

MapStore

MapStore is an highly modular Open Source WebGIS framework developed by

GeoSolutions to create, manage and securely share maps and mashups. This

simple and intuitive framework is able to mix map contents provided by Google

Maps, OpenStreetMap, Bing or other servers compliant to OGC standards like

WFS, CSW, WMC, WMS, WMTS and TMS. MapStore is used to find, view and

query published geospatial data and to integrate multiple remote sources into a

single map; the result is an high quality and user friendly framework that allows

different kind of use cases by harmonizing remote data with smart and advanced

functionalities (like chart widgets, dashboards, timelines and others). MapStore

resources are not only related to Maps but also Dashboards and Stories; in

MapStore you can create your own innovative and fascinating Application Context

where users can save, manage and share its own resources by also managing

access permissions to other groups of users.

MapStore is not only a product but also a WebGIS framework. As a standard

geoportal product, it is a web-based product that allows to provide a powerful and

interactive geospatial WebGIS, it provides a direct and real-time access to

geospatial data warehouses and it supports the most common standards formats

available for geospatial data. MapStore also provides advanced spatial analysis

capabilities that can be used to build WebGIS solutions through a powerful,

dynamic and open geospatial application. Since MapStore is also a framework, you

can use it to build your own WebGIS applications by using its plugins and modules.

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://www.geosolutionsgroup.com/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/user-guide/exploring-dashboards/
https://mapstore.readthedocs.io/en/latest/user-guide/exploring-stories/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/user-guide/managing-contexts/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Last but not the least, MapStore is map agnostic and ensures the greatest

flexibility: its abstraction tier allows to work with different web mapping libraries.

The mapping engines currently supported by MapStore are OpenLayers (used by

default for desktops), LeafletJS (used by default for mobile devices) and Cesium 3D

viewer.

MapStore has been designed from the beginning to provide a coherent and

comprehensive experience across different devices types.

MapStore is based on OpenLayers, Leaflet and ReactJS, and is licensed

under the Simplified BSD license.

Supported Browsers

The browsers supported by MapStore are Google Chrome, Microsoft Edge, Mozilla

Firefox and Safari. Ensure to have the latest version installed.

Quick Start

You can either choose to download a standalone binary package or a WAR file to

quickly start playing with MapStore. See the Quick Start documentation for more

details.

Documentation

Users Guide

Developers Guide

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://openlayers.org/
https://leafletjs.com/
https://cesium.com/platform/cesiumjs/
https://cesium.com/platform/cesiumjs/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Quick Start

You can either choose to download a standalone binary package or a WAR file to

quickly start playing with MapStore.

Binary package

The easiest way to try out MapStore is to download and extract the binary package

available on MapStore release page. Here you can find some preconfigured maps

as well users and groups. The goal for this package is to ease all the requirements

needed for you to take MapStore for a test-drive.

We hope you enjoy MapStore!

How to run

Go to the location where you saved the zip file, unzip the contents and run:

Windows: mapstore2_startup.bat

Linux: ./mapstore2_startup.sh

Point your browser to: http://localhost:8082/mapstore

To stop MapStore simply do:

Windows: mapstore2_shutdown.bat

Linux: ./mapstore2_shutdown.sh

Package Contents

MapStore

Tomcat8

Java JRE (Win and Linux)

Demo Maps

Aerial Imagery - Simple map demo showing some aerial imagery data

•

•

•

•

https://github.com/geosolutions-it/MapStore2/releases/latest
http://localhost:8082/mapstore
https://github.com/geosolutions-it/MapStore2/releases/latest
http://tomcat.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/index.html

WFS Query Map - Demo map configured with MapStore built-in ability to

query feature over WFS

User Map and User1 Map - Map only visible to user and user1 respectively,

to demonstrate MapStore capabilities on user/group management and

permissions.

Demo accounts/groups

WAR file

Download the WAR file from the latest release here.

All the releases

After downloading the MapStore war file, install it in your java web container (e.g.

Tomcat), with usual procedures for the container (normally you only need to copy

the war file in the webapps subfolder).

If you don't have a java web container you can download Apache Tomcat from

here and install it. You will also need a Java7 JRE.

Then you can access MapStore using the following URL (assuming the web

container is on the standard 8080 port):

http://localhost:8080/mapstore

Use the default credentials (admin / admin) to login and start creating your maps!

