or

vector type)

Externalized Configuration

The data directory is a directory on the file-system, configured for an instance of
MapStore, that will be used to externalize configuration of MapStore.

Configuring this directory you will be able to:

* Externalize database configuration

* Externalize proxy configuration

* Externalize JSON configs files for the application (localConfig.json, new.json)
» Apply patches to default JSON config files (e.g. to store only the differences)

e Store extensions installed

All the configuration stored here will persist across MapSore updates.

Using a data directory

To use a data directory, this must be configured through a specific JVM system
property: datadirlocation

java -Ddatadir.location=/etc/mapstore/datadir

The data-directory must exist, but all the files inside it are optional. Due to some
particular operations (e.g. installation of extensions), some files may be stored in
data-dir by the application itself.

The structure of the data-dir is the following:

— configs (JSON configs)
| L— pluginsConfig.json.patch
— extensions

| F— extensions.json (extensions index)

| L— SampleExtension (One directory for each extension installed)
| — index.js

| — assets

I

L— translations
— geostore-datasource-ovr.properties (database configuration)

— ldap.properties

|— mapstore-ovr.properties
L— mapstore.properties

* configs : files in this folder can override the files in configs file of the application

(pluginsConfig.json , localConfig.json).

* If a file with the same name is present, it will be provided instead of the original

one

* If a patch file is present,(e.g. localConfig.json.patch) the patch will be applied to
the JSON (original or overridden) and provided patched to the client

e extensions : this folder contains all the files for the installed extensions, one
folder for each installed extension

e extensions.json : the index of the current extensions installed.

Multiple data directory locations

It is possible to specify more than one datadir location path, separated by commas.
This can be useful if you need to have different places for static configuration and
dynamic one. A dynamic configuration file is one that is updated by MapStore
using the UI, while static ones can only updated manually by an administrator of
the server. An example are uploaded extensions, and their configuration files.

MapStore looks for configuration resources in these places in order:

* the first datadir.location path other datadir.location paths, if any, in order

 the application root folder

Dynamic files will always be written by the Ul in the first location in the list, so the
first path is for dynamic stuff.

Example:

-Ddatadir.location=/etc/mapstore_extensions,/etc/mapstore_static_config

Logging

Logging has not been externalized yet, You can manually do this change in WEB-
INF/web.xml file to externalize also this file:

<context-param>
<param-name>log4jConfigl.ocation</param-name>
<param-value>file:${datadir.location}/log4j2.properties</param-value>
</context-param>

Print Configuration

The config.yaml is by default in the printing folder of the webapp root. You can
externalize the path to this resource (and all relative files) by setting the system
variable mapfish-print-config . Make you sure the file exists and all the required files
(header, images ...) are also available (typically they are the same directory,
identified by relative paths. For more information, see mapfish-print
documentation).

Example:
-Dmapfish-print-config=/etc/mapstore/datadir/printing/config.yaml

We suggest to put your customizations for printing inside the data directory in a
folder named printing , using the same structure of the printing folder of the
application. (config.yaml , images and so on...). Doing it this way makes the
application ready for future updates.

Database Connection

If you create a file in the datadir called geostore-datasource-ovr.properties , it will be
used and override the current

Example:

geostoreDataSource.driverClassName=org.postgresql.Driver
geostoreDataSource.url=jdbc:postgresql://localhost:5432/geostore
geostoreDataSource.username=geostore

geostoreDataSource.password=geostore
geostoreVendorAdapter.databasePlatform=org.hibernate.dialect.PostgreSQLDialect
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto] =validate
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.default schema]=geostore
geostoreVendorAdapter.generateDdl=true

geostoreVendorAdapter.showSql=false

NOTE: this file simply overrides the values in geostore-datasource-
ovr.properties in the web-application, it will not replace it usually it is
configured by default to use h2 database, so configuring the database (h2,
postgreSQL or oracle) will override all the properties. Anyway if you changed this
file in your project, you may need to override more variables to make it work

http://www.mapfish.org/doc/print/

Overriding front-end configuration

Externalizing the whole localConfig.json file allows to keep your configurations
during the various updates. Anyway keeping this long file in sync can become
hard. You can use patch files, and this is the first suggested option.

Anyway if you need to specify something in localConfig.json that comes from your
Java application, MapStore gives you the possibility to override only some specific
properties of this big file and keep these changes separated from the application,
allowing an easier updates. This is particularly useful for example when you have
to change only a bunch of settings on a specific instance, and use the standard
configuration for everything else.

You can override one or more properties in the file using the following JVM flags:

* overrides.config : the path of a properties file (relative to the datadir) where
override values are stored

* overrides.mappings : comma limited list of JSONPath=property values to override
An example of overrides that will replace the default WMS service url:

In mapstore.properties :

overrides.config=env.properties
overrides.mappings=initialState.defaultState.catalog.default.services.gs_stable wms.url=geo

In datadir path/env.properties :
geoserverUrl=https://demo.geo-solutions.it/geoserver/wms

This allows to have in datadir path/env.properties a set of variables that can be used
in overrides (even in different places) that are indicated by overrides.mappings .

Note: env.properties should not be placed in classpath folder

Patching front-end configuration

Another option is to patch the frontend configuration files, instead of overriding
them completely, using a patch file in json-patch format.

To patch one of the allowed resources you can put a file with a .patch extension in
the datadir folder (e.g. localConfig.json.patch) and that file will be merged with the
main localConfig.json to produce the final resource.

http://jsonpatch.com/

This allows easier migration to a new MapStore version. Please notice that when
you use a patch file, any new configuration from the newer version will be applied
automatically. This can be good or bad: the good part is that new plugins and
features will be available without further configuration after the migration, the bad
part is that you won't be aware that new plugins and features will be automatically
exposed to the final user.

Example: adding a plugin to the localConfig json configuration file:

[{"op": "add", "path": "/plugins/desktop/-", "value": "MyAwesomePlugin"}]

Externalize front-end Configurations

From version 2021.02.xx, the externalization of the front-end files is automatic on
the back-end, as well as you configure the data-directory. Anyway for your custom
application you may want to customize the following paths to point your own
services for configuration, extensions, and so on. The paths can be customized by
adding the relative line in the app.jsx :

* Application (localConfig.json):
ConfigUtils.setLocalConfigurationFile("configs/localConfig.json");

* Static maps (new.json and config.json):
ConfigUtils.setConfigProp("configurationFolder", "configs/");

» Extensions configuration (extensions.json):
ConfigUtils.setConfigProp("extensionsRegistry", "extensions/extensions.json");

e Context Editor (pluginsConfig.json):
ConfigUtils.setConfigProp("contextPluginsConfiguration", "configs/pluginsConfig.json");

» Extensions folder (folder where to get the extensions found in extensions.json):

ConfigUtils.setConfigProp("extensionsFolder", "extensions/");

. Note

Because in this case we are modifying the app.jsx file, these changes can be
applied only at build time in a custom project. Future improvements will allow to
externalize these files also in the main product, without any need to rebuild the
application.

Configuration of Application Context
Manager

The Application Context Manager can be configured editing the configs/
pluginsConfig.json file.

The configuration file has this shape:

{
"plugins": [
{
"name": "Map",
"mandatory": true, // <-- mandatory should not be shown in editor OR not movable
and directly added to the right list.
by 4
"name": "Notifications",
"mandatory": true, // <-- mandatory should not be shown in editor OR not movable
and directly added to the right list.
"hidden":
true, // some plugins are only support, so maybe showing them in the UI is superfluous.
By
"name": "TOC",
"symbol": "layers",
"title": "plugins.TOC.title",
"description": "plugins.TOC.description",
"defaultConfig": {},
"children": ["TOCItemSettings", "FeatureEditor"]
By
"name": "FeatureEditor",
"defaultConfig": {}
A
"name": "TOCItemSettings",
by
"name": "MyPlugin", // <-- this is typically an extension,
"docUrl": "https://domain.com/documentation" // <-- custom documentation url
b A
"name": "Footer",
“children": ["MousePosition", "CRSSelector", "ScaleBox"]
Ao
"name": "Widgets",
"children": ["WidgetsBuilderPlugin", "WidgetsTrayPlugin"],
"dependencies": ["WidgetsBuilderPlugin"], // some plugins may be mandatory only if
parent is added.
A
"name": "WidgetsTrayPlugin"
by 1
"name": "WidgetsBuilderPlugin",
"hidden": true // <-- This is a child. In this case it will be added automatically,
// without showing if the parent is added

The configuration contains the list of available plugins to display in the plugins
selector. Each entry of plugins array is an object that describes the plugin, it's
dependencies and it's properties. These are the properties allowed for the plugin
entry object:

* name : {string} the name (ID) of the plugin

* title: {string} the title string OR messageld (from localization file)

* description : {string} : the description string OR messageld (from localization
file)

* docUrl : {string} : the plugin/extension specific documentation url
* symbol : {string}": icon (or image) symbol for the plugin

* defaultConfig {object} : optional object containing the default configuration to
pass to the context-creator.

* mandatory {boolean} : if true, the plugin must be added to the map, so not
possible to remove (but can be customized)

* hidden {boolean} : if true, the plugin should not be shown in UI. If mandatory, is
added without showing.

* children {string[]} : list of the plugins names (ID) that should be shown as
children in the Ul

* dependencies : The difference between mandatory and dependencies is the "if
the parent is present" condition.). Plugins that can not be disabled (or if are
hidden, added by default) and are added ONLY if the parent plugin is added.
(e.g. containers like toolbar, omnibar, footer or DrawerMenu, and other
dependencies like Widgets that must contain WidgetsBuilder and so on)

MapStore filters

Mapstore filtering system is trying to allow to accomplish the following goals:

* Support for multiple filters standards (CQL, OGC)

* Support for multiple filter types (spatial, temporal, attribute, etc.)

* Support for future filter standards.

» Allow to be handled independently from the data source (WFS, WMS, etc.)

» Allow to leave the entry points to manage them programmatically.

For this reason, MapStore stores internally a filter object that is a JSON object that
can be serialized in different formats (CQL, OGC, etc.) and can be used to filter
data sources. This is the internal filtering system used by mapstore, that can be for
instance in layerFilters in the layer object

Formats

mapstore Format

This JSON object is a container that has this shape:

{
"format": "mapstore",
"version": "1.0.0",
"filters": [1,
// ...other fields

}

By default all the filters contained in the "filters" array are combined with an AND
operator. Every filter in the array is a JSON object that can be serialized in
different formats (CQL, OGC, etc.). Each of them is a JSON object that must have
the format value, to be recognized and properly converted,

All the filters in filters array will have at least a format field and an optional id
attribute reserved, that can be used to identify the filter from a component that
wants to use it.

Filters in the filters array can be combined with a logic operator (AND, OR), in
this case the filter object must have the logic format. Moreover they can be of

mapstore format too.

. Note

For backward compatibility, the filter object without the "format" field is
considered as "mapstore" format, version "1.0.0".

. Note

For backward compatibility, the filters "mapstore" of version "1.0.0" can contain
also several other fields that will be deprecated in the future in favor of a
mapstore-query-panel format, that is the format used by the query panel, and
currently mostly supported in MapStore. So a filter like this is still valid:

*json
{
"format": "mapstore",
"version": "1.0.0",
"groupFields": [],
"spatialField": {
"method": "BBOX",
"attribute": "the geom",
"operation": "INTERSECTS",
"geometry": {
"type": "Polygon",
"coordinates": [[[12.5,41.5],[12.5, 42.5],[13.5,42.5],[13.5,41.5],[12.5,41.5]1]
}
2
"filterFields": [{
"attribute": "name",
"operator": "=",
"type": "string",
"value": "test"

3

logic format

In order to allow to create complex filters, MapStore allows to combine filters with
a logic operator (AND, OR). The logic format is a JSON object that has this shape:

"format": "logic",
"version": "1.0.0",
IllogiC": IIANDII'
"filters": []

cql format

The cql formatis a JSON object that has this shape:

{
"format": "cql",
"version": "1.0.0",
"body": "..."

}

Il Note: MapStore actually supports only a subset of CQL, that is the one used by
GeoServer.

mapstore-query-panel format

The mapstore-query-panel format is a JSON object that has this shape:

"format": "mapstore-query-panel",
"version": "1.0.0",

"groupFields": [1,

"spatialField": {},

"filterFields": [],
"crossLayerFilter": {},

Now it do not have an implementation yet, but this format will replace the old
legacy 'mapstore’ fields in the future.

Supporting new formats

At the moment the filter conversion system is a work in progress. The API may
change in the future, keeping the canConvert and getConverter functions as
external API. We actually support cql and ogc as output formats (as strings), and
cql (partially, cannot parse spatial filters in cql yet), mapstore and logic as input
formats (as JSON objects with format as written above). At the moment we don't
have an internal model for a filter to use as intermediate model, but a set of
converters in MapStore2/web/client/utils/filter/converters/index.js file. The converter
object is an object that implements a method for each format that you want to
support, with the following signature:

{
[format]: (filter::Object, options) => filter

}

Example:

{
ogc: (filter::Object, options) => filter::String,
cql: (filter::Object, options) => filter::String
}

options depends on the specific output format, but it can be used to pass additional
parameters to the converter. For instance the cql convert has no options, but the
ogc converter has an options object that can contain the nsFilter field, that is the
srs of the geometry to be used in the filter. See the JSDoc of the ogc converter for
more details.

These methods will translate the JSON objects received as input (or in same cases
the effective body of the filter) in the format specified in the method name. Future
converters (maybe with a more generic method) will be added to support other
formats, if needed.

Javascript API exposed by MapStore to manage filters is in

MapStore2/web/client/utils/filter/converters .

the functions are:

getConverter(format::String) // return the converter for the specified format

The converter depends on the specific output format, but

canConvert(from::Object|String, to::Object) // return true if the filter can be converted in
the specified format

. Note

Because there is not a generic converter, the from parameter can be a string or an
object. If it is a string, it is considered as the format of the filter, otherwise it is
considered as the filter object.

Appendix A: mapstore format legacy fields

mapstore-query-panel will include all the legacy fields of the mapstore format, that
will be deprecated in the future. For backward compatibility, the mapstore format
will be still supported, but needs tp be converted into mapstore-query-panel format.