•

•

Users Groups

admin/admin MyGroupAdmin,everyone

guest everyone

user/user everyone

user1/user1 everyone, MyGroup

https://github.com/geosolutions-it/MapStore2/releases/latest
https://github.com/geosolutions-it/MapStore2/releases
https://tomcat.apache.org/download-80.cgi
https://www.oracle.com/it/java/technologies/javase-jre8-downloads.html
http://localhost:8080/mapstore

Home Page

In order to get started, let's take a look at the portal interface and get an idea of

how to navigate around it. First of all it's necessary to specify that the user can

take advantage of different tools and sections according to his authentication in

MapStore. In particular, a user can access the MapStore application by:

Anonymous user

Normal user

Administrator user

Anonymous user

Accessing MapStore as anonymous user, the Homepage shows up as in the figure

below:

The anonymous user is allowed to:

Access GeoSolutions website with a click on the icon

Navigate through the Featured and Contents sections

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://www.geosolutionsgroup.com/

Set the application language, with the Language switcher:

Login (more information about Login can be found in Managing Users

and Groups section)

Perform a search for resources, through the Search bar:

Open the Advanced Filters, through the button, to select one or more

Contexts from the dropdown menu and find all maps created from them

•

•

•

•

../managing-contexts/

Share a resource

Take a look at map Details when available

Open resources and navigate inside them according to their Permissions

Normal user

With a login as normal user, the Homepage displays as below:

The normal user, in addition to what the anonymous user can do, is allowed to:

Create new resources like Map, Dashboard and GeoStory:

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
../exploring-maps/
../exploring-dashboards/
../exploring-stories/

View, edit and remove resources according to their Permissions

Administrator user

Once logged in as Administrator, the Homepage it's like the following:

The admin can see and edit everything. In particular, in addition to what normal

user can do, an administrator can also:

Access the Manager button for Manage Accounts and Manage Contexts

Manage the resources by including or excluding them from

Featured section

View, edit and remove any resource

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Managing Users and Groups

Accessing MapStore as anonymous user the Login button in Homepage is blue

. With a click on it, the following window appears:

Once the login is made, the same button displays in green and a click on it

opens a list of options:

Through these options it is possible to:

Get the following Account info: Name, Role, E-mail, Company, Notes and

Groups (in order to understand how these info are set see the Managing Users

section)

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Change Password

Logout

Once logged as Admin, become possible to manage users and groups and the

Manage Accounts option appears in Homepage:

•

•

Selecting Manage Accounts options, the Account Manager opens:

In this page it is possible to switch between Manage Users or Manage Groups

sections:

Managing Users

Switching to Users Manager, the page displayed is the following:

In this page the Admin can:

Perform a search among the existing users

Create a new user with the New User button

Edit or remove an existing one, through the Edit user and Delete user

 buttons on each user card:

•

•

•

Both the New User and the Edit user buttons, open the User

editor window that is composed of three sections:

User ID

Other information

Group membership

User ID

As soon as the New User window opens, the User ID section is displayed:

In this section the Admin is allowed to:

Set the Username

Set the Password

•

•

•

•

•

Select the User role (Normal user or Admin)

Choose if an user is Enabled or not. Enabled users will have a green status icon

under their profile, otherwise disabled users will have a red status and will not

be able to log in.

Username and Password are the only mandatory fields. The password must

contain at least 6 characters.

Other information

Switching to Other information section, it display the following:

•

•

Warning

Here the Admin can set:

Email

Company

Notes

Group membership

Through the last section of the window it is possible to manage the groups in

which the user belongs to:

The everyone group, set by default, it is impossible to remove since it must be

attributed to all users.

•

•

•

Note

Managing Groups

The Groups Manager section displays like the following:

Similar to what happens for the Users Manager, in this page the Admin can:

Perform a search among the existing groups

Create a new group with the New Group button

Edit or remove an existing one, through the Edit group and Delete

group buttons on each group card:

•

•

•

Both the New Group and the Edit group

 buttons, open the Group editor window that is composed of two sections:

Group ID

Members manager

>Attributes

Group ID

As soon as the New Group window opens, the Group ID section is displayed:

In this section the Admin is allowed to:

Set the Group Name

Set the group Description

The Group Name is the only mandatory field.

•

•

•

•

•

Warning

Members manager

Through the Members manager section it is possible to choose which users are

part of the group:

Attributes

On the Attributes tab the admin can associate some attributes to user groups. By

default MapStore allows to enter a "notes" attribute for each group. The attributes

list can be configured by editing the plugin configuration in localConfig.json .

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.GroupManager

Managing Contexts

In MapStore the Application Context Manager is an administrative tool

designed to build and configure MapStore's viewers: the administrator is able to

configure a custom MapStore viewer by choosing:

The name of the context (the viewer will have its own specific URL)

The default map configuration and map contents (like layers, backgrounds,

catalogs, CRSs etc)

The set of plugins available for the viewer

The Admin can access the Application Context Manager through the

 button available in the Manager option menu in

Homepage.

In this page the administrator can:

Perform a search among the existing contexts

Create an Application context through the button

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

In each context's card the administrator can:

Remove the context through the Delete button

Edit the context through the Edit context button

Open the Edit properties through the Edit properties button

Sharing the context through the Share button

•

•

•

•

Application Context

In order to create a context, the Admin can click on the New Context button

 in the Contexts page and he will be addressed directly to a wizard.

The wizard is composed by the following four steps:

You can move through the steps of the wizard with the dedicated buttons located

at the bottom right of the page.

In this way the admin can:

Move forward on the different steps through the Next button

Go back to the previous step through the Back button

Closed the context wizard through the Close button

General Settings

This first step allows to configure the Name and the Window title of the new

context.

•

•

•

The name and the window title are both mandatory fields. Note that it is not

allowed to choose a name that has already been assigned to another MapStore's

resource (like maps, dashboards, stories): a warning message appears in this case

to notify the user.

The Window title is the name of the browser window.

MapStore allows the user to Import an application context by selecting the

 button. The import screen appears so that it is possible to drag and drop

a previously exported context file there or select it from the local machine through

the button.

Once a valid context name is specified in General settings, it is possible to Export

the context with all the configurations introduced up to that point; this is possible

through the button. The export screen appears and the user exports the

context, in JSON format, by clicking the button.

Warning

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/

The button is only available on the first step of the application context

wizard (the General settings) while the button is always available with

the only condition that a valid context name has been specified.

Configure Map

To create the context viewer, the map configuration like the one described here

opens so that the admin can set the initial state of the context map.

In particular the admin can configure the context map using the following

MapStore tools:

Catalog, present in Burger Menu , to configure the supported remote

services (like CSW, TMS, WMS and WMTS) and add layers to the map.

Import, present in Burger Menu , to import map files and import vector

file.

Annotations, present in Burger Menu button, to add annotations to the

map.

Table of Contents, through the button where the admin can use all the

available functionalities to manage context layers.

Note

•

•

•

•

Background Selector, at the bottom left of the viewer, allows the user to add,

manage and remove map backgrounds

CRS Selector, through the button at the bottom right of the Footer, to

switch the Coordinate Reference System of the map

The Navigation Toolbar, at the bottom right of the viewer, is useful to the admin

to explore the map.

An example of a context viewer with a new background and a layer, added to the

map, can be the following:

Configure Plugins

This wizard step allows to select the extensions that will be available in the context

viewer: the user of a context will use only the plugins enabled by the

administrator. Within this wizard step, all the available plugins in MapStore are

present in the left side list ready to be selected for the context . The right side list

contains the list of plugins selected by the administrator for the context.

•

•

•

../navigation-toolbar/

Through the central vertical bar the administrator can select the plugins to

include in the context viewer by moving them from the Available Plugins list to

the Enabled Plugins list.

In particular, the admin can:

Add an extension from the Available Plugins list to the Enabled Plugins list,

using the Add Extension button . Instead, remove an extension from the

Enabled Plugins list using the Remove Extension button , as follows:

Bring all extensions from one list to another using the Add all extensions

button or remove all extensions using the Remove all extensions button

, as follows:

To search for an extension listed, the admin can use the Search bar.

Add extensions to MapStore

The MapStore administrator can also install a custom plugin by using the Add

extension to MapStore button , at the top right of the Available Plugins list.

Here the admin, in order to upload the plugin's package, can drag and drop it

inside the import screen or select it from the folders of the local machine through

the button.

A plugins package must be provided as .zip archives that contains:

An index.json file with a plugin definition

A plugin file with the extension code in JavaScript

All mandatory translations files in MapStore.

A sample extension for testing purposes is available here. More extensions will be

available in the future versions of MapStore.

Through the Add button the plugin is inserted in the Available Plugins list.

•

•

Warning

•

•

•

https://github.com/geosolutions-it/mapstore-playground/raw/master/samples/SampleMapStoreExtension.zip

A plugin so installed can be included in the context viewer by moving it in the

Enabled Plugins list or uninstalled through the Delete button .

Optional tools for enabled plugins

In the Enabled Plugins list, the following buttons are displayed for each extension:

The Enable selection of current plugin for user button allows the

admin to configure which extensions will be present in the Extension Library

and not activated by default.

•

Once a plugin has been included in a context, it is active by default and available

inside the viewer. The administrator can click on Enable loading this plugin on

startup button to make that plugin not active by default: clicking on this

button the plugin will not be available in the context viewer until explicitly

activated by the end user through the Extension Library.

The Edit Plugin Configuration button allows the admin to interact with

a text area to specify the plugin configuration and to override the default one.

The Open plugin configuration documentation button opens the

Plugins Documentation in another page.

How to update extensions

Extension can be updated using two steps:

Old extension removal.

Uploading and installation of the new version of extension.

As previously stated, extension can be removed on "Configure Plugins" step of

wizard using Delete button .

Note

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins

At this point extension will be removed from application completely. Save context

after extension removal only if you want to be sure that extension will not be

activated for the context if it's reinstalled at some point.

Do not save context and upload new version of extension right away after old

version removal. Context don't need to be saved after new version installation.

With all stated above, complete workflow is:

Open context editing and jump to the "Configure Plugins" step of the wizard.

Delete old version of extension using Delete button .

Upload and install new version of extension using the Add extension to

MapStore button

Do not save context, close wizard.

Existing configuration of extension (default or customized) will be preserved for all

the contexts using extension.

Configure Theme

The last wizard steps allows to configure the theme to use for a context. A

dropdown allows to select one of the available themes (see the Styling and

Theming section of the online documentation to know how to create and include

additional themes to MapStore). By default in MapStore a default and a dark

themes are available.