Here a full example of the current content stored in layerFilter object, with all the
legacy fields:

"layerFilter": {
"searchUrl": null,
"featureTypeConfigUrl": null,
"showGeneratedFilter": false,
"attributePanelExpanded": true,
"spatialPanelExpanded": true,
"crossLayerExpanded": true,
"showDetailsPanel": false,
"groupLevels": 5,
"useMapProjection": false,
"toolbarEnabled": true,
"groupFields": [

{
"id": 1,
"logic": "OR",
"index": 0

Yo

{
"id": 1671785737915,
"logic": "OR",
"groupld": 1,
"index": 1

}

1,
"maxFeaturesWPS": 5,
"filterFields": [
{
"rowId": 1671785736331,
"groupld": 1,
"attribute": "LAND KM",
"operator": ">
"value": 1000000,
"type": "number",
"fieldOptions": {
"valuesCount": 0,
"currentPage": 1
b

"exception": null

"rowld": 1671785739355,
"groupld": 1671785737915,

"attribute": "STATE NAME",

"operator": "=",
"value": "Alabama",
"type": "string",
"fieldOptions": {
"valuesCount": 0,
"currentPage": 1
Yo
"exception": null,
"loading": false,
"options": {
"STATE NAME": []
Yo

"openAutocompleteMenu": false

"rowId": 1671785746696,
"groupld": 1671785737915,
"attribute": "STATE NAME",
"operator": "=",

"value": "Arizona",

"type": "string",

"fieldOptions": {
"valuesCount": 0,
"currentPage": 1

b

"exception": null,

"loading": false,

"options": {

"STATE NAME": []
2
"openAutocompleteMenu": false
}
1,
"spatialField": {
"method": "BBOX",
"operation": "INTERSECTS",
"geometry": {

"id": "aefadb00-829f-11ed-b555-8bd9209cfOfa",

"type": "Polygon",

"extent": [
-13188750.608437454,
3135752.6483710706,
-8795761.718831802,
4671831.168789972

1,

"center": [
-10992256.163634628,
3903791.908580521

1,

"coordinates": [

[
-13188750.608437454,
4671831.168789972

-13188750.608437454,
3135752.6483710706

-8795761.718831802,
3135752.6483710706

-8795761.718831802,
4671831.168789972

-13188750.608437454,
4671831.168789972

]

I?

"style": {},

"projection": "EPSG:3857"
2
"attribute": "the geom"

b
"simpleFilterFields": [],
"crossLayerFilter": {
"attribute": "the geom",
"collectGeometries": {
"queryCollection": {
"typeName": "gs:us states",
"filterFields": [
{
"rowld": 1671785795624,
"groupld": 1,
"attribute": "STATE NAME",
"operator": "=",
"value": "Alabama",
"type": "string",
"fieldOptions": {
"valuesCount": 0,
"currentPage": 1
b
"exception": null,
"loading": false,
"openAutocompleteMenu": false,
"options": {
"STATE NAME": []
}

"rowld": 1671785801840,
"groupld": 1,
"attribute": "STATE NAME",
"operator": "=",
"value": "Arizona",
"type": "string",
"fieldOptions": {
"valuesCount": 0,
"currentPage": 1
by
"exception": null,
"loading": false,
"openAutocompleteMenu": false,
"options": {
"STATE NAME": []
}
}
1,
"geometryName": "the geom",
"groupFields": [
{
"id": 1,
"index": 0,
"logic": "OR"

}
b
"operation": "INTERSECTS"
b

"autocompleteEnabled": true

MapStore vector style

The vector and wfs layer types are rendered by the client as Geg]JSON features
and it possible to apply specific symbolizer using the style property available in
the layer options. The style object is composed by these properties

* format the format encoding used by style body

* body the actual style rules and symbolizers

example:

{
"type": "vector",
"features": [],
"style": {
"format": "geostyler",
"body": {
"name": "My Style",
"rules": [

{
"name": "My Rule",
"symbolizers": [
{

"kind": "Line",
"color": "#3075e9",
"opacity": 1,
"width": 2

The default format used by MapStore is "geostyler" that is an encoding based on
the geostyler-style specification that could include some variations or limitations
related to the map libraries used by MapStore app. We suggest to refer to
following doc for the rule/symbolizer properties available in MapStore.

Ths style body is composed by following properties:

* name style name

* rules list of rule object that describe the style
A rule objectis composed by following properties:

* name rule name that could be used to generate a legend

https://github.com/geostyler/geostyler-style

* filter filter expression

* symbolizers list of symbolizer object that describe the rule (usually one per
rule)

The filter expression define with features should be rendered with the
symbolizers listed in the rule

example:

// simple comparison condition structure
// [operator, property key, value]
{

"filter": ["==", "count", 10]

}

// mulitple condition with logical operato
// [logical operator, [condition], [condition]]
{
"filter": [
I,
[">", "height", 10],
['==", "category", "building"]
1
}

Available logical operators:

Operator Description
\\| OR operator
&& AND operator

Available comparison operators:

Operator Description

== equal to

= like (for string type)
= is not

< less than

Operator

Description

less and equal than

grater than

grater and equal than

The symbolizer could be of following kinds :

Mark symbolizer properties

Property

kind

color

fillOpacity

strokeColor

strokeOpacity

strokeWidth

strokeDasharray

radius

wellKnownName

Description

must be equal to Mark

fill color of the mark

fill opacity of the mark

stroke color of the mark

stroke opacity of the mark

stroke width of the mark

array that represent the dashed line
intervals

radius size in px of the mark

rendered shape, one of Circle, Square,
Triangle, Star, Cross, X, shape://vertline,
shape://horline, shape://slash, shape://
backslash, shape://dot, shape://plus,
shape://times, shape://oarrow or shape://
carrow

2D

3D

Property

msBringToFront

msHeightReference

msHeight

msLeaderLineColor

msLeaderLineOpacity

msLeaderLineWidth

Description 2D

this boolean will allow setting the
disableDepthTestDistance value for the
feature. This would

reference to compute the distance of the
point geometry, one of none, ground or
clamp

height of the point, the original geometry
is applied if undefined

color of the leading line connecting the
point to the terrain

opacity of the leading line connecting the
point to the terrain

width of the leading line connecting the
point to the terrain

Icon symbolizer properties

Property

kind

image

size

opacity

rotate

anchor

Description 2D
must be equal to Icon X
url of the image to use as icon X
size of the icon X
opacity of the icon X
rotation of the icon X
anchor point of the icon, one of: top-left, X

top, top-right, left, center, right, bottom-
left, bottom or bottom-right

3D

3D

Property Description 2D

msBringToFront this boolean will allow setting the
disableDepthTestDistance value for the
feature. This would

msHeightReference reference to compute the distance of the
point geometry, one of none, ground or
clamp

msHeight height of the point, the original geometry

is applied if undefined

msLeaderLineColor color of the leading line connecting the
point to the terrain

msLeaderLineOpacity opacity of the leading line connecting the
point to the terrain

msLeaderLineWidth width of the leading line connecting the
point to the terrain

Experimental: the image property support a custom expression called
msMarkerIcon to render default markers, here the expected structure:

"kind": "Icon",

"image": {
"name": "msMarkerlcon",
"args": [

{

3D

"color": "blue", // 'red', 'orange-dark’, 'orange’, 'yvellow', 'blue-dark’, 'blue’, 'cyan’,

'‘purple’, 'violet', 'pink’', 'green-dark’, 'green', 'green-light' or 'black’
"shape": "circle", // 'circle', 'square’, 'star' or 'penta’
"glyph": "comment" // a Font Awesome v4.7.0 icon
}
]

B
"opacity": 1,
"size": 48,
"rotate": 0,
"anchor": "bottom"

Line symbolizer properties

Property

kind

color

opacity

width

dasharray

msClampToGround

Description

must be equal to Line

stroke color of the line

stroke opacity of the line

stroke width of the line

array that represent the dashed line
intervals

this boolean will allow setting the
clampToGround value for the feature. This
would only apply on Cesium maps.

Fill symbolizer properties

Property

kind

color

fillOpacity

outlineColor

outlineOpacity

outlineWidth

outlineDasharray

Description

must be equal to Fill

fill color of the polygon

fill opacity of the polygon

outline color of the polygon

outline opacity of the polygon

outline width of the polygon

array that represent the dashed line
intervals

2D

2D

3D

3D

Property

msClassificationType

msClampToGround

Description 2D

allow setting classificationType value for
the feature. This would only apply on
polygon graphics in Cesium maps.

this boolean will allow setting the
clampToGround value for the feature.
This would only apply on Cesium maps.

Text symbolizer properties

Property

kind

label

font

size

fontStyle

fontWeight

color

anchor

haloColor

halowidth

offset

Description 2D
must be equal to Text X
text to show in the label, the X

{{propertyKey}} notetion allow to access
feature properties (eg. 'feature name is

{{name}}")

array of font family names X
font size of the label X
font style of the label: normal or italic X
font style of the label: normal or bold X
font color of the label X
anchor point of the label, one of: top-left, X

top, top-right, left, center, right, bottom-
left, bottom or bottom-right

halo color of the label X

halo width of the label X

array of x and y values offset of the label X

3D

3D

Property

msBringToFront

msHeightReference

msHeight

msLeaderLineColor

msLeaderLineOpacity

msLeaderLineWidth

Description 2D

this boolean will allow setting the
disableDepthTestDistance value for the
feature. This would

reference to compute the distance of the
point geometry, one of none, ground or
clamp

height of the point, the original geometry
is applied if undefined

color of the leading line connecting the
point to the terrain

opacity of the leading line connecting the
point to the terrain

width of the leading line connecting the
point to the terrain

3D

Model symbolizer properties (custom symbolizer to
visualize 3D model as point geometries)

Property

kind

model

heading

pitch

roll

scale

Description 2D

must be equal to Model

url of a 3D .glb file

heading rotation

pitch rotation

roll rotation

scale factor

3D

Property

color

opacity

msHeightReference

msHeight

msTranslateX

msTranslateY

msLeaderLineColor

msLeaderLineOpacity

msLeaderLineWidth

Description 2D

color mixed with the mesh texture/
material

color opacity

reference to compute the distance of the
point geometry, one of none, ground or
clamp

height of the point, the original geometry
is applied if undefined

move the model on the x axis with a value
in meters (west negative value, east
positive value)

move the model on the y axis with a value
in meters (south negative value, north
positive value)

color of the leading line connecting the
point to the terrain

opacity of the leading line connecting the
point to the terrain

width of the leading line connecting the
point to the terrain

Circle symbolizer properties

Property

kind

color

opacity

Description 2D
must be equal to Circle X
fill color of the circle X
fill opacity of the circle X

3D

3D

Property Description 2D 3D

outlineColor outline color of the circle X X
outlineOpacity outline opacity of the circle X X
outlineWidth outline width of the circle X X
outlineDasharray array that represent the dashed line X X
intervals
radius radius in meter of the circle X X
gedesic if true draws a geodesic circle X X
msClassificationType allow setting classificationType value for X

the feature. This would only apply on
polygon graphics in Cesium maps.

msClampToGround this boolean will allow setting the X
clampToGround value for the feature.
This would only apply on Cesium maps.

Legacy Vector Style (deprecated)

The style or styleName properties of vector layers (wfs, vector...) allow to apply a
style to the local data on the map.

* style : a style object/array. It can have different formats. In the simplest case it
is an object that uses some leaflet-like style properties:

e weight : width in pixel of the border / line.

* radius : radius of the circle (valid only for Point types)

* opacity : opacity of the border / line.

* color : color of the border / line.

* fillOpacity : opacity of the fill if any. (Polygons, Point)

e fillColor : color of the fill, if any. (Polygons, Point)

* styleName : if set to marker , the style object will be ignored and it will use the
default marker.

In case of vector layer, style can be added also to the specific features. Other ways
of defining the style for a vector layer have to be documented.

Advanced Vector Styles (deprecated)

To support advanced styles (like multiple rules, symbols, dashed lines, start point,
end point) the style can be configured also in a different format, as an array of
objects and you can define them feature by feature, adding a "style" property.

Warning

This advanced style functionality has been implemented to support annotations, at
the moment this kind of advanced style options is supported only as a property of
the single feature object, not as global style.

SVG Symbol (deprecated)

The following options are available for a SVG symbol.
* symbolUrl : a URL (also a data URL is ok) for the symbol to use (SVG format).
You can anchor the symbol using:
* iconAnchor : array of X,y position of the offset of the symbol from top left corner.
¢ anchorXUnits, anchorYUnits unit of the iconAnchor (fraction or pixels).

* size : the size in pixel of the square that contains the symbol to draw. The size is
used to center and to cut the original svg, so it must fit the svg.

* dashArray : Array of line, space size, in pixels. ["6","6"] Will draw the border of
the symbol dashed. It is applied also to a generic line or polygon geometry.

Markers and glyphs (deprecated)

These are the available options for makers. These are specific of annotations for
now, so allowed values have to be documented.

* iconGlyph : e.g. "shopping-cart"

* iconShape : e.g. "circle"

* iconColor : e.g. "red"

e iconAnchor : [0.5,0.5]

Multiple rules and filtering (deprecated)

In order to support start point and end point symbols, you could find in the style
these entries:

* geometry : "endPoint"|"startPoint", identify how to get the geometry from

* filtering : if true, the geometry filter is applied.

Example (deprecated)
Here an example of a layer with:

* a point styled with SVG symbol,
* a polygon with dashed style

* a line with start-end point styles as markers with icons

"type": "vector",
"visibility": true,
"id": "styled-vector-layer",
"name": "styled-vector-layer",
"hideLoading": true,
"features": [
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [2,0]
B
"properties": {},
"style": [
{
"iconAnchor": [0.5,0.5],
"anchorXUnits": "fraction",
"anchorYUnits": "fraction",
"opacity": 1,
"size": 30,
"symbolUrl":
"data:image/svg+xml, %3Csvg xmlns="http://www.w3.0rg/2000/svg' width="'30"
height="'30'%3E%3Crect x='5"'y='5"' width="'20"' height="'20' style="fill:rgh(255,0,0);stroke-
width:5;stroke:rgb(0,0,0)' /%3E%3C/svg%3E",
"shape": "triangle",
"id": "c65cadc0-9b46-11ea-al38-dd5f1faf9a0d",
"highlight": false,
"weight": 4
}
1
A
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[O, O],[1, O1,[1, 1]1,[0,11,[0,0]1]

by
"properties": {},

"style": [
{
"color": "#d0021b",
"opacity": 1,
"weight": 3,

"fillColor": "#4a90e2",
"fillOpacity": 0.5,
"highlight": false,
"dashArray": ["6","6"]
}
]
Ao

"type": "Feature",
"geometry": {
"coordinates": [[0, 2],[0,311,
"type": "LineString"
b
"properties": {},
"style": [
{
"color": "#ffcc33",
"opacity": 1,
"weight": 3,
"editing": {
"fllt: 1
b
"highlight": false

"iconGlyph": "comment",
"iconShape": "square",
"iconColor": "blue",
"highlight": false,
"iconAnchor": [0.5,0.5],
"type": "Point",

"title": "StartPoint Style",
"geometry": "startPoint",
"filtering": true

Ii-

"iconGlyph": "shopping-cart",
"iconShape": "circle",
"iconColor": "red",
"highlight": false,
"iconAnchor": [0.5,0.5],
"type": "Point",

"title": "EndPoint Style",
"geometry": "endPoint",

"filtering": true

Result:

Search by location hame

© OpenStreetMap contributors. | 50 km | Scale: 1:2311167 4 E

Database Setup

MapStore can use 3 types of database:

* H2

* PostgreSQL

* Oracle
MapStore uses an H2 in-memory DB as the default DBMS to persist the data. This
configuration is useful for development and test purposes, or to evaluate the

project but it is obviously NOT RECOMMENDED for production usage; moreover
the H2 DB cannot be used for the integration with GeoServer.

In the following guide you will learn how to configure MapStore to use an external
database.

. Note

Database recommendations are reported in the Requirements page.