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Default Theme

The default theme is always available for a context and it is the MapStore default

one. This theme is automatically applied to the context if the Configure Theme

wizard step is skipped during the context creation or when the theme selection

drop-down is cleared. An example of a default context can be the following:

Dark Theme

MapStore also provides by default an additional theme, the dark one, that can be

selected from the drop-down menu to be used as an alternative theme for

application contexts.

An example of the dark theme applied to a context is the following one:

Custom Theme

After selecting a theme from the drop-down, it is also possible to customize it from

UI by enabling Custom Variables.

Once Custom Variables is enabled, the context editor can modify main, primary

and secondary colors for both backgrounds and texts (an helper clarifies the UI

elements involved for each field in the form). Clicking on the Change Color button

 a color picker is displayed to allow the selection of the desire color, as follows:

The colors that can be customized are the following ones:

Main Text Color to choose the color used in panel or dialog texts

Main Background Color to choose the color used in panel or dialog

backgrounds

Primary Text Color to choose the color used for icons inside toolbar, header

and button texts

Primary Color to choose the color used for icons inside toolbar, header and

button backgrounds

Secondary Text Color to choose the color used as button text when a button

is active or selected

Secondary Color to choose the color used as button background when a

button is active or selected

To ensure a good and well readable color contrast between each UI component,

make sure to not use a secondary color too similar to the primary one and

obviously the primary text color with its counterpart (the same applies for the

other couples of colors: main, secondary).

An example of a custom context can be the following:

•

•

•

•

•

•

Warning

Extension Library

The button, present in the Side Toolbar, provide to the user the list of

extensions ready to be activated for the viewer: that list of available extensions for

the user has been defined by the the administrator during the Application Context

creation.

The User Extensions panel opens allows the user to choose which extension to add

to the viewer through the Add Extension button , as follows:

The User Extensions is enabled by the admin in the Application Context wizard.

Note

Map Catalog

The Map Catalog is an extension that can be included in the step #3 of the

application context wizard to allow the end user to browse the existing MapStore

maps directly inside the viewer itself. The button, present in the Side Toolbar,

provides to the user the list of the MapStore maps that are also available in

Homepage.

The Map Catalog panel allows the user to select a map and loaded it in the same

browser page, as follows:

Selecting a map card in the Map Catalog list, the map currently in use will be

replaced. In addition, if the selected map has been created in a context, also the

viewer will be replaced with the one of the related map context.

For each map in the Map Catalog list the following buttons are displayed:

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/

The Delete button allows the user to remove the map

The Edit Properties button allows the user to Edit Properties of the map

The Share button allows the user to Share the map

•

•

•

Map Templates

This extension allows to browse Map Templates in a MapStore's viewer.

Supported Map Templates formats in MapStore are WMC and MapStore's native

JSON. The button, present in the Side Toolbar, provides to the user the list of

the available templates.

For each template in the Map Templates list the following buttons are displayed:

https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#web-map-context
https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#map-options
https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#map-options

The Replace button allows the user to entirely replace the current map

with the one defined in the template, as follows:

The Add Template button allows the user to add the map template

contents (layers) to current map without replacing it (by default a new group is

created in that case in TOC, on top of the other ones, to contains layers coming

from the template to better identify them), as follows:

The Add to favorites button allows the user to add the template to

favorites on top of the list

Enabling the Map templates in a context

The Map templates extension is enabled by the admin in the Application Context

wizard. In particular, this is possible in the third step of the wizard and after the

extension is added to the Enabled Plugins list.

As soon as the Configure templates button is selected the Configure

templates modal window opens, it allows the admin to manage the map templates.

•

•

•

Through the Configure Template tool, the administrator can browse existing

templates in MapStore and enable them for the context simply by moving the

desired ones from the Available Templates list to the Enabled Templates list: this is

possible with the central bar, as follows:

Uploading the template

It is possible for the administrator to create new Map Templates in MapStore by

uploading new template files. In order to upload a new template the admin can

select the Upload new template button to open the Upload new template

window:

Here the admin, in order to import a template file, can drag and drop it inside the

import area or simply click on that area to select it from the folders of the local

machine.

The file that the admin can upload are:

The MapStore native map definition json format

The WMC (Web Map Context) file in xml format

The admin can also add Thumbnail, Name, Description and Groups

permissions as describe here

Warning

•

•

https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#map-options
https://mapstore.readthedocs.io/en/latest/developer-guide/maps-configuration/#web-map-context

Customize the template

The admin can also delete or modify an existing template through the buttons that

are available on the left side of each templates item inside the Configure templates

UI.

In particular, the admin can:

Modify the template using the Edit properties that opens by clicking on the

Edit properties button

Delete the template through the Delete button

•

•

Resource Properties

In order to customize the properties of a resource, the Admin or a normal user

with permission can access the Edit properties window from the Edit properties

button in Homepage or from the Save and the Save as buttons inside the

resource viewer.

Through the Edit properties window the user can perform the following

operations:

Add a Thumbnail

Add a Name and a Description

Add a Permission rule

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

The name of a resource is the only mandatory field. Note that is not allowed to

choose a name that has already been assigned to another resource.

Thumbnail

It is possible to add an image as thumbnail dropping it or clicking inside the

following box:

The image to be added must not be larger than 500 kb and its best dimensions are

300x180 px. The supported formats are jpg (or jpeg) and png .

Permission rules

In the Add a rule... section you can set one ore more permission rules in order to

allow a group to access the resource. In particular it is possible to choose between

a particular group of authenticated users or the everyone group that includes all

authenticated users but also anonymous users (more information about different

user types can be found in Homepage section).

Moreover it is possible to choose between two different ways with which the

selected group can approach the resource:

View the map and save a copy

Edit the map and re-save it

In order to add a rule, the user can select the group and set permissions inside the

Add a rule... section. Once the rule is set, with the Add button it is possible to

add it to the Permissions Groups list.

Warning

Warning

•

•

For example, a resource that can be seen by everyone, should have a rule like the

following:

Once a rule is set, the user can always remove it through the Remove button

.

How to manage users and groups is a topic present in the Managing Users and

Managing Groups sections.

Details

Only for resources of type map, it is possible to add details to the map. This is

useful to associate some information to the map or an overview description of its

content. In this case the Edit properties window is the following:

With a click on the Add new details button it opens a panel where the user

can write the details of the map.

The text can be edited and some links and images can be added through the Text

Editor Toolbar. Once the editing is done, the map details can be saved with the

Save button and other buttons appear on the Edit properties panel.

Here, the user is allowed to:

Show the details preview

Edit the details

Enable the Show as modal button, to show the details on a modal when

the user clicks on button, which is listed in the Side

Toolbar options

•

•

•

If the Show as modal button is not activated once the user opens the About this

map button, the details are displayed on a panel.

Note

The About this map button is visible in the Side Toolbar only when the details are

present on the map.

Enable the Show at startup button. If active, as soon as the user opens

the map, the details panel is visualized.

Delete the details sheet

Once the details are saved, the Show details button appears also on the map

card in Homepage

Through this, it is possible to open the details panel also from the home page.

Warning

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Sharing Resources

MapStore provides the possibility to share resources (maps, dashboards and

geostories) through two different ways:

Directly from the MapStore Homepage by clicking on the Share button

present in the toolbar of each resource card

Inside the resource by selecting the option from the Side Toolbar

From the Share panel the user is allowed to share a resource in different ways:

With a Direct Link

Through a Social Network

Through a Permalink to shares current user session (only available from the

Side Toolbar)

With Embedded code or APIs (only available for maps)

Link

As soon as the Share panel opens, the Link section is the one visible by default:

•

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Here, the user can copy the resource URL link or share it through the QR code.

Social

The Social section allows the user to share the resource on the most common

social networks like Facebook, Twitter and LinkedIn simply by clicking on the

social icon.

Permalink

The Permalink section allows to save the current overall viewer state of the

resource and share it as a permalink.

A permalink is a new resource belonging to a dedicated category in MapStore for

which the user must enter the Title and Description (the last one is not

mandatory) and choose whether the resource will be public by checking the

Public option (this will generate a public map permalink so that everyone can

access it).

Map Details as well as other resources connected to a map or context, if present,

will not be available in the final permalink resource.

When all options are filled, the user can Generate permalink through the

 button to get the Permalink URL or the QR code to

share it.

Warning

https://mapstore.geosolutionsgroup.com/mapstore/#/

Embed

The Embed section provides to the user the needed snippets, embedded code or

the MS APIs (only available for maps) to embed MapStore in a third party web

page.

In addition, MapStore provides options to customize a bit the embedded code:

The user can configure height and width of the embedded resource by

choosing Small (600x500), Medium (800x600), Large (1000x800) and Custom

(it is possible to choose the desired size).

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

For maps, the user can choose to show the TOC in the embedded map by

enabling the Shown TOC option

•

For dashboards, the user can show the connections between widgets on the

embedded dashboard by enabling the Show connections

Advanced options

Some Advanced options are available for maps and geostories inside the Share

tool.

•

Some Advanced options are available only opening Share tool from the Side

Toolbar and not from the MapStore home page.

Advanced options for sharing maps

In case of maps, enabling the Advanced options in the Share tool the user can

include the following to the share URL:

The bounding box parameter to share the current viewport of the map

visualized by the user

The desired center and zoom of the map by enabling the Add center and

zoom

Note

•

•

The related available options allow the user to:

Center the shared map to specific coordinates by typing them in two different

formats (Decimal or Aeronautical that can be chosen through the button)

or by clicking on the map to set automatically the coordinate fields.

Share the map at a specific Zoom level (Min:1 and Max:35)

Add marker on loaded map to show the center point in the shared map

Advanced options for sharing 3D maps

Once the 3D Navigation is active on map, the user can include the following to the

share URL by enabling the Advanced options in the Share tool:

•

•

•

The desired center and zoom of the map by enabling the Add center and

zoom to sharing link

•

The related available options allow the user to:

Center the shared map to specific coordinates by typing them in two different

formats (Decimal or Aeronautical that can be chosen through the button)

or by clicking on the map to set automatically the coordinate fields.