Externalize properties files

MapStore has a file called geostore-datasource-ovr.properties . This file is on the
repository in the folder java/web/src/main/resources, in the final mapstore.war
package it will be copied into WEB-INF/classes path. It contains the set-up for the
database connection. Anyway if you edit the file in WEB-INF/classes this file will be
overridden on the next re-deploy. To preserve your configuration on every deploy
you can use an environment variable, geostore-ovr, to configure the path to an
override file in a different, external directory. In this file the user can re-define the
default configuration and so set-up the database configuration.

For instance using tomcat on linux you will have to do something like this to add
the environment variable to the JAVA OPTS

where to add your JAVA OPTS depends on your operating system. For instance
the file could be /etc/default/tomcat8, or similar, in linux debian

here the path to the ovr file
GEOSTORE_OVR_FILE=file:///var/lib/tomcat/conf/geostore-ovr.properties

https://www.h2database.com/html/main.html
https://www.postgresql.org/
https://www.oracle.com/database

add the env. variable 'geostore-ovr' to JAVA OPTS
JAVA OPTS="-Dgeostore-ovr=$GEOSTORE OVR_FILE [other opts]"

So your file /var/lib/tomcat/conf/geostore-ovr.properties will contain the overrides to the
database set-up.

Database creation Mode

By default MapStore automatically populates the database on it's own. If you want
to disable this functionality (e.g. if you don't want to allow the database user to
have permission to create tables) then you have to set-up the following property in
the ovr file to 'validate'

geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm?2ddl.auto] =validate

Options are:

* validate : validate the schema, makes no changes to the database.

* update : update the schema.

* create : creates the schema, destroying previous data.

* create-drop : drop the schema when the SessionFactory is closed explicitly,

typically when the > application is stopped.

In this case it is necessary to manually create the required tables using the scripts
available here for the needed DBMS.

The update mode is usually discouraged in production. On production servers you
should always use validate mode and apply SQL scripts and/or patches manually.
Anyway before every update a database backup is strongly suggested.

H?2

If you download or build mapStore.war, it's default configuration will be this one:

geostoreDataSource.url=jdbc:h2:./webapps/mapstore/geostore
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm?2ddl.auto]=update

This configuration creates a file called geostore in the webapp folder. You can
change the geostoreDataSource.url to setthe path to the database you want to use.
Make you sure that the user of the project that executes Tomcat has write
permissions on the folder where you want to create the database.

https://github.com/geosolutions-it/geostore/tree/master/doc

PostgreSQL

All the following configurations will use geostore as password of the user geostore .
Of course you can change it according to your needings.

Database Creation and Setup

To use postgreSQL DBMS as MapStore you have to create the "geostore" DB.
* Log in as user postgres
* Create the geostore DB:
createdb geostore

Create users and schemas:

psql geostore < 001 setup db.sql

Here below the required part of the file 001 setup db.sql, available here (creation of
test user and schema for geostore test in the original file is not strictly required for
MapStore)

Write the password you prefer instead of 'geostore’

-- CREATE SCHEMA geostore (set the password you prefer)

CREATE user geostore LOGIN PASSWORD 'geostore' NOSUPERUSER INHERIT
NOCREATEDB NOCREATEROLE;

CREATE SCHEMA geostore;

GRANT USAGE ON SCHEMA geostore TO geostore ;
GRANT ALL ON SCHEMA geostore TO geostore ;

alter user geostore set search path to geostore , public;

If you need to create the database schema manually (validate mode), you have also
this script.

At the end, make you sure that the user geostore has access to the database
from the address of MapStore application. You can give permission by editing
pg_hba.conf

Connection to the Database

To configure MapStore to connect it to the new created database you have to edit
your override file like below (change the connection parameters accordingly):

https://github.com/geosolutions-it/geostore/blob/master/doc/sql/001_setup_db.sql
https://github.com/geosolutions-it/geostore/blob/master/doc/sql/002_create_schema_postgres.sql
https://www.postgresql.org/docs/9.1/auth-pg-hba-conf.html

Setup driver and dialect for PostgreSQL database
geostoreDataSource.driverClassName=org.postgresql.Driver
geostoreVendorAdapter.databasePlatform=org.hibernate.dialect.PostgreSQLDialect

Connection parameters
geostoreDataSource.url=jdbc:postgresql://localhost:5432/geostore
geostoreDataSource.username=geostore
geostoreDataSource.password=geostore

geostoreEntityManagerFactory.jpaPropertyMap[hibernate.default schema]=geostore

Automatic create-update database mode
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=update

Other options

geostoreVendorAdapter.generateDdl=true
geostoreVendorAdapter.showSqgl=false

Migrate an existing H2 database to PostgreSQL

If you used an H2 database during development, and you want to deploy the
application in production, migrating the database to PostgreSQL is not that easy.

For this reason we have created a specific tool for this task, called
H2ToPgSQLExport that is part of the GeoStore CLI.

More information on the migration tool is available in the GeoStore CLI
documentation page.

Oracle

Database Creation and Setup

Create a database geostore, a schema called GEOSTORE and a user geostore that
has write access to them.

Use this SQL script to create the DB schema.

Connection to the Database

To configure MapStore to connect to the new created database you have to edit
your override file like reported below:

Setup driver and dialect for Oracle Database
geostoreDataSource.driverClassName=oracle.jdbc.OracleDriver
geostoreVendorAdapter.databasePlatform=org.hibernate.dialect.Oracle10gDialect

Connection parameters
geostoreDataSource.url=jdbc:oracle:thin:@localhost:1521/ORCL

https://github.com/geosolutions-it/geostore/tree/master/src/cli
https://github.com/geosolutions-it/geostore/tree/master/src/cli
https://github.com/geosolutions-it/geostore/blob/master/doc/sql/002_create_schema_oracle.sql

geostoreEntityManagerFactory.jpaPropertyMap[hibernate.default schema]=GEOSTORE
geostoreDataSource.username=geostore
geostoreDataSource.password=geostore

Automatic create-update database mode
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=

Other options
geostoreVendorAdapter.generateDdl=true
geostoreVendorAdapter.showSqgl=false

GeoServer integrations

MapStore/GeoServer users integration

MapStore can share users, groups an roles with GeoServer. This type of
integration allows to setup a fine grained access to the data and the services based
on MapStore groups and roles.

This guide explains how to share users, groups and roles between MapStore and

GeoServer. Applying this configurations will allow users logged in MapStore to be
recognized by GeoServer. So security rules about restrictions on services, layers

and so on can be correctly applied to MapStore users (also using GeoFence).

GeoServer MapStore UserGroup Service/Role Service
User
OGC Request
(w/authkey)
authkey
username
username
User(groups, roles)
Filter/Allow/Deny data access
by Resource Access Manager
data
GeoServer MapStore UserGroup Service/Role Service
User

. Note

UserGroup Service/Role Service can be MapStore database or LDAP depending
on the setup you prefer.

https://docs.geoserver.org/latest/en/user/extensions/geofence-server/index.html

With the suggested implementation the MapStore database will be also a
UserGroupService and a RoleService for GeoServer. This means that every user of
MapStore will be also a user in GeoServer, with the same attributes, the same roles
(ADMIN, USER) and the same user groups.

For every user-group assigned to a user GeoServer will see also a role of the
same name, from the role service, assigned to the members of the user-group (as
user-group derived roles).

Permission on GeoServer can be assigned using these roles or with more detailed
granularity using a custom Resource Access Manager (like GeoFence).

Limits of this solution

This solution partially degradates the functionalities of user management UI of
GeoServer (for users, groups and roles that belong to MapStore). If you want to
use this solution, you should use the MapStore's user manager and avoid the
GeoServer's one.

Requirements

1. GeoServer must have the Authkey Plugin Community Module installed

2. MapStore2 Database must be reachable by GeoServer (H2 will not work, use
PostgreSQL or Oracle)

3. MapStore2 must be reachable by GeoServer via HTTP

This example will focus on PostgreSQL database type [am assuming this is a new
installation, so no existing user or map will be preserved

Database preparation

1. Follow Geostore wiki to setup a postgresql database (ignore the geostore test
part)

2. Start your Tomcat at least once, so mapstore.war will be extracted in the
webapps directory of tomcat instance.

3. Stop Tomcat.

4. Copy from the extracted folder (<TOMCAT DIR>/webapps/mapstore) the file
located at WEB-INF/classes/db-conf/postgres.properties to replace the file WEB-INF/

classes/geostore-database-ovr.properties .

https://docs.geoserver.org/latest/en/user/extensions/geofence-server/index.html
https://build.geoserver.org/geoserver/main/community-latest/
https://github.com/geosolutions-it/geostore/wiki/Building-instructions#building-geostore-with-postgres-support

5. Edit the new WEB-INF/classes/geostore-database-ovr.properties file with your DB
URL and credentials.

6. Start Tomcat

Default user password couples are

¢ admin:admin

¢ user:user

GeoServer Setup

Follow this guide
Create the empty GeoStore database using scripts as described in GeoStore WIKI.

The following procedure will make GeoServer accessible to users stored in the
MapStore database. In case of the users on MapStore and GeoServer have the
same name, the users of MapStore will have precedence. At the end of the
procedure, if you access with the user admin, you will have to use the password of
the admin user of MapStore (admin by default).

User Groups and Roles

Steps below reference user, group and role service configuration files, as needed
download the files from the geostore repository.

Setup User Group Service
* In GeoServer, Open the page "Security" --> "User Groups Roles" (from the left

menu)

* In the section "User Group Services" click on "add new" to a new user group
service

e Select JDBC

* name: geostore

* Password encryption : Digest

* password policy default

* Driver org.postgresql.Driver (or JNDI)

* connection url jdbc:postgresql://localhost:5432/geostore (or the one for your setup)

* JNDI only: the JNDI resource name should look like this java:comp/env/jdbc/

geostore

https://github.com/geosolutions-it/geostore/tree/master/geoserver
https://github.com/geosolutions-it/geostore/wiki/Building-instructions#building-geostore-with-postgres-support
https://github.com/geosolutions-it/geostore/tree/master/geoserver

* set username and password for the db (user geostore with password geostore)
e click on "Save" button

* Then, in order to adapt the standard JDBC service to MapStore database, you
must place the provided files in the new directory (created by GeoServer for
this new user group service) inside the data directory at the following path

<gs datadir>/security/usergroup/geostore . (geostore is the name of the new user
group service)

* Then go back to geostore user group service page in GeoServer (the ddl and
dml path should have values in them)

* click on "Save" button again
Setup Role Service
* In GeoServer Open the page "Security" --> "User Groups Roles" (from the left
menu)
* In the section "Role Services" click on "add new" to a new role service
e select JDBC
* name geostore
* db org.postgresql.Driver
e connection url: jdbc:postgresql://localhost:5432/geostore (or JNDI, same as above)
* set user and password (user geostore with password geostore)
* click on "Save" button

* add the provided files to the geostore directory under

/<gs_datadir>/security/role/geostore
¢ click on "Save" button again
* go Again in JDBC Role Service geostore
* select Administrator role to ADMIN

* select Group Administrator Role to ADMIN

Use these services as default

* In GeoServer "Security" --> "Settings" section (from the left menu)
* Set the Active role service to geostore

* go to Authentication Section, scroll to Authentication Providers and Add a new
one.

 select 'Username Password'

* name it “geostore”

* select “geostore” from the select box
* Save.
* Then go to "Provider chain" and move geostore on top in the right list.

* Save again

Use the Auth key Module with GeoStore/GeoServer

These last steps are required to allow users logged in MapStore to be
authenticated correctly by GeoServer.

Configure GeoServer
¢ Install the authkey module in GeoServer if needed (most recent versions of
GeoServer already include it).
* Go to the authentication page and scroll into the 'Authentication Filters' section
* Click 'Add new".
* Inside the 'New authentication Filter' page click on authkey module.
* Insert the name (i.e. 'geostore').
* Leave authkey as parameter name.
* Select the Web Service as 'Authentication key user mapper'.
* Select the created geostore's 'User/Group Service'.

e Input the mapstore2 url: http:/<your hostname>:<mapstore2 port>/mapstore/rest/

geostore/session/username/{key} . Examples:

http://localhost:36728/mapstore/rest/geostore/session/username/{key }
http://localhost/mapstore2/rest/geostore/session/username/{key }
http://mapstore.geosolutionsgroup.com/mapstore/rest/geostore/session/username/{key}
* Save.

* Go into the authentication page and open default filter chain.

* Add 'geostore' into the 'Selected’ filters and put it on top, and save.

. Note

in the User Groups and Roles Services available options there are "AuthKEY
WebService Body Response - UserGroup Service from WebService Response Body"
and "AuthKEY REST - Role service from REST endpoint". Ignore them as they are
not supported from MapStore2.

Configure MapStore

The last step is to configure MapStore to use the authkey with the configured
instance of GeoServer. You can do it by adding to localConfig.json like this:

/l...
"useAuthenticationRules": true,
"authenticationRules": [{
"urlPattern": ".*geostore.*",
"method": "bearer"

bA

"urlPattern": "\\/geoserver/.*",

"authkeyParamName": "authkey",
"method": "authkey"

B,
/...
 Verify that "useAuthenticationRules" is set to true
* authenticationRules array should contain 2 rules:

* The first rule should already be present, and defines the authentication
method used internally in mapstore

* The second rule (the one you need to add) should be added and defines
how to authenticate to GeoServer:

e urlPattern : is a regular expression that identifies the request url where
to apply the rule

* method : set it to authkey to use the authentication filter you just created
in Geoserver.

* authkeyParamName : is the name of the authkey parameter defined in
GeoServer (set to authkey by default)

Advantages of user integration

Integrating the user/groups database with GeoServer you can allow some users
to:
* Execute some processes (via WPS security)

* Download data (setting up the WPS download extension to allow/deny certain
users to download data)

» Edit Styles (by default allowed only to administrators, but you can change it
acting on /rest/ Filter Chains).

* Access to layers based on users (using the standard GeoServer security)

* Filter layers data based on users (GeoFence), see here

https://docs.geoserver.org/stable/en/user/services/wps/security.html
https://docs.geoserver.org/latest/en/user/extensions/geofence-server/index.html

., Allow editing of layers to certain MapStore users (GeoServer Security). The
editing can be enabled in the plugin settings of MapStore

GeoServer Plugins and Extensions

MapStore supports several plugins for GeoServer. Installing them will expand the
functionalities of MapStore, allowing to navigate data with time dimension, styling
layers and so on.

Here a list of the extensions that MapStore can use:

* WMTS Multidimensional despite the name, this service provides
multidimensional discovery services for GeoServer in general, not only for
WMTS, and it is required to use the timeline plugin of MapStore.

* SLD Rest Service: This extension can be used by the MapStore styler to
classify Vector and Raster data. It can inspect the real layer data to apply
classification based on values contained in it. It allows to select various
classification types (quantile, equallnterval, standardDeviation...) and to
customize the color scales based on parameters

* CSS Extension: With this extension the MapStore styler allows to edit styles
also in CSS format, in addition to the standard SLD format

* WPS Extension: Provides several process that can be executed using the OGC
WPS Standard. IT contains some default services very useful for MapStore:

* gs:PagedUnique: Provide a way to query layer attribute values with
pagination and filtering by unique values. It enables autocomplete of
attribute values for feature grid, attribute table, filter layer and other
plugins.