Share the map at a specific Zoom level (Min:1 and Max:35), Heading (Min:0°

and Max:360°), Roll (Min:-90° and Max:90°) and Pitch (Min:-90° and Max:90°)

•

•

Advanced options for sharing GeoStories

In case of GeoStories, enabling the Advanced options in the Share tool the user

can include the following to the share URL:

The Home button to allow the possibility to bring the user to the MapStore

Home Page if needed: that button will be automatically included in view mode

inside the story toolbar just beside the navigation bar.

•

The scroll position allows to share the URL of the current section of the story

visualized by the user

•

Exploring Maps

In cartography, a map is any two-dimensional graphic representation of the spatial

relationships of the whole or a part of the earth. In digital cartography as in

MapStore, a map consists in overlaying various layers of geographic data and

their styles in data frames, and it contains various map elements such as a legend

and a scale bar.

In order to create a map, the user can click on the New Map button in

Homepage and will be addressed directly to the map viewer (by default only

Administrators and Normal Users can create a new map, as explained before in

Homepage section):

Once a map is created and saved, it will be available in Homepage content section.

MapStore WebGIS Portal Interface

The Mapstore WebGIS Portal interface is composed by the following main blocks:

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

In particular:

The Table of Contents (TOC) shows the layers and the layers groups on the

map and allows to remove or edit them, and add some new ones

The MapStore Toolbars includes the Search Bar and the Side Toolbar, an

important list of options that contains several functions and information

The Navigation Toolbar that is mainly a navigation panel

The Background Selector allows to add, remove or edit map's background

The Footer includes the CRS selector, the coordinates, the scale and the credits

of the layer

The Data Frame is the space where the layers are displayed

•

•

•

•

•

•

../mapstore-toolbars/
../navigation-toolbar/

Table of Contents

The Table of Contents, briefly TOC from now on, is a space where all the layers and

the layers groups are listed. Through this panel it is also possible to carry out the

following operations:

Add and remove layers and groups

Perform a search between layers

Change the position (and consequently the display order in map) of layers and

groups

Set some display options directly from the panel

Manage layers and groups and query layers through the toolbar actions

Add and remove layers and groups

The user can access the TOC with the Layers button on the top-left corner of

the map viewer. For example, in a new map, the following panel appears:

•

•

•

•

•

The Add Layer button opens the Catalog, a panel where it is possible to

choose the desired layer and add it to the map with the Add to Map button :

Once the layer is added to the map, the result should be like the following:

When a layer is added for the first time to the TOC, without any group present, the

Default group is created. This group host all the layers that don't belong to a

specific group and can also host sub-groups within it.

In order to add a new group, clicking on the Add Group button the following

window opens:

Once the name of the group is typed, with the button the new group is

added to the TOC.

Note

In order to add a new layer to a specific group, it is possible to select that group

and click on Add layer to selected group :

In order to add a subgroup inside a specific group selected, the user can click on

the Add sub group to the selected group button (maximum 4 subgroup

levels are allowed):

Layers and groups can be removed selecting them and clicking on the Remove

button present in the toolbar of each selected layer and group.

When a group is removed, also all the layers and subgroups associated with it will

be removed.

Search for layers

With the TOC it is also possible to perform a search between the added layers. This

operation can be done simply by typing the name (o part of it) of the layer in the

search bar:

Warning

Choose layers and groups position

With the drag and drop it is possible to change layers position inside the same

group, but also moving them between different groups. Once the Default group is

created, all the layers without a specific group are automatically added to this one.

Changing layers position with the drag and drop, for example, it can display like

the following:

Groups and sub-groups, no matter their level, can be nested inside other groups

and sub-groups, or can be separated from their parent-level to create new main

groups. These operation can be performed, again, with the drag and drop

function.

The only constraints applied to the groups manager refer to the Default group

(each layer added to the map the first time is included in that group). Drag and

Drop operations are not allowed for the Default, but it's allowed to rename it or to

nest groups or sub-groups inside it.

Layers position can also be determined through the Selected layer settings

button available in the toolbar that appears once a layer is selected. This

button opens a panel where the user can choose the destination group (or

subgroup):

Warning

Display options in panel

Directly from the TOC panel, it is possible to set different types of display options.

In particular, for layers, it is possible to:

Toggle layers visibility by switching on and off the "eye" icon to the

left of the layer name

•

Expand or collapse the legend by clicking on the icon. The width and

height property of the legend can be overridden via Legend options under

Display tab.

Control the transparency in map by scrolling the opacity slider

When the user switch off the visibility of a layer, also the group where that layer is

nested change the "eye" icon in (no matter if other visible layers are present

in that group)

With groups there's the possibility to:

Expand or collapse the list of layers or subgroups nested inside it

Toggle groups visibility by switching on and off the "eye" icon to

the left of the group name

When the user switch off the visibility of a group, also the visibility of all the layers

and subgroups nested inside it will be automatically switched off.

Toolbar options

Once a group is selected the following toolbar appears:

•

•

Note

•

•

Note

Through this toolbar it is possible to:

Add layer to selected group : it is possible to add one or more layers to

the group

Add sub group to the selected group : it is possible to add one or more

sub-groups to the selected group

Zoom to selected layers extent : in order to zoom the map to all layers

belonging to the group

Open the Selected group settings where it is possible to change the

group's title, the title translations and see the group name (its ID). It is also

possible to add/customize the description of the group and configure the

tooltips placement in the UI (more information can be found in Layer Settings

section)

•

•

•

•

Remove selected group and its content

Once the changes have been made, it's possible to save them through the Save

button .

The information thus modified will be kept only within the current user session. In

order to make these kinds of changes persistent across different user session, the

map needs to be saved.

Selecting a layer, the toolbar is the following one:

•

Note

In this case the user is allowed to:

Zoom to selected layer extent : in order to zoom the map to the layer's

extent

Access the selected Layer Settings

Set a Filter for that layer

Access the Attribute Table

Remove the selected layer

Create Widgets for the selected layer

Export the data of the selected layer

Open the Layer Metadata (if configured), to retrieve layer metadata from

the remote catalog source.

•

•

•

•

•

•

•

•

The Metadata Tool is not configured by default in MapStore. A complete

documentation to configure it is available as part of the TOC Plugins

documentation (see metadataOptions). Once the Metadata Tool has been

configured, MapStore is able to load the layer metadata from the remote CSW

service and parse it to be presented to the user according to the provided plugin

configuration. This functionality automatically works in case of WMS layers coming

from a CSW catalog source, while for layers coming directly from a WMS catalog

source the Metadata Link must be present in the WMS Layer GetCapabilities.

Open the Compare tool where it is possible to Swipe or

Spy the selected layer .

From the dropdown menu of the Compare tool it is possible to click on

 button so that the Swipe tool is enabled on the map for the selected

layer: to activate the Swipe it is also possible to simply click on the Compare tool

button.

Note

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.TOC
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.TOC
https://docs.geoserver.org/latest/en/user/data/webadmin/layers.html#basic-info

From the Compare tool dropdown , it is also possible to click on

. Doing this a configuration modal opens for the selected

Compare tool (Swipe or Spy glass) so that, in case of Swipe, the user can change

the orientation of the swipe from Vertical to Horizontal.

The user can also activate the from the same dropdown menu

in order to switch the Compare tool in Spy glass mode. If the Spy glass is active,

clicking on the option, the configuration modal opens so that it

is possible to change the size of the spy glass (the radius).

Layer Settings

In this section, you will learn how to manage the layer settings in terms of general

information, display mode, style and feature Info.

Since a layer is added to the TOC it is possible to access its settings with the

dedicated button that appears selecting a layer:

The layer settings panel is composed of four sections:

General information

Display

Fields

Style

Feature Info

•

•

•

•

•

For WMTS layers the Fields, the Style and the Feature Info sections are not

implemented. Moreover the Display section is limited to the Transparency layer

parameter.

General information

By default, as soon as the user opens the layer settings panel the General

information section appears:

In this page it is possible to:

Change the Title

Warning

•

Set the translation of the layer title by opening the Localize Text popup

through the button. This way the language of the title changes according

to the current language setting in MapStore

Take a look at the Name of the layer

Edit the layer's Description

Set the layer Group

Configure the Tooltip that appears moving the cursor over the layer's item in

TOC. In this case the user can decide that the Title, the Description, both or

nothing will be displayed. Moreover you can set the Placement of the tooltip,

choosing between Top, Right or Bottom:

Setting a tooltip that shows the Title and the Description on the Right, for example,

it can be similar to the following:

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Disable editing on attribute table. This option allows to disable the editing

function in Attribute Table. In case a layer has been set as read-only through

this option, the icon will not be available in the Attribute Table and in

theIdentify panel for the selected layer. This option is unchecked by default and

it can be controlled only by users with editing permissions on the map.

Display

Through the second section of the layer settings panel it is possible to change the

display settings:

•

In particular, the user is allowed to:

Set the image format: choosing between png , png8 , jpeg , vnd.jpeg-png ,

vnd.jpeg-png8 and gif

•

The list of available format is the same of the related catalog source. Therefore,

for WMS services, the updated list of formats supported by the WMS server is

used.

Set the size of layer tiles: choosing between 256 or 512

The Format and Layer tile size options are available only for the layers added from

CSW and WMS catalog sources.

Set the opacity value of the layer (in %)

Enable/disable the Visibility limits to display the layer only within certain

scale limits. The user is allowed to request the MinScaleDenominator and

MaxScaleDenominator value present on the WMS GetCapabilities of the layer

though the button or set the Max value and the Min value and select the

Limits type choosing between Scale or Resolution .

Enable/disable the transparency for that layer

Decide to display the image as a single tile or as multiple tiles

Enable/disable the localized style. If enabled allows to include the MapStore's

locale in each GetMap, GetLegendGraphic and GetFeatureInfo requests to

the server, as explained in the WMS Catalog Settings

Enable/disable the Force proxy layer option. If enabled, forces the application

to check the source and applies proxy if needed.