* gs:Aggregate: Allows aggregation operation on vector layers. This can be
used by the charts (widgets, dashboards) to catch data

* gs:Bounds: allows to calculate bounds of a filtered layer, used to
dynamically zoom in dashboards map, when filtering is active.

* WPS download community module: This additional module allows to improve
the default download plugin, based on WFS, with more functionalities. The
advanced Download, activated when GeoServer provides the WPS service
above, allows to

* Download also the raster data

* Schedule download processes in a download list (and download them later,
when post processing is finished).

 Select Spatial reference system

https://docs.geoserver.org/stable/en/user/security/webadmin/data.html
https://dev-mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.FeatureEditor
https://docs.geoserver.org/stable/en/user/community/wmts-multidimensional/index.html
https://docs.geoserver.org/latest/en/user/extensions/sldservice/index.html
https://docs.geoserver.org/latest/en/user/styling/css/install.html
https://docs.geoserver.org/stable/en/user/services/wps/install.html
https://docs.geoserver.org/stable/en/user/community/wps-download/index.html

* Crop dataset to current viewport
» For vector layers:

e Filter the dataset (based on MapStore filter)
» For raster layers:

* Select Compression type and quality

* Define width and height of internal tiles

* CSW Extension: Activating this extension, MapStore can browse data of
GeoServer using the CSW protocol. This is particularly useful when GeoServer
contains hundreds or thousands of layers, so the WMS capabilities services
can be too slow.

* Query Layer Plugin: This plugin allows the possibility to do cross-layer
filtering. Cross layer filtering is the mechanism of Filtering a layer using
geometries coming from another layer. The plugin allows this filtering to be
performed on the server side in an efficient way.

DDS/BIL Plugin: this plugin add to geoserver the possibility to publish raster
data in DDS/BIL format (World Wind). This particular plugin is useful if we
want to use a raster data as elevation model for MapStore. This elevation model
will be used in 3D mode or with the mouse coordinates plugin (displaying the
elevation of a point on the map, together with the coordinates).

https://docs.geoserver.org/latest/en/user/services/csw/installing.html
https://docs.geoserver.org/stable/en/user/extensions/querylayer/index.html#installing-the-querylayer-module
https://docs.geoserver.org/stable/en/user/community/dds/index.html

LDAP integration with MapStore

The purpose of this guide is to explain how to configure MapStore to use an LDAP
repository for authentication and accounting (users, roles and user-groups)
instead of the standard database.

Overview

By default the MapStore backend users service (also known as GeoStore), uses a
relational database to store and fetch users details, implement authentication and
assign resource access rights to users and groups (for maps, dashboards, etc.).

If you already have your users on an LDAP repository you can anyway configure
MapStore to connect to your service and use it to authenticate users and associate
user groups and roles, instead of using the default database. In this case the
relational database will store only resources and accessory data (permissions,
attributes ...) referring the users of your service.

Notice that the LDAP storage is read-only. This means that the MapStore User/
Groups management Ul cannot be used to manage users and groups. This makes
sense because an LDAP repository is considered an external source and should be
managed externally.

If this can create confusion, you can eventually fully disable the UI when using
LDAP by removing the corresponding plugin from the MapStore configuration.

The LDAP storage can be configured in two different ways:

* synchronized mode

e direct connection mode (experimental)

Synchronized mode

In synchronized mode, user data (users, groups, roles) is read from LDAP on every
login and copied on the internal database.

Any other operation, for example getting user permissions on maps, always uses
the internal database.

Synchronized mode is faster for normal use, but data may disalign when users are
removed from the LDAP repository.

https://github.com/geosolutions-it/geostore

In general we suggest to use synchronized mode, since it is the most stable and
tested one.

Direct connection mode (experimental)

In direct connection mode, user data is always read from LDAP for any operation,
so there is no risk of misaligned data.

Direct connection is still experimental and not tested in all the possible scenarios,
but will hopefully become the standard mode in an early future, because the
approach is simpler and avoids most the synchronized mode defects (e.g.
misalignments).

Configuration
Configuring MapStore to use the LDAP storage requires:

« filling out the LDAP configuration properties in the java/web/src/main/
resources/ldap.properties file to match your LDAP repository structure

* invoking the build with the ldap profile

./build.sh <version> ldap

Configuration properties

Configurable properties in the ldap.properties file include the following:

name of the LDAP server host

ldap.host=localhost

port of the LDAP server

ldap.port=10389

#+# root path for all searches

ldap.root=dc=acme,dc=org

#4# complete DN of an LDAP user, with browse permissions on the used LDAP tree
(optional, if browse is available to anoymous users)

ldap.userDn=

password of the userDn LDAP user (optional, if browse is available to anoymous users)
ldap.password=

root path for seaching users

ldap.userBase=ou=people

root path for seaching groups

ldap.groupBase=ou=groups

#+# root path for seaching roles

ldap.roleBase=ou=groups

LDAP filter used to search for a given username ({0} is the username to search for)
ldap.userFilter=(uid={0})

#4# LDAP filter used to search for groups membership of a given user ({0} is the full user

DN)

ldap.groupFilter=(member={0})

LDAP filter used to search for role membership of a given user ({0} is the full user
DN)

ldap.roleFilter=(member={0})

enables / disables support for nested (hierarchical) groups; when true, a user is
assigned groups recursively if its groups belong to other groups
ldap.hierachicalGroups=false

LDAP filter used to search for groups membership of a given group ({0} is the full
group DN)

ldap.nestedGroupFilter=(member={0})

max number of nested groups that are used

ldap.nestedGroupLevels=3

if true, all the searches are recursive from the relative root path
ldap.searchSubtree=true

#4# if true, all users, groups and roles names are transformed to uppercase in MapStore
ldap.convertToUpperCase=true

Enabling direct connection mode

The default configuration enables the synchronized mode. To switch to direct
connection mode you have to manually edit the final geostore-spring-security.xml to
uncomment the related section at the end of the file:

<!-- enable direct connection mode -->
<bean id="ldapUserDAQO" [...]>
[...]

</bean>
<bean id="ldapUserGroupDAQO" [...]>
[...]

</bean>
<l--->

Testing LDAP support

If you don't have an LDAP repository at hand, a very light solution for testing is the
acme-ldap java server included in the GeoServer LDAP documentation here.

You can easily customize the sample data tree, editing the java code.

The sample MapStore LDAP configuration in the default ldap.properties file works
seamlessly with acme-ldap.

https://github.com/geoserver/geoserver/blob/master/doc/en/user/source/security/tutorials/ldap/acme-ldap/src/main/java/org/acme/Ldap.java

Advanced Configuration

More information about the MapStore backend storage and security service,
GeoStore, is available here.

In particular, more information about LDAP usage with GeoStore is in the following
Wiki page.

https://github.com/geosolutions-it/geostore
https://github.com/geosolutions-it/geostore/wiki/LDAP-Authentication

Integration with OpenID connect

MapStore allows to integrate and login using some common OpenlID connect
services. Having this support properly configured, you can make MapStore users
able to login with the given OpenlID service.

Customizing logo an text in Login Form

For details about the configuration for a specific service, please refer to the
specific section below. For details about authenticationProviders optional values (e.g.
to customize icon and/or text to show), refer to the documentation of the
LoginPlugin.

By default authenticationProviders is {"type": "basic", "provider": "geostore"} , that
represents the standard login on MapStore with username and password. With
the default configuration, when the user try to login, MapStore will show the
classic login form.

It is possible to add other providers to the list (e.g. openid) and they will be added
as options to the login window. You can remove the geostore entry from
authenticationProviders list to remove the login form from the possible login systems.

. Note

If only one OpenlD entry is present in authenticationProviders (and no geostore entry
available), clicking on login in the login menu will not show any intermediate
window and you will be redirected directly to the OpenID provider configured. If
more than one entry is present in authenticationProviders list, the user will have to
choose one of them to be authenticated.

Supported OpenlD services

MapStore allows to integrate with the following OpenID providers.

* Google
» Keycloak

For each service you want to add you have to:

» properly configure the backend

https://openid.net/connect/
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Login

* modify localConfig.json adding a proper entry to the authenticationProviders .

. Note

For the moment we can configure only one authentication per service type (only
one for google, only one for keycloak ...).

Google

Create Oauth 2.0 credentials on Google Console

In order to setup the openlD connection you have to setup a project in Google API
Console to obtain Oauth 2.0 credentials and configure them.

* Open Google developer console and, from credentials section, create a new
credential of type Oauth client ID

Google Cloud e dev-332916 w Q Search Products, resources, docs (/) v

APIs & Services Credentials + CREATECREDENTIALS ~ §§ DELETE

APl key
Identifies your projeqfusing a simple API key to check quota and access

Enabled APIE & services dentials to ac:
Library OAuth client ID
API KeyS Requests user consent so your app can access the user's data
Credentials .
O Name Service account
BAUR consenitscreen O ® dev Enables server-to-server, app-level authentication using robot accounts
Domain verification Help me choose

OAuth 2.0 Client | Asks a few questions to help you decide which type of credential to use
Page usage agreements

O Name Creation date Type Client ID

D MapStore test Jan 25, 2022 Web application 35344056130:
Service Accounts

[0 Emal Name

No service accounts to display

* Set the Application Type to Web Application, name it as you prefer and
configure the root of the application as an authorized redirect URI. Then click

on Create

A client ID is used to identify a single app to Google's OAuth servers. If your app runs on
multiple platforms, each will need its own client ID. See Setting up OAuth 2.0 for more
information. Learn more about OAuth client types.

Application type *
(WQbawlicatjon h - ’

Name *

(MapStore 4— ’

The name of your OAuth 2.0 client. This name is only used to identify the client in the
console and will not be shown to end users.

The domains of the URIs you add below will be automatically added to
your OAuth consent screen as authorized domains.

Authorized JavaScript origins @

For use with requests from a browser

< ADD URI

Authorized redirect URIs @

For use with requests from a web server

URIs1*
(https://my.site.com/mapstore/

-+ ADD URI

Note: It may take 5 minutes to a few hours for settings to take effect

CREATE mﬂ.

» After creation you will obtain ClientID and Client Secret to use to configure
MapStore.

Please follow the Google documentation for any detail or additional configuration.

https://developers.google.com/identity/protocols/oauth2/openid-connect

Configure MapStore back-end for Google OpenID
After the setup, you will have to:

* create/edit mapstore-ovr.properties file (in data-dir or class path) to configure the
google provider this way:

enables the google OpenID Connect filter
googleOAuth2Config.enabled=true

#clientld and clientSecret
googleOAuth2Config.clientld=<the client id from google dev console>
googleOAuth2Config.clientSecret=<the client secret from google dev console>

create the user if not present
googleOAuth2Config.autoCreateUser=true

Redirect URL
googleOAuth2Config.redirectUri=https://<your-appliction-domain>/mapstore/rest/
geostore/openid/google/callback

Internal redirect URI (you can set it to relative path like this "../../.." to make this config
work across domain)
googleOAuth2Config.internalRedirectUri=https://<your-appliction-domain>/mapstore/

discoveryUrl: contains all the information for the specific service.

googleOAuth2Config.discoveryUrl=https://accounts.google.com/.well-known/openid-
configuration

Configure MapStore front-end for Google OpenID

* Add an entry for google in authenticationProviders inside localConfig.json file.

{
"authenticationProviders": [
{
"type": "openlD",
"provider": "google"
2
{
"type": "basic",
"provider": "geostore"
}
]
}
Keycloak

Keycloak is an open source identity and access management application widely
used. MapStore has the ability to integrate with keycloak:

* Using the standard OpenID Connect (OIDC) protocol to login/logout in
MapStore

https://www.keycloak.org/

* Supporting Single Sign On (SSO) with other applications.
* Mapping keycloak roles to MapStore groups, as well as for ldap.
In this section you can see how to configure keycloak as a standard OpenID

provider. For other advanced functionalities, you can see the dedicated section of
the documentation

Configure keycloak Client

Create a new Client on keycloak. In this guide we will name it mapstore-server
(because if you need to configure SSO, we may need another key to call mapstore-

client)

MIAKEYCLC

lents

Lookup § \

Realm Setti s
Q Create

© Clients Client ID Enabled Base URL Actions

True ttp://loc Edit Export Delete
True http://localho Edit Export Delete
True Edit Export Delete
True Edit Export Delete
True ttp://localhost:8082 Edit Export Delete
True Edit Export Delete

Federation n True Edit Export Delete
True http://localho onsole. Edit Export Delete

Authentication

Clients > Add Client
Import Select file 3]
ClientID * @ mapstore-server
Client Protocol & openid-connect v
Root URL ©

m Cancel

* Configure it as Confidential setting the Redirect-URL with your MapStore base
root, with a * at the end (e.g. https://my.mapstore.site.com/mapstore/*)

Clients » mapstore-server

Mapstore-server &

Settings Keys Roles

Offline Access ©

Cliem 1D ©

* valid Redirect

11Dte £

Installation ©

Client Scopes ©

Mappers @

Scope @

| mapstore-server

ol

%
;

s
E

S

il A EE

/

"%

http://localhost8081/*

* Click on Save button, then open the Installation tab, select the Keycloak OIDC
JSON format, and copy the JSON displayed below.

@AKEYCL(2

apstore-server

Mapstore-server

Configure MapStore back-end for Keycloak OpenID

Create/edit mapstore-ovr.properties file (in data-dir or class path) to configure the
keycloak provider this way:

enables the keycloak OpenlID Connect filter
keycloakOAuth2Config.enabled=false

Configuration
keycloakOAuth2Config.jsonConfig=<copy-here-the-json-config-from-keycloak-removing-all-
the-spaces>

Redirect URLs

- Redirect URL: need to be configured to point to your application at the path <base-app-
url>/rest/geostore/openid/keycloak/callback

e.g. https://my.mapstore.site.com/mapstore/mapstore/rest/geostore/openid/keycloak/
callback’

keycloakOAuth2Config.redirectUri=https://my. mapstore.site.com/mapstore/rest/geostore/
openid/keycloak/callback

- Internal redirect URL when logged in (typically the home page of MapStore, can be
relative)

keycloakOAuth2Config.internalRedirectUri=https://my. mapstore.site.com/mapstore/

Create user (if you are using local database, this should be set to true)
keycloakOAuth2Config.autoCreateUser=true

Comma separated list of <keycloak-role>:<geostore-role>
keycloakOAuth2Config.roleMappings=admin:ADMIN,user:USER

Comma separated list of <keycloak-role>:<geostore-group>
keycloakOAuth2Config.roleMappings=MY KEYCLOAK ROLE:MY MAPSTORE GROUBMY KE}

Default role, when no mapping has matched
keycloakOAuth2Config.authenticatedDefaultRole=USER

keycloakOAuth2Config.jsonConfig : insert the JSON copied, removing all the spaces

keycloakOAuth2Config.redirectUri : need to be configured to point to your
application at the path <base-app-url>/rest/geostore/openid/keycloak/callback , €.g.

https://my.mapstore.site.com/mapstore/rest/geostore/openid/keycloak/callback

keycloakOAuth2Config.internalRedirectUri can be set to your application root, e.g.

https://my.mapstore.site.com/mapstore/

keycloakOAuth2Config.autoCreateUser : true if you want MapStore to insert a
Keycloak authenticated user on the DB. UserGroups will be inserted as well
and kept in synch with the roles defined for the user in Keycloak. The option
must be set to false if MapStore is using a read-only external service
for users and groups (i.e. Keycloak or LDAP).

keycloakOAuth2Config.forceConfiguredRedirectURI : optional, if true, forces the
redirect URI for callback to be equal to teh redirect URI. This is useful if you
have problems logging in behind a proxy, or in dev mode.

keycloakOAuth2Config.roleMappings : comma separated list of mappings with the
following format keycloak admin role:ADMIN, keycloak user role:USER . These
mappings will be used to map Keycloak roles to MapStore roles. Allowed values
USER or ADMIN .

keycloakOAuth2Config.authenticatedDefaultRole : where the role has not been
assigned by the mappings above, the role here will be used. Allowed values
USER or ADMIN .

keycloakOAuth2Config.groupMappings : comma separated list of mappings with the
following format
keycloak role name:mapstore group name,keycloak role name2:mapstore group name?2 .

These mappings will be used to map Keycloak roles to MapStore groups.

* keycloakOAuth2Config.dropUnmapped : when set to false, MapStore will drop
Keycloak roles that are not matched by any mapping role and group mapping.
When set to true all the unmatched Keycloak roles will be added as MapStore
UserGroups.

Configure MapStore front-end for Keycloak OpenID

* Add an entry for keycloak in authenticationProviders inside localConfig.json file.

{
"authenticationProviders": [
{
"type": "openID",
"provider": "keycloak"

B
{
"type": "basic",
"provider": "geostore"
}

]
}

Keycloak Integrations

General

MapStore supports various Keycloak integration features:

* OpenlID support: Allows to login to MapStore using a keycloak account.

* Single sign on: Enhances the OpenlID support by detecting a session in the
keycloak realm and automatically login/logout from MapStore

* Direct user integration: Enhances the OpenID support making MapStore
use keycloak as unique Identity Manager System (IdM), replacing the
MapStore DB with Keycloak REST API.

OpenlD

Keycloak OpenlID support allows to use a keycloak instance as Identity Provider
(IdP) via OpenID Connect (OIDC), so that the user can login to MapStore using an
existing account in keycloak.

You can find details about how to configure it in the dedicated "OpenID Connect"
page section dedicated to keycloak

Single sign on integration

MapStore provides an integration with the keycloak Single Sign On (SSO)
system, that allows to automatically login/logout in MapStore when you login/
logout from another application in the same keycloak realm, an vice-versa.

In order to enable the SSO in keycloak you have to:

* Have already configured the openlID for keycloak.
* Create a keycloak client in the same realm of openID integration above.

* Configure SSO in MapStore's localConfig.json

Configure the OpenlID integration

* See here openlD integration.

Configure keycloak client

After configuring the open openlD integration, you will have a keycloak client
called mapstore-server . In order to enable SSO you have to create another new
Client on keycloak. In this guide we will name it mapstore-client .

@AKEYCLO

Master

—

Realm Setti s
i Q Create

Clients Client ID Enabled Base URL Actions

Clien es a nt True ttp://loc Edit Export Delete
True http://loc Edit Export Delete
True Edit Export Delete
True Edit Export Delete
True 1ttp://localhost:8082 Edit Export Delete
True Edit Export Delete
Federation T True Edit Export Delete
True http://localho admin/master/console Edit Export Delete
Authentication
AQU Lnient
Import Select file ¥
ClientID* @ mapstore-client
Client Protocol openid-connect v

Root URL @

B o

* Configure it as Public

* Insert in "Valid Redirect URIs" your MapStore base root, with a * at the end

(e.g. https://my.mapstore.site.com/mapstore/*)

* Insert in "Web Origins" your MapStore base domain name. (e.g. https://

my.mapstore.site.com)

Mapstore-client &

Settings Keys

Offline Access @

ClientID @
Name @
Description ©
Enabled @

Always Display in
Console @

Consent
Required ©

Login Theme @
Client Protocol @
Access Type ©

Standard Flow
Enabled ©

Implicit Flow
Enabled ©

Direct Access
Grants Enabled ©

OAuth 2.0 Device
Authorization

Grant Enabled ©

Front Channel
Logout @

Root URL @

* Valid Redirect
URIs ©

Base URL©®
Admin URL©
Logo URL @
Policy URL @

Terms of service
LRI &

Roles Client Scopes @

installation @

Mappers @

Scope @

l mapstore-client

|

|

£l |
o]

o

|

' openid-connect

=N
[on
[ov

o]

|

I http://localhost:8081*

[http://localhost:8082/*

|

* Click on Save button, then open the Installation tab, select the Keycloak OIDC
JSON format, and copy the JSON displayed below.

Clients > mapstore-client

Mapstore-client W

Settings Keys Roles Client Scopes © Mappers @ Scope © Revocation Sessions ©

Offline Access @ Installation @ \

Format I Keycloak OIDC JSON vl

— \

{ A/
“realm": "master”,
"auth-server-url™: "http://localhost:8080/",
"ssl-required": "external”,

"resource”: "mapstore-client”,
"public-client": true,
"confidential-port™: 0

Configure SSO in MapStore

After configuring the open openlD integration, you will have an entry named
keycloak in authenticationProviders . In this entry, you will have to add "sso":
{"type":"keycloak"} and config: "<configuration coped from keycloak>" .

e.g.

"authenticationProviders": [
{
"type": "openlD",
"provider": "keycloak",
"config": {
"realm": "master",
"auth-server-url": "http://localhost:8080/",
"ssl-required": "external",
"resource": "mapstore-client",
"public-client": true,
"confidential-port": 0
B
"sso": {
"type": "keycloak"

Here implementation details about keycloak login workflow.

Direct user integration

By default MapStore can integrate openlID login with Keycloak and also supports
integration with Keycloak SSO.

By default users that login with Keycloak are created on the database and their
Keycloak roles inserted as MapStore UserGroup. Anyway MapStore can interact
with Keycloak REST API to provide a direct integration without persisting anything
on the MapStore's database. This provides a stricter integration between the
applications, allowing the assignment of roles and groups directly from keycloak,
and avoiding any synchronization issue.

In this scenario the integration MapStore replaces the user and user-group
database tables with the keycloak REST API.

. Note

This integration disables reading and writing to the users' and groups' database
and replaces it with the Keycloak REST API, with read-only support. For this
reason we suggest to disable the UserManager, GroupManager plugins, and remove
the authenticationProviders entry of type geostore, if any, because the standard login
with username and password is not allowed for the db users. In case of integration
with GeoServer, also GeoServer should be connected to Keycloak for users, and
not to the MapStore database.

Configure direct integration with keycloak
To enable the direct integration with keycloak you will have to:

1. Create a dedicated client for keycloak.
2. Configure mapstore-ovr.properties

3. Activate the functionality via system property
1. Create a dedicated client for keycloak

* Create another client on keycloak, in the same realm of mapstore-server and

mapstore-client (wWhere present) called mapstore-users :

IKEYCLO

ients

Lookup \
Realm Setti s Q it
Clients Client ID Enabled Base URL Actions
Client pes ac True ttp Edit Export Delete
Roles True nttp: Edit Export Delete
True Edit Export Delete
Identity
True Edit Export Delete
Providers
rovider True 1ttp://localhost:8082 Edit Export Delete
User m True Edit Export Delete
Federation | True Edit Export Delete
True http://localh master/console; Edit Export Delete
Authentication
Import Select file ¥
. * O i
ClientID* @ I mapstore-users|
Client Protocol © openid-connect v

Root URL @

m Cancel

* Configure it with:
* Access Type: public
* Implicit Flow Enabled Set to on On

* Valid Redirect URIs with your app base URL, with an ending *, e.g. http://
localhost:8080/* .

Mapstore-users w

Settings Keys Roles Client Scopes @ Mappers @ Scope © Revocation
Installation ©
ClientID @ mapstore-users
Name ©

Description ©

Enabled © m:[

Always Display in ‘ ‘ OFF
Console @ o
Consent Required ‘7‘ OFF
o |
Login Theme @ v
Client Protocol © openid-connect bt
Access Type © public v
Standard Flow m—‘ \
Enabled © o
Implicit Flow m:‘ ‘
Enabled ©

Direct Access m:‘

Grants Enabled @

I T

OAuth 2.0 Device 1 ‘ OFF
Authorization Grant S
Enabled ©

Front Channel ‘ 1 OFF
Logout @ =

Root URL ©

Valid Redirect httn://lncalhost:R0R1/ | -

And click on Save.
2. Configure mapstore-ovr.properties

The autoCreateUser option must be set to false in mapstore-ovr.properties .
keycloakOAuth2Config.autoCreateUser=false

Moreover in mapstore-ovr.properties you have to add the following information
(replacing <keycloak-base-url> with your base keycloak base url):

Keycloak as User and UserGroup repository
keycloakRESTClient.serverUrl=<keycloak-base-url>
keycloakRESTClient.realm=master
keycloakRESTClient.username=admin
keycloakRESTClient.password=admin
keycloakRESTClient.clientld=mapstore-users

Where:

» serverUrl : URL of keycloak, (e.g. http://localhost:8080 Or https://mysite.com/)
e realm : the realm where the client has been created

* username , password : credentials of a user with the role to view-users 1

. Note

1 In order to query the keycloak REST API, you need to have in your realm at least
one user with realm-admin role permission. Usually the administrator of the realm
has these permission. To associate these permissions to a new user dedicated to
this purpose, you have to open "Role Mappings" tab of keycloak and in "Client
Roles" select realm-management (or in master realm select master-realm) and add to
selected realm-admin .

Details Attributes Credentials Role Mappings Groups Consents Sessions

Realm Roles Available Roles @ Assigned Roles @ Effective Roles @
offline_access default-roles-test default-roles-test
uma_authorization offline_access

uma_authorization

Add selected » « Remove selected

- 3 |
Client Roles h realm-management x |v|
Available Roles @ Assigned Roles @ Effective Roles ©

create-client = query-groups
impersonation query-users
manage-authorizati view-users
manage-clients
4 »
Add selected » « Remove selected

3. Activate the functionality via system property

In order to activate the integration in your instance, you will need to set the Java
System Property security.integration with the value keycloak-direct .

https://www.ibm.com/docs/en/sdk-java-technology/7?topic=customization-how-specify-javalangsystem-property
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=customization-how-specify-javalangsystem-property

One easy and usual way to configure this system property in Tomcat is using the
JAVA OPTS . Like you do with datadirlocation, you can set it by adding to JAVA OPTS
variable the entry -Dsecurity.integration=keycloak-direct .

. Note

For old projects or in case you can not set the system property, you can anyway
configure it by adding this section to your geostore-spring-security.xml file.

<bean
id="keycloakUserGroupDAQ"
class="it.geosolutions.geostore.services.rest.security.keycloak.KeycloakUserGroupDAO" >
<constructor-arg ref="keycloakRESTClient"/>
<property name="addEveryOneGroup" value="true"/>

</bean>

<alias name="keycloakUserDAO" alias="userDAO"/>

<bean
id="keycloakUserGroupDAQ"
class="it.geosolutions.geostore.services.rest.security.keycloak.KeycloakUserGroupDAO" >
<constructor-arg ref="keycloakRESTClient"/>

</bean>

<alias name="keycloakUserGroupDAQ" alias="userGroupDAQO" addEveryOneGroup="true"/

>
<alias name="externalSecurityDAO" alias="securityDAO"/>

SSO Workflow in Keycloak

Here in this section some details about keycloak SSO integration

Desired workflow

If keycloak SSO is configured, we want to implement the following workflow.

\ Yes—p Ok, Monitor Logout
. Have keycloak sesston7

No\% Do Logout

Yes__—p Do Login

Have keycloak session?“**<

Open Page Have MapStore session? ‘\)

No

No—p Ok, Monitor Login

The keycloak]S library implements the following workflow:

P
|__timeout / N\

— \

/ Yes—p MonitorLogout ? Changed —true—'{ onAuthLogout

T

(False
init C token provided on mm s

\ 7 False
\ /
N\ / \
%
\\ / No\»ﬂ'——; changed Init promise resolves
/
\ &'{ Adapter.login }.-/‘

MapStore can:

* Re-run init
* Intercept onAuthLogout
* Implement adapter methods login, logout .

 Intercept init promise resolve with .then

. Note

changed is the variable emitted by an internal iframe managed by the keycloak JS
API. This technique allows to intercept logout events, anyway refreshing tokens or
intercepting login, after first attempt doesn't seem to work well and has some
limitations because of security reasons. In particular in the current implementation
with openID sync with GeoStore we need to workaround partially the logic of the
library to make the tokens work in sync.

Implementation

The SSO integration in MapStore will reuse the entry points of the JS lib together
with the existing openID integration in keycloak, implementing the following
workflows:

Initialization

At the initial page load, we check if the authenticationProviders contains a sso entry
(only keycloak)

Yes—p< Load JS >——p Init
/

MapStoreStart ——p< Is SSO Configured?

No— DoNothing

* Load]S : loads keycloak.js, that includes the JS support to keycloak, from
keycloak instance (only once)

* Init is initialized by MapStore with the current config, adding MapStore's
access token and refresh token, if present, from openID login.

Monitoring phase

After initialization, we may receive different events or cases. These are the
possible cases:

Case 1 - Login From MapStore

If MapStore is not logged in, the user can click on login button and be redirected
to keycloak login form. After that, the init flow will pass the MapStore tokens to the
JS interface. They will be used to check session logout.

. Note

If MapStore user is logged in, the iit, we may not initially have the token ready.
For this reason, on LOGIN SUCCESS, we re-init the application, or sync operation
is triggered from Adapterlogin to refresh the tokens.

Case 2 - Login from keycloak

If MapStore is not logged in, the init function do a check-sso operation and finish.
In order to monitor the login on MapStore, we implemented a timer to re-init
trigger anytime the check-sso resolves with not authenticated.

/ Timeout of 10 sec
Init /

No

/

InitResolve —p Session catch in keycloak?
‘ ———Yes—p| Adapter.login

. Note

Implementation is using messageReceiveTimeout as timeout, the same timeout
variable of the keycloak JS library for monitoring logout

Case 3 - Logout from keycloak

In this case the library that receives a valid keycloak token monitors the logout
autonomously.

Case 4 - Logout from MapStore

Logout from MapStore, a bug in keycloak API doesn't correctly check the internal
iframe (changed option event), and there is no possibility to trigger it, until you visit
the keycloak page. This condition after logout can not be distinguished from a
external login (from keycloak) detection. So refreshing the page before the token
on client is naturally expired will cause a redirect to Login page, because
MapStore find there is an active session on keycloak. In order to avoid this, an
hack is necessary. MapStore loads an iframe immediately after logout to allow the
cookie session to be catch and to apply the proper reset.

Refresh token

By default keycloak has 5 minutes long lifetime for token, 30 minutes for refresh
token. Anyway this can be configured. For this reason, the keycloak support
schedules a refresh based on the current token expiration, restarting from init,
scheduling a refresh as half of time between expiring time and now. (e.g The token
expires 2 minutes from now, a refresh is scheduled in 1 minute).

MapStore Authentication -
Implementation Details

In this section you can see the implementation details about the login / logout

workflow implemented by MapStore.

Standard MapStore login

Backend OpenlDProvider
Browser
/session/login
(username, password)
(1 >
create session
{access_token, refresh_token}
B R LLETTT N PR e P PR (2]
/users/user/details
e >
{User: <...>}
G o
LOGIN_SUCCESS
loop [Token refresh]
/session/refresh
bt >

{access_token: <token>, refresh_token: <r_token>}

i . i o
LOGOUT
Backend OpenlIDProvider
Browser

Configure session timeout

By default MapStore session token lives 24 hours and the refresh token last
forever. On application reboot anyway all the tokens are cancelled. In order to
change these default. the administrator can change these defaults by adding to
mapstore-ovr.properties file the following properties:

Session timeout
restSessionService.sessionTimeout=60 #in seconds
restSessionService.autorefresh=false

Where:
* restSessionService.sessionTimeout refers to session token expiration time (by
default it’s 24 hours)

* restSessionService.autorefresh refers to flag configured to handle automatic
refresh process in the backend, enabling/disabling the refresh token usage:

e when set to false, it avoids the use of refresh token after the session token has
expired, meaning, after the timeout the user will have to reconnect

* when set to true, the refresh token is used and the session extends every time
the session timeout is met

. Note

sessionTimeout and autorefresh in mapstore.properties are valid for the default session
storage. If you are using openlID or keycloak, they will not be used.

Additionally, on the client side, in order to configure the interval in which is session
refresh action is fired, one can use the tokenRefreshinterval property. It can be
configured via localConfig.json -> tokenRefreshiInterval , the value is in milliseconds.

tokenRefreshinterval: 60000 // default 30 seconds

When the above configured Session timeout is in place, the client can exhibit two
behaviors based on the tokenRefreshinterval configured on the client side, Disabling
the refresh token (setting restSessionService.autorefresh to false) the administrator
can use sessionTimeout and tokenRefreshinterval to limit the session duration this
way:

* when tokenRefreshinterval is less than sessionTimeout configured (e.g
tokenRefreshInterval is 30 seconds and sessionTimeout is 24 hours)

* when application is in use, the client performs a refresh token call before the
expiring time and session is prolonged

* when the application is closed (i.e for any reason) and reopened after
sessionTimeout configured, the client cannot perform refresh token call within
the timeout window and hence the session expires and the user is asked to
reconnect

* when tokenRefreshinterval is greater than sessionTimeout configured

* the session expires anyway before the refresh and the client is unable to
perform the refresh activity within the configured time interval. The user will
have to re-authenticate. In this case the two configuration should be nearly the

same value, 30 seconds of difference, for example. This helps the client to
perform the refresh activity immediately after the session expires to log out the
user.

OpenID MapStore Login

Backend OpenlDProvider
Browser
o /openid/<OpenlDProvider>/login
redirect to OpeniDProvider
BB LRRee e E R R TR RS e 2]
Authenticate
© >
redirect to callback (Backend entry point) g

e

° /openid/<OpenlDProvider>/callback

Create User

redirect to homepage
(set-cookie <identifier>set-cookie <authprovider>)

(7 T A s A

{access_token: <token>, refresh_token: <r_token>} o

/users/user/details
e e
{User: <...>}
et Ll i
LOGIN_SUCCESS
loop [Token refresh]
/session/refresh

e

{access_token: <token>, refresh_token: <r_token>} @

REFRESH_SUCCESS
Logout
oo
Logout
oo >
<res>
oo ©
<res>
e fic
LOGOUT
Backend OpenlDProvider

Browser

Possible setups

Accordingly with your infrastructure, there are several setups you can imagine

with MapStore and GeoServer.

MapStore-GeoServer integration

GeoServer

A

authkey

o

MapStore Users, Groups, Roles

Resources

(e.g. maps) Users; GrIPS Roles
MapStore
Database

MapStore-LDAP + MapStore-GeoServer

GeoServer

authkey

v

MapStore

/ Resources

Users, Groups, Roles (e.g. maps)

Users, Groups, Roles

M;[ﬁo‘re
Database

f

sync on login

[Lm}

MapStore-GeoServer + MapStore-LDAP +
GeoServer-LDAP

GeoServer

N

authkey

'

’ MapStore

Resources \

Users, Groups, Roles

(e.g. mei) /

M;pao—re
Database

Users, Groups, Roles

sync on login

LDAP

MapStore-GeoServer + MapStore-LDAP (direct) +
GeoServer-LDAP

GeoServer

A

authkey

5

MapStore Users, Groups, Roles

Resources

(e.g. maps) Users, Groups, Roles

Me:pgtc—)re
Database

MapStore Projects

MapStore projects can be created using the Project Creation Script.

A MapStore project is a custom WebGis application that uses MapStore as a
framework.

The MapStore framework is linked as a git submodule in the MapStore2 project
subfolder.

. Note

Since MapStore is linked as a submodule, every project custom file should be
created outside of it. This allows updating MapStore to a newer version easily,
without conflicts. The general rule is: never add / update / modify files directly
in the MapStore2 subfolder.

Standard Projects

A Standard MapStore project is a project that is, initially, a perfect copy of the
standard MapStore product.

To create custom application using the standard projects template, you will start
from js/app.jsx that is the project entry point.

Editing app.jsx you can start using your own configuration files and add custom
behaviours and look and feel to your project, in particular:

* You can add your own translation files. Setting an array of paths in the
translationsPath , the resources will be loaded in cascade from every directory
of the array. So you can keep all the original translations from MapStore (first
element of the array) and add your own files in the directory translations,
overriding original values of the json or adding new ones (for instance, for
your custom plugins). The files in the new directory must follow the same
naming convention of the files in the oridinal directory.

ConfigUtils.setConfigProp("translationsPath", ["./MapStore2/web/client/translations"”, "./
translations"]);

* Use your own configuration file for plugins and other configurations. You
can copy the original localConfig.json in the root of the project and configure

the application to load it (instead of the default one, located in MapStore2/web/

client/localConfig.json).
ConfigUtils.setLocalConfigurationFile("localConfig.json");

or you can apply some patch files defining an array of configurations, where the
first is the main json file, and the rest are the patch files which must end with
"patch.json" in the filename

ConfigUtils.setLocalConfigurationFile(["localConfig.json", "production.patch.json"]);

the patch will be applied using this package

 Configure your own pages:

import productAppConfig from "@mapstore/product/appConfig";
import MapViewer from "@mapstore/product/pages/MapViewer";

const appConfig = {
...productAppConfig,
pages: [{
name: "mapviewer",
path: "/",
component: MapViewer
3
b3

* Include the plugins you want in the app (either MapStore plugins or your

own):

import plugins from "./plugins";

Organizing your code

Our convention is to use the js folder to store your project code. You should
recreate inside it the usual folders to organize your code based on the source code

type:
e components
* actions
* reducers
* epics

* plugins

Images and other static assets should be located in the assets folder instead.

https://github.com/geosolutions-it/Patcher

Create your own MapStore project

. Note

From version 2021.02.xx MapStore introduced a new project system. Take a look
here to learn more about the new project system.

To create a new MapStore based project you can use the createProject script. First
of all, if you don't have done it before, clone the MapStore2 repository master
branch into a local folder:

git clone https://github.com/geosolutions-it/MapStore2
Then, move into the folder that has just been created, containing MapStore2:
cd MapStore2

Choose from which branch you want the mapstore revision to be aligned, we
suggest to use latest release or latest stable available (if you know which is)

git checkout <stable-branch>
or
git checkout v2022.02.02
Install dependencies for MapStore:
npm install
Finally, to create the project, use the following command:
node ./createProject.js

The command line will ask some questions about the project to create. (You can
press enter to accept the default value, indicated between parenthesis, or type a
new one):

* projectName: short project name that will be used as the repository name on
github, webapp path and name in package.json

https://github.com/geosolutions-it/MapStore2/issues/6314

* branch/tag: the base branch/tag to use for the project (e.g. v2022.02.02, or
master)

* projectType: type of project to create, currently one type of projects is
supported:

* standard: is a copy of the standard MapStore project, ready to be used and
customized

* projectVersion: project version in package.json (X.Y.Z)

* projectDescription: project description, used in sample index page and as
description in package.json

» gitRepositoryUrl: full url to the github repository where the project will be
published

* outputFolder: folder where the project will be created

Usage:

node ./createProject.js

Project Type (standard):

MapStore base branch (master):v2023.01.01
Project Name: my project

Project Version (1.0.0):

Project Description (Project Name):
Repository URL:

Output folder: ../my project

At the end of the script execution, the given outputFolder will be populated by all
the configuration files needed to start working on the project. Moreover, the local
git repository will be initialized and the MapStore sub-module added and
downloaded.

If you create a standard project, you can customize it editing js/app.jsx: look at
the comments for hints and the MapStore documentation for more details.

The following steps are:

* npm install to download dependencies
* npm start to test the project

e /build.sh to build the full .war

Create a new project type

If you are not happy with the available project types (standard), you can extend
them adding a new folder in project.

The folder will contain two sub-folders:

* static: for static content, to be copied as is to the project folder

* templates: for template files, containing project-dependent variables that will
be replaced by the createProject script. You can use the following variables:

* PROJECTNAME_ : \<projectName> parameter value

e _PROJECTDESCRIPTION__: \<projectDescription> parameter value

e _PROJECTVERSION_ : \<projectVersion> parameter value

* REPOURL__: \<gitRepositoryUrl> parameter value
In addition to static and templates, the following files from the root MapStore
folder will be copied:

* .babelrc

¢ .editorconfig

* LICENSE.txt

Update MapStore2 version in a project

To update MapStore2 version enter the MapStore2 folder and pull desired git
version. If MapStore2 devDependencies have been changed you can manually
update these in the project package.json file or run the script updateDevDeps

npm run updateDevDeps

The script will automatically copy the devDependencies from MapStore2
package.json to the project package.json file. All the project existing
devDependencies will be overwritten.

To sync MapStore2 dependencies just run npm install from project root folder.
npm install

Also make sure to follow the migration guidelines here.

MapStore API usage

You can include MapStore in your application and interact with it via its JavaScript
API

How to use

1. Create a map using the standard installation
2. Go to Share -> Embed
3. Copy the API html code and paste it in your application page

The map will now load inside your application

NOTE: If the map is using a Google Maps background you will have to provide your own

API key.
Add " &key=YOUR API KEY' in the <script> src value

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/jsapi
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/jsapi

MapViewer query parameters

In this section we will describe the available MapViewer query parameters that
can be used when the map is loaded.

MapStore allows to manipulate the map by passing some parameters. This allows
external application to open a customized viewer generating these parameters
externally. With this functionality you can modify for instance the initial position of
the map, the entire map and even trigger some actions.

Passing parameters to the map

Get Request

The parameters can be passed in a query-string-like section, after the #<path>? of
the request.

Example:

#/viewer/new?center=0,0&zoom=>5

. Note

The parameters in the request should be URL encoded. In order to make them
more readable, the examples in this page will now apply the URL encoding.

POST Request

Sometimes the request parameters can be too big to be passed in the URL, for
instance when dealing with an entire map, or complex data. To overcome this kind
of situations, an adhoc POST service available at <mapstore-base-path>/rest/config/
setParams allows to pass the parameters in the request payload application/x-www-
form-urlencoded . The parameters will be then passed to the client (using a
temporary queryParams-{random-UUID} variable in sessionStorage). Near the
parameters, an additional page value can be passed together with the params to
specify to which url be redirect. If no page attribute is specified by default
redirection happens to #/viewer/config. The UUID used in the queryParams-{random-
UUID} variable name is being added to the redirect URL in a query parameter
named queryParamsID= . Assuming to use the default redirect value, the url will
then look like the following: #/viewer/config?queryParamsID={random-UUID} .

Example application/x-www-form-urlencoded request payload (URL encoded):

page=..%2F..
%2F%23%2Fviewer%2Fopenlayers%2Fnew&featureinfo=&bbox=¢er=1%2C1&zoom=4

Here a sample page you can create to test the service:

<html><head><meta charset="UTF-8">
<script>
const POST PATH = "rest/config/setParams";
const queryParameters = {

"page": '../../#/viewer/config’,

"map": {"version":2,"map": {"projection":"EPSG:900913", "units":"m","center": {"x":
1250000,"y":5370000,"crs":"EPSG:900913"},"zoom": 5, "maxExtent":
[-20037508.34,-20037508.34,20037508.34,20037508.34], "layers":
[{"type":"osm","title":"Open Street
Map","name":"mapnik","source":"osm","group":"background", "visibility":true}1} },

"featureinfo": ",

"bbox": ",

“center": ",

"zoom": 4,

"actions": [],

15
leti= 0;
function createlframe() {

i++;

const iframe = document.createElement('iframe');

iframe.name = *_iframe-${i} ;

iframe.id = °_iframe-${i}";

iframe.style.width = "100%";

iframe.style.height = "400px";

document.body.appendChild(iframe);

return iframe.name;

}
window.onload = function(){

Object.keys(queryParameters).forEach(function (key) {

const element = document.getElementByld(key);

if (element) element.value = typeof queryParameters[key] === "object" ||
Array.isArray(queryParameters[key]) ? JSON.stringify(queryParameters[key]) :
queryParameters[key];

1)
const form = document.getElementByld("post-form");
form.addEventListener('submit', function() {
const base url = document.getElementByld(‘mapstore-base').value.replace(/\/?
$/,'1";
const method = document.getElementByld("method").value;
// handle GET URL
if(method === "GET") {
event.preventDefault();
const page = document.getElementByld("page")?.value;
const data = new FormData(event.target);
const values = Array.from(data.entries());
const queryString = values
filter(([k, v]) => !lv)
.reduce((gs = "", [k, v]) => "${qs}&${k}=${encodeURIComponent(v)}",

");
window.open(" ${base url}${page}?${queryString} , " blank");
return false;
} else if (method === "GET_IFRAME") {
event.preventDefault();
const page = document.getElementById("page")?.value;
const data = new FormData(event.target);
const values = Array.from(data.entries());
const queryString = values
filter(([k, v]) => !lv)
.reduce((gs = "", [k, v]) => "${qs}&${k}=${encodeURIComponent(v)}",
)
const iframeName = createlframe();
const iframe = document.getElementByld(iframeName);
iframe.src = " ${base url}${page}?${queryString}";
return false;

}
// handle POST and POST IFRAME
if(method === "POST IFRAME") {

const iframeName = createlframe();
form.target = iframeName;
} else if(method === "POST") {
form.target = " blank";
}
form.action = base url + POST PATH;
return true;
9}
}
</script>
</head><body>
<fieldset>
<legend>Options:</legend>
<label>method:</label><select id="method">
<option value="POST">POST</option>
<option value="GET">GET </option>
<option value="GET IFRAME">GET IFRAME</option>
<option value="POST IFRAME">POST IFRAME</option>
</select>

<label>MapStore Base URL:</label><input type="text" id="mapstore-base"
value="http://localhost:8080/mapstore/">
</input>

</fieldset>
<!-- Place the URL of your MapStore in "action" -->
<form id="post-form" action="http://localhost:8080/mapstore/rest/config/setParams"
method="POST" target="_blank">
<fieldset>
<legend>Params: </legend>
<label for="map">map:</label>
<textarea id="map" name="map"></
textarea>

<label for="page">page:</label>
<input type="text" id="page" name="page'
value="../../#/viewer/config"> </input>

<label for="featureinfo">featureinfo:</label>
<textarea id="featureinfo"
name="featureinfo"> </textarea>

<label for="bbox">bbox:</label>
<input type="text" id="bbox"
name="bbox"></input>

<label for="center">center:</label>
<input type="text" id="center"

name="center"> </input>

<label for="zoom">zoom:</label>
<input type="text" id="zoom"
name="zoom"></input>

<label for="marker">marker:</label>
<input type="text" id="marker"
name="marker"> </input>

<label for="actions">actions:</label>
<textarea id="actions"
name="actions"></textarea>

</fieldset>

<input id="submit-form" value="Submit" type="submit">

</form>
</body></html>

Available Parameters

Feature Info
Allows to trigger identify tool for the coordinates passed in "lat"/"Ing" parameters.

Optional parameter "filterNamelList" allows limiting request to the specific layer
names. It will be effectively used only if it's passed as non-empty array of layer
names. Omitting or passing an empty array will have the same effect.

GET: #/viewer/config?featureinfo={"lat": 43.077, "Ing": 12.656, "filterNameList": []}

GET: #/viewer/config?featureinfo={"lat": 43.077, "Ing": 12.656, "filterNameList":

["layerNamel", "layerName2"]}
Simplified syntax
GET: #/viewer/config?featureInfo=38.72,-95.625

Where lon,lat values are comma-separated respecting order.

Map

Allows to pass the entire map JSON definition (see the map configuration format of
MapStore).

GET:

#/[viewer/config?map={"version":2,"map": {"projection":"EPSG:900913", "units":"m", "center":
{"x":1250000,"y":5370000,"crs":"EPSG:900913"},"zoom":5, "maxExtent":
[-20037508.34,-20037508.34,20037508.34,20037508.34], "layers":[{"type":"osm", "title":"Open
Street Map","name":"mapnik","source":"osm", "group":"background", "visibility":true}1} }

It also allows partial overriding of existing map configuration by passing only
specific properties of the root object and/or the internal "map" object.

Following example will override "catalogServices" and "mapInfoConfiguration":

#/viewer/config?map={"mapInfoConfiguration": {"trigger":"click", "infoFormat":"text/
html"},"catalogServices":{"services": {"wms": {"url": "http://example.com/geoserver/
wms","type": "wms","title": "WMS","autoload": true}},"selectedService": "wms"}}

Center / Zoom
GET: #/viewer/config?center=0,0&zoom=>5

Where lon,lat values are comma-separated respecting order.

Marker / Zoom
GET: #/viewer/config?marker=0,0&zoom=5

Where lon,lat values are comma-separated respecting order.

Bbox
GET: #/viewer/config?bbox=8,8,53,53

Where values are minLongitude, minLatitude, maxLongitude, maxLatitude respecting
order.

AddLayers

This is a shortened syntax for CATALOG:ADD LAYERS FROM CATALOGS action
described down below.

GET: #/viewer/config?

addLayers=layerl;service,layer2&layerFilters=attributeLayerl='value';attributeLayer2="'value?2'

addLayers parameter is a comma separated list of <layerName>;<service> (service
is optional, and if present is separated from the layerName by a ;.

In the example above:

* layerl and layer2 are layer names;

* service is the service identifier of the catalog. If no service is provided, the
default service will be used.

* layerFilters is a list of cql filters to apply to the corresponding layer in the same
position of the addLayers parameter, separated by ;

MaplInfo

This is a shortened syntax for SEARCH:SEARCH WITH FILTER action described
down below. In opposite to direct usage of action, maplnfo parameter can work
with layers added by addLayers parameter. In this case search execution will be
postponed up to the moment when layer is added to the map.

maplnfo handler will check if addLayers parameter is present and if it lists layer
name used in mapinfo parameter. If so, it will postpone search to ensure that layer
is added to the map. Otherwise, in case of no matches, search will execute
immediately.

GET: #/viewer/new?addLayers=layerl;service&mapinfo=layerl&maplnfoFilter=BB='cc'
Where:

* layerl is layer name.

* service is the service name providing layer data. Service name is optional. If no
service is provided, the default service of the catalog will be used.

* maplnfoFilter is a cql filter applied to the layer.

Background

Allows to dynamically add background to the map and activate it. Supports default
backgrounds provided by static service defined in localConfig.json
(default map backgrounds) as well as other layers:

#/viewer/new?background=Sentinel;default map backgrounds
#/viewer/new?background=layerl;service
#/viewer/new?background=Ilayer2

Where:

* Sentinel, layerl, layer2 are layer names,

* service , default map backgrounds are the service names providing layer data.
Service name is optional. If no service is provided, the default service of the
catalog will be used.

According to the implementation of default map backgrounds service, it is enough to
pass desired layer name even partially, e.g. background=Sen;default map backgrounds ,
it will use the closest layer name match in this case.

Actions

To dispatch additional actions when the map viewer is started, the actions query
parameter can be used. Only actions from a configured whitelist can be
dispatched in this way (see the configuration section for more details).

// list of actions types that are available to be launched dynamically from query param
(#3817)
"initialActionsWhiteList": ["ZOOM TO EXTENT", "ADD LAYER", ...]

The value of this parameter is a JSON string containing an array with an object per
action. The structure of the object consist of a property type and a bunch of other
properties depending on the action.

Available actions

Only the following actions can be used in the actions json string.
Zoom to extent

It zooms the map to the defined extent.

Example:

"type": "ZOOM_TO EXTENT",
"extent": [1,2,3,4],

"crs": "EPSG:4326",
"maxZoom": 8

GET:
#/viewer/config?actions=[{"type": "Z00M _TO EXTENT","extent": [1,2,3,4],"crs": "EPSG:
4326","maxZoom": 8}]

For more details check out the zoomToExtent in the framework documentation.
Map info

It performs a GetFeature request on the specified layer and then a GetFeaturelnfo
by taking a point from the retrieved features's geometry. This action can be used
only for existing maps (map previously created).

With the GetFeature request it takes the first coordinate of the geometry of the
first retrieved feature; that coordinates are then used for an usual GFI (WMS
GetFeaturelnfo) request by limiting it to the specified layer.

https://mapstore.geosolutionsgroup.com/mapstore/docs/#actions.map.zoomToExtent
https://docs.geoserver.org/stable/en/user/services/wfs/reference.html#getfeature
https://docs.geoserver.org/stable/en/user/services/wms/reference.html#getfeatureinfo

A cql_filter is also mandatory for that action to properly filter required data: that
filter will be used in both request (GetFeature and GFI). If you don't need to apply
a filter, you can use the standard INCLUDE clause (cql filter=INCLUDE) so the
whole dataset will be queried.

Requirements:

* The layer specified must be visible in the map

* There must be a geometry that can be retrieved from the GetFeature request

Example:

{
"type": "SEARCH:SEARCH WITH FILTER",
"cql filter": "ID=75",
"layer": "WORKSPACE:LAYER NAME"

}

GET: #/viewer/config?
actions=[{"type":"SEARCH:SEARCH WITH_FILTER","cql filter":"ID=75","layer":"WORKSPACE:LAYER NAME"}]

The sample request below illustrates how two actions can be concatenated:

https://dev-mapstore.geosolutionsgroup.com/mapstore/#/viewer/4093?

actions=[{"type":"SEARCH:SEARCH WITH FILTER","cql filter":"STATE FIPS=34","layer":"to
{"type":"ZOOM_TO EXTENT","extent":
[-77.48202256347649,38.74612266051003,-72.20858506347648,40.66664704515103],"crs":"EPS
4326","maxZoom":8}]

The MapStore invocation URL above executes the following operations:

* Execution of a search request filtering by STATE_FIPS with value 34 on the
topp:states layer
* Execution of a map zoom to the provided extent

For more details check out the searchLayerWithFilter in the framework
documentation

Scheduled Map Info

It works similarly to the Map Info action, but supports delaying of the search
execution up to the moment when layer is added to the map. This behavior is used
when search should be applied to the dynamically added layer (e.g. using
addLayer parameter) :

Example:

https://mapstore.geosolutionsgroup.com/mapstore/docs/#actions.search.exports.searchLayerWithFilter

"type": "SEARCH:SCHEDULE SEARCH WITH FILTER",
"cql filter": "ID=75",
"layer": "WORKSPACE:LAYER NAME"

}

GET: #/viewer/config?

actions=[{"type":"SEARCH:SCHEDULE SEARCH WITH FILTER","cql filter":"ID=75","layer":"WORKSPACE:LAYE
{"type":"CATALOG:ADD LAYERS FROM CATALOGS", "layers":

["WORKSPACE:LAYER NAME"],"sources":["catalogl"]}]

Add Layers

This action allows to add layers directly to the map by taking them from the
catalogs configured, or passed.

Requirements:

* The number of layers should match the number of sources

* The source name can be a string that must match a catalog service name
present in the map or an object that defines an external catalog (see example)

Supported layer types are WMS, WMTS, WFS, 3D Tiles and GegJSON.

Example:

"type": "CATALOG:ADD LAYERS FROM CATALOGS",
"layers": ["workspacel:layerl", "workspace2:layer2", "workspace:externallayername"],
"sources": ["catalogl”, "catalog2", {"type":"WMS","url":"https://example.com/wms"}]

}

GET:
#/viewer/config?actions=[{"type":"CATALOG:ADD LAYERS FROM CATALOGS", "layers":
["layerl", "layer2", "workspace:externallayername"],"sources":["catalogl", "catalog2",

{"type":"WMS","url":"https://example.com/wms"}]}]

Data of resulting layer can be additionally filtered by passing "CQL_FILTER" into
the options array. Each element of array corresponds to the layer defined in
action:

"type": "CATALOG:ADD LAYERS FROM CATALOGS",
"layers": ["workspacel:layerl", "workspace2:layer2", "workspace:externallayername"],
"sources": ["catalogl", "catalog2", {"type":"WMS","url":"https://example.com/wms"}],
"options": [{"params":{"CQL_FILTER":"NAME='value'}}, {}, {"params":
{"CQL_FILTER":"NAME='value2'"}}]
}

GET #/viewer/config?actions=[{"type":"CATALOG:ADD LAYERS FROM CATALOGS","layers":
["layerl","layer2","workspace:externallayername"],"sources":["catalogl","catalog2",
{"type":"WMS","url":"https://example.com/wms"}],"options": [{"params":

{"CQL _FILTER":"NAME='value''}}, {}, {"params":{"CQL FILTER":"NAME='value2''}}1}]

Number of objects passed to the options can be different to the number of layers,
in this case options will be applied to the first X layers, where X is the length of

options array.

The 3D tiles service endpoint does not contain a default property for the name of
the layer and it returns only a single record for this reason the name used in the
layers array will be used to apply the title to the added 3D Tiles layer:

"type": "CATALOG:ADD LAYERS FROM CATALOGS",
"layers": ["My 3D Tiles Layer"],
"sources": [{ "type":"3dtiles", "url":"https://example.com/tileset-pathname/tileset.json" }]

’

}

GET:
#/[viewer/config?actions=[{"type":"CATALOG:ADD LAYERS FROM CATALOGS", "layers":["My

3D Tiles Layer"],"sources":[{"type":"3dtiles","url":"https://example.com/tileset-pathname/

tileset.json"}1}]

For the 3D Tiles you can pass also the layer options, to customize the layer. Here

and example to localize the title:

"type": "CATALOG:ADD LAYERS FROM CATALOGS",
"layers": ["My 3D Tiles Layer"],
"sources": [{ "type":"3dtiles", "url":"https://example.com/tileset-pathname/

’

tileset.json" }],
"options":[{ "title": { "en-US": "LayerTitle", "it-IT": "TitoloLivello" }}]

}

GET:
#/viewer/config?actions=[{"type":"CATALOG:ADD LAYERS FROM CATALOGS","layers":["My

3D Tiles Layer"],"sources":[{"type":"3dtiles","url":"https://example.com/tileset-pathname/

tileset.json"}],"options":[{"title": {"en-US":"LayerTitle","it-IT":"TitoloLivello"} }]1}]

It is possible to add Geg]JSON layer using the following configuration:

{
"type": "CATALOG:ADD LAYERS FROM CATALOGS",

"layers": ["My GeoJSON Layer"],
"sources": [{ "type":"GEOJSON", "url":"https://example.com/example.geojson" }]

}

GET:
#/viewer/config?actions=[{"type":"CATALOG:ADD LAYERS FROM CATALOGS","layers":["My
GeoJSON Layer"],"sources":[{"type":"GEOQOJSON", "url":"https://example.com/

example.geojson"}]}]

This GeoJSON catalog will return a single record similar to the 3D Tiles catalog
and for this reason the name used in the layers array will be used to apply the title
to the added vector layer.

	MapStore
	Supported Browsers
	Quick Start
	Documentation

	Quick Start
	Binary package
	How to run
	Package Contents
	Demo Maps
	Demo accounts/groups
	WAR file

	Home Page
	Anonymous user
	Normal user
	Administrator user

	Managing Users and Groups
	Managing Users
	User ID
	Other information
	Group membership

	Managing Groups
	Group ID
	Members manager
	Attributes

	Managing Contexts
	Application Context
	General Settings
	Configure Map
	Configure Plugins
	Add extensions to MapStore
	Optional tools for enabled plugins
	How to update extensions

	Configure Theme
	Default Theme
	Dark Theme
	Custom Theme

	Extension Library
	Map Catalog
	Map Templates
	Enabling the Map templates in a context
	Uploading the template
	Customize the template

	Resource Properties
	Thumbnail
	Permission rules
	Details

	Sharing Resources
	Link
	Social
	Permalink
	Embed
	Advanced options
	Advanced options for sharing maps
	Advanced options for sharing 3D maps
	Advanced options for sharing GeoStories

	Exploring Maps
	MapStore WebGIS Portal Interface

	Table of Contents
	Add and remove layers and groups
	Search for layers
	Choose layers and groups position
	Display options in panel
	Toolbar options

	Layer Settings
	General information
	Display
	Fields
	Style
	Create a new style
	Edit an existing style
	Visual Editor Style
	Mark
	Icon
	Line
	Fill
	Text

	Style Methods
	Simple style
	Classification style
	Pattern mark style
	Patter icon style

	Styling on the 3D navigation
	Styling of 3D Tiles layer
	Styling of Vector layer

	Feature Info Form
	Text
	HTML
	Properties
	Templates

	Filtering Layers
	Filter types
	Layer Filter
	Advanced Search
	Quick Filter
	Quick Filter by attributes
	Quick Filter by map interaction
	Quick Filter by viewport

	Query Panel
	Attribute filter
	Region of interest
	Layer filter

	Attribute Table
	Manage records
	Create new features
	Create new geometry with Snapping

	Editing and removing existing features

	Set filters
	Download the grid data
	Customize Attribute table display

	Widgets
	Add a Widget
	Chart
	Color customization
	Classification Attribute of type String
	Classification Attribute of type Number
	Bar Chart Type
	Advanced Options

	Text
	Table
	Counter

	Manage existing widgets
	Access widgets menu

	Export Layer Data
	MapStore Toolbars
	Search Bar
	Search by location name
	Search by coordinates
	Configuring a search service
	Search by bookmark

	Side toolbar

	Printing a Map
	Print settings
	Layout
	Legend options

	Preview

	Import Files
	Export and Import map context files
	Import vector files

	Catalog Services
	Adding Layers from Remote Services
	Managing Remote Services
	General settings
	Advanced settings

	Catalog Types
	CSW Catalog
	Advanced Settings
	Metadata templates
	Static Filter and Dynamic Filter

	WMS/WMTS Catalog
	Advanced Settings

	TMS Catalog
	Custom TMS
	SAMPLE CUSTOM
	SAMPLE CUSTOM WITH ADVANCED OPTIONS

	TMS 1.0.0
	SAMPLE TMS 1.0.0 SERVICES
	TMS KNOWN SERVICES

	3D Tiles Catalog
	COG Catalog
	Advanced Settings

	Performing Measurements
	Measure distance
	Measure area
	Measure bearing
	Export the measure
	Add the measure as layer
	Add measure as annotation
	Measurement on the 3D navigation
	Measure distance on the 3D navigation
	Measure area on the 3D navigation
	Measure point coordinates
	Measure height from terrain
	Measure angle
	Measure slope

	Annotations
	Add new Annotation
	Styling Annotations
	Managing Annotations

	Map Views
	Add new view
	3D Views navigations

	Street View
	Longitudinal Profile
	Chart
	Information
	Setting Parameters

	GeoProcessing Tool
	Buffer tool
	Advanced Settings

	Intersection tool
	Advanced Settings

	Navigation Toolbar
	Geolocation tool
	Zooming tools
	3D Navigation
	Identify Tool
	Using the Coordinates Editor
	Identify Tool with more than one layer
	Floating Identify Tool

	Background Selector
	Add background
	Add WMTS background

	Edit background
	Remove background

	Timeline
	Timeline histogram
	Set a Time Range
	Reset timeline

	Show times available on map
	Animations
	Animation Settings

	Layers Setting

	Footer
	CRS Selector

	Exploring Dashboards
	Topbar
	Options Menu

	Sidebar
	Viewer

	Adding Widgets
	Map Widget
	Legend widget

	Connecting Widgets
	Connecting Map widgets with other widgets
	Maps with other Maps
	Maps with Charts, Tables and Counters
	Maps with Legends

	Connecting Table widgets with other widgets

	Exploring Story
	Edit Mode
	View Mode

	Story Settings
	Story Theme
	Story Header

	Title Section
	Content
	Background
	Images
	Videos
	Maps

	Banner Section
	Paragraph Section
	Text Content
	Media Content
	Images
	Videos
	Maps

	Web Page Content

	Immersive Section
	Content
	Background

	GeoCarousel Section
	Background
	Descriptive panel
	Carousel
	GeoCarousel section in View Mode

	Media Section
	Web Page Section
	Text Editor Toolbar
	Image Content Toolbar
	Video Content Toolbar
	Map Content Toolbar
	Web Page Content Toolbar
	Media Editor Window
	Images
	Videos
	Maps

	Configure the map
	Layers
	Setting
	Advanced map editor

	Requirements
	War Installation
	Debug / Build
	Running in Production
	System requirements
	Database

	Quick Setup and Run
	Other useful commands
	Quick Build and Deploy

	Main scripts
	npm scripts
	bash scripts

	Infrastructure
	Frontend
	Backend

	Developing with MapStore
	MapStore as an application
	MapStore as a Framework

	Folders structure
	Developing with MapStore
	Start developing
	Frontend
	Debugging
	Redux Dev Tools

	Unit tests

	Backend
	Defaults Users and Database
	Running Backend
	Embedded tomcat
	Local tomcat instance

	Debug
	Enable Remote Debugging
	Setup eclipse project
	Start Debugging with eclipse

	Building and deploying
	Building the documentation
	API and Plugins documentation (JSDoc)
	Users and developers documentation (MkDocs)

	Understanding frontend building tools
	Including the printing engine in your build

	Main Frontend Technologies
	ReactJS
	ReactJS component example
	Properties, State and Event handlers
	Lifecycle hooks

	Redux
	Actions
	Reducers
	Store
	Redux Middlewares
	Redux thunk
	Redux Observable and epics

	Redux and ReactJS integration

	Plugins Architecture
	Internationalization
	How MapStore chooses the current language
	Configuration files
	How to configure supported languages in MapStore
	How to add a new language

	Custom Dependencies
	Aliases
	More info

	Styling and Theming
	Theme Structure
	Structure of .less files
	ms-variables.less
	less/ directory
	inline styles

	Add New Theme
	Custom Theme for project
	Custom Theme for contexts
	Suggested ways to create a custom theme for a context
	Complete theme override
	Only css variables
	partial theme override

	Tips

	Working with Extensions
	Developing an extension
	An extension example
	Dynamic import of extension
	Distributing your extension as an uploadable module
	index.json

	Installing Extensions
	Updating Extensions
	Extensions and datadir
	Extensions for dependent projects
	Externalize the extensions configuration
	Externalize the context plugins configuration
	Externalize the extensions assets folder

	Managing drawing interactions conflict in extension
	Making another plugins aware of your extension starts drawing
	Making your extension aware of another plugin drawing

	Using "ResponsiveContainer" for dock panels
	Making other dock panels closed automatically when extension panel is open

	Printing Module
	Including the printing module in MapStore
	Building from the Source
	Adding to an existing MapStore

	Configuring the print
	MapStore
	Print Settings

	Troubleshooting
	I can not see the "Print" entry in the menu
	I have an error printing (using Reverse Proxy/HTTPS)
	Setting up your proxy
	Forcing PRINT_BASE_URL of printing module

	How to use a CDN
	FAQ
	Troubleshooting
	Autowatch doesn't work on Linux

	Other References

	Code conventions
	TL;DR
	Access to the state using state selectors
	Prefer plugin configuration over initialState
	Use custom axios version for async requests

	Documentation guidelines
	General Guidelines
	Internal links

	Building documentation
	1. Python installation
	2. Libraries installation
	3. Build the documentation
	4. Editing the documentation

	Migration Guidelines
	General update checklist
	Migration from 2023.02.xx to 2024.01.00
	Removing possibility to add custom fonts to the Map
	Fixing background config
	Adding spatial filter to dashboard widgets
	MapFish Print update
	Annotations plugin refactor

	Migration from 2023.01.02 to 2023.02.00
	About plugin cfg changes
	NodeJS/NPM upgrade
	Visualization mode in map configuration
	Clean up of old maven repositories
	New Permalink plugin
	Add Permalink plugin to localConfig.json
	Using Permalink in new contexts
	Database Update
	POSTGRESQL
	H2
	ORACLE

	Migration from 2022.02.02 to 2023.01.00
	Log4j update to Log4j2
	log4j2 properties file migration
	log4j2 dependencies and code update

	Update database schema

	Migration from 2022.02.00 to 2022.02.01
	Package.json scripts migration

	Migration from 2022.01.02 to 2022.02.00
	HTML pages optimization
	Update plugins.js to make upstream plugins use dynamic import
	Version plugin has been removed
	Support for OpenID
	Upgrading the printing engine
	Replacing BurgerMenu with SidebarMenu
	Using Sidebar Menu in new contexts
	Updating existing contexts to use Sidebar Menu

	Updating extensions
	Using terrain layer type to define 3D map elevation profile

	Migration from 2022.01.00 to 2022.01.01
	MailingLists plugin has been removed

	Migration from 2021.02.02 to 2022.01.00
	Updating projects configuration
	Upgrading CesiumJS

	Migration from 2021.02.01 to 2021.02.02
	Style parsers dynamic import

	Migration from 2021.02.00 to 2021.02.01
	Align pom.xml files

	Migration from 2021.01.04 to 2021.02.00
	Theme updates and CSS variables
	Project system
	Minor changes to prod-webpack.config.js
	Move front-end configuration files in configs folder
	Back-end has been reorganized
	ALIGN POM.XML FILES TO LATEST VERSIONS OF THE LIBS
	EDIT THE WEB.XML AND CHANGE THE *-SERVLET.XML FILES TO EXPOSE THE NEW SERVICES

	Data directory has been reorganized and is now available also for product

	Configurations

	Migration from 2021.01.01 to 2021.01.03
	Migration from 2021.01.00 to 2021.01.01
	Update embedded entry to load the correct configuration
	Locate plugin configuration
	Update an existing project to include embedded Dashboards and GeoStories

	Migration from 2020.02.00 to 2021.01.00
	Update to webpack 5 - Module federation
	Eslint config
	App structure review

	Migration from 2020.01.00 to 2020.02.00
	New authentication rule for internal services
	Translation files
	Database Update
	Backend update

	Migration from 2019.02.01 to 2020.01.00
	Migration from 2019.01.00 to 2019.01.01
	Migration from 2017.05.00 to 2018.01.00
	Support js/theme versioning in your project

	Migration from 2017.05.00 to 2017.03.00 and previews
	Migration from 2017.01.00 to 2017.02.00
	Side Effect Management - Introduced redux-observable
	Webpack update to version 2
	react-intl update to 2.x
	react update to 15.4.2
	React Bootstrap update

	How to release
	Changelog generation
	Release Checklist
	naming conventions
	release and tag
	stable branch

	Developer Generic Guidelines
	Creating a MapStore2 plugin
	Introduction
	A plugin example
	A store connected plugin example
	Data fetching and side effects
	Plugin Containers
	Plugins for other plugins
	Plugins Configuration
	Dynamic configuration
	Example

	Container configuration
	Example
	localConfig.json - showIn and hideFrom examples
	localConfig.json - doNotHide example

	Conditionally disabling plugins

	Lazy loading plugins
	Testing plugins
	Examples

	General Guidelines
	Components
	State
	Selectors
	General

	Writing Epics
	Base Concepts
	Versions

	What is an epic
	Create complex data flows triggered by actions
	Doing AJAX
	Epic state: muted / unmuted
	Muted epics: how to mute internal streams

	Writing Actions and Reducers
	What are actions?
	Why we use them
	Action Creators
	Reducers
	Advanced usage and tips
	Testing
	How to test an action
	How to test a reducer
	Actions and epics

	Configuring MapStore
	Back-end Configuration Files
	Back-end security configuration files
	Log4j2 configuration file

	Front-end Configurations Files
	Externalize Configurations

	Application configuration
	Explanation of some config properties
	initialState configuration
	Catalog Tool configuration

	projectionDefs configuration
	CRS Selector configuration
	Search plugin configuration

	Configuring plugins
	Dynamic configuration

	Map Configuration
	Map options
	Layers options
	Layer types
	WMS
	FIELDS
	MULTIPLE URLS
	SPECIAL CASE - THE ELEVATION LAYER

	WMTS
	Bing
	Google
	OSM
	TileProvider
	PROVIDERS AND VARIANTS

	Vector
	WFS Layer
	Graticule
	3D tiles
	Terrain
	Cloud Optimized GeoTIFF (COG)

	Layer groups
	Other supported formats
	Web Map Context
	WMC File Structure
	Usage inside MapTemplates plugin
	Other considerations

	Additional map configuration options
	mapViews

	Externalized Configuration
	Using a data directory
	Multiple data directory locations
	Logging
	Print Configuration
	Database Connection

	Overriding front-end configuration
	Patching front-end configuration
	Externalize front-end Configurations

	Configuration of Application Context Manager
	MapStore filters
	Formats
	mapstore Format
	logic format
	cql format
	mapstore-query-panel format

	Supporting new formats
	Appendix A: mapstore format legacy fields

	MapStore vector style
	Mark symbolizer properties
	Icon symbolizer properties
	Line symbolizer properties
	Fill symbolizer properties
	Text symbolizer properties
	Model symbolizer properties (custom symbolizer to visualize 3D model as point geometries)
	Circle symbolizer properties
	Legacy Vector Style (deprecated)
	Advanced Vector Styles (deprecated)
	SVG Symbol (deprecated)
	Markers and glyphs (deprecated)
	Multiple rules and filtering (deprecated)
	Example (deprecated)

	Database Setup
	Externalize properties files
	Database creation Mode
	H2
	PostgreSQL
	Database Creation and Setup
	Connection to the Database
	Migrate an existing H2 database to PostgreSQL

	Oracle
	Database Creation and Setup
	Connection to the Database

	GeoServer integrations
	MapStore/GeoServer users integration
	Limits of this solution
	Requirements
	Database preparation
	Default user password couples are

	GeoServer Setup
	User Groups and Roles
	Setup User Group Service
	Setup Role Service

	Use these services as default
	Use the Auth key Module with GeoStore/GeoServer
	Configure GeoServer
	Configure MapStore

	Advantages of user integration

	GeoServer Plugins and Extensions

	LDAP integration with MapStore
	Overview
	Synchronized mode
	Direct connection mode (experimental)

	Configuration
	Configuration properties
	Enabling direct connection mode

	Testing LDAP support
	Advanced Configuration

	Integration with OpenID connect
	Customizing logo an text in Login Form
	Supported OpenID services
	Google
	Create Oauth 2.0 credentials on Google Console
	Configure MapStore back-end for Google OpenID
	Configure MapStore front-end for Google OpenID

	Keycloak
	Configure keycloak Client

	Configure MapStore back-end for Keycloak OpenID
	Configure MapStore front-end for Keycloak OpenID

	Keycloak Integrations
	General
	OpenID
	Single sign on integration
	Configure the OpenID integration
	Configure keycloak client
	Configure SSO in MapStore

	Direct user integration
	Configure direct integration with keycloak
	1. Create a dedicated client for keycloak
	2. Configure mapstore-ovr.properties
	3. Activate the functionality via system property

	SSO Workflow in Keycloak
	Desired workflow
	Implementation
	Initialization
	Monitoring phase
	Case 1 - Login From MapStore
	Case 2 - Login from keycloak
	Case 3 - Logout from keycloak
	Case 4 - Logout from MapStore

	Refresh token

	MapStore Authentication - Implementation Details
	Standard MapStore login
	Configure session timeout

	OpenID MapStore Login

	Possible setups
	MapStore-GeoServer integration
	MapStore-LDAP + MapStore-GeoServer
	MapStore-GeoServer + MapStore-LDAP + GeoServer-LDAP
	MapStore-GeoServer + MapStore-LDAP (direct) + GeoServer-LDAP

	MapStore Projects
	Standard Projects
	Organizing your code

	Create your own MapStore project
	Create a new project type
	Update MapStore2 version in a project

	MapStore API usage
	How to use

	MapViewer query parameters
	Passing parameters to the map
	Get Request
	POST Request

	Available Parameters
	Feature Info
	Simplified syntax

	Map
	Center / Zoom
	Marker / Zoom
	Bbox
	AddLayers
	MapInfo
	Background
	Actions
	Available actions
	Zoom to extent
	Map info
	Scheduled Map Info
	Add Layers