Enable/disable the use of the layer cached tiles. If checked, the Tiled=true URL

parameter will be added to the WMS request to use tiles cached with

GeoWebCache. When the Use cache options is enabled, more controls are

enabled so that it is possible for the user to check if the current map settings

match any GWC standard Gridset defined on the server side for the given

WMS layer (Check available tile grids information). At the same time,

it is also possible to change the setting strategy (based on the WMTS service

response) to strictly adapt layer settings on the client side to the ones matching

any remote custom Gridset defined for the current map settings (Use remote

custom tile grids button).

Note

•

Warning

•

•

•

•

•

•

•

https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms
https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms

When the Check available tile grids information button is clicked, an info

icon appears to inform the user if the current map settings (Projection, Tile

size, Image Format) are properly matching the ones of the given Tile Grids defined

on the server side configuration for the layer.

When the Use remote custom tile grids button is enabled, it turns green

and a WMTS request is performed by MapStore to fetch precise information to

more finely adapt the layer settings on the client side to the ones of the matching

Tile Grid defined on the server. The scope of the info icon in this case is still

the same but through this strategy MapStore provides a finer tuning of the client

side layer settings to better fit the tile grid defined on the server side and so

provide better accuracy of cache matching.

Note

In case the current map/layer settings (Projection, Tile size, Image Format) do not

match any of the server-side defined Tile Grids for the given layer the Info panel

shows a warning message to indicate the reason for the mismatch so that it is

possible for the user to change the needed setting accordingly (for example

changing the map projection or selecting a different tile size and/or tile format).

The Gridset compatibility check made by MapStore whose result is shown by the

Info tooltip, is usually quite reliable but should be considered anyway only to

provide general matching indicators aimed at highlighting possible compatibility

issues between the current layer/map settings and the remote Tile Grid. Due to the

cache tolerance considered on the server side by GWC, it might even happen in

some cases that the settings available on the client side don't HIT the tile cache

even if all the checks listed are successful. At the same time, when the standard

gridset is used, gridsets check may fail even if all WMS request are effectively

HITTING the cache (e.g. because the WMTS reports a list of origins).

Set the layer Legend with custom Width and Height options. Both of these field

values if greater than the default legend's size of 12, then the custom values

gets applied on the legend width and height display property

A preview of the legend is shown with the applied custom values from Legend

fields above.

The Format and Layer tile size options are available only for the layers added from

CSW and WMS catalog sources.

Warning

•

•

Warning

On the Display tab, only the following options are available for a 3D Tile layer:

The Visibility limits to display the layer only within certain scale limits, as

reported above.

The Height Offset above the ground.

The Format choosing between 3D Model and Point Cloud . The Point Cloud

option allows the user to customize the Maximum Attenuation of the points based

on the distance from the current viewpoint and customize the Lighting strength

and the Lighting radius to improve visualization of the point cloud.

Warning

•

•

•

Fields

From this section of the Settings panel, MapStore allows the user to add aliases to

layer fields.

The panel shows the fields (feature attributes) of the layer. For each field the

following are specified:

the Name of the field•

https://mapstore.geosolutionsgroup.com/mapstore/#/

the Alias of the field, which by default is empty

the Type of field

The Name and the Type of the field cannot be modified, while the alias can be

specified by the user.

Using the Localize button, a popup opens so that it is possible to configure

the alias of the field as well as its translations.

Setting the aliases, it is possible to configure the desired attribute names to be

shown in all supported MapStore tools for this functionality and manage related

translations accordingly.

The aliases configured in Layers Settings will be used for the following supported

MapStore tools:

Attribute Table

Filter layer

Identify (only properties output format)

Visual Style Editor

Charts Widget and Table Widget

Through the toolbar available on the top-center of the Fields panel, it is possible to:

•

•

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
../attributes-table/

Reload the list of fields from the data source using the button

Clear all customization in the UI by using the button

Style

The third section, dedicated to the layer style, displays like the following:

•

•

In this case the user is allowed to:

Search through the available layer styles and select the desired one

Create a new style

Edit an existing style

Delete an existing style

By the default service security rules the GeoServer's REST APIs are available only

for the GeoServer administrators, so a basic authentication form will appears in

MapStore to enter the Admin credentials. Without Admin rights, the editing

capabilities on styles are not available and only the list of available styles will

appear to allow the user to select one of them to the layer.

Take a look at the User Integration with GeoServer section of Developer Guide in

order to understand how to configure the way MapStore and GeoServer share

users, groups and roles. If the users integration between GeoServer and MapStore

is configured, the editing functionalities of the styles will be available according to

the role of the authenticated user in MapStore in a more transparent way.

•

•

•

•

Note

https://docs.geoserver.org/stable/en/user/security/service.html#service-security

Create a new style

It is possible to create a new style with a click on the button. At this stage the

user can choose between different types of template from which the customization

will start:

CSS - Cascading Style Sheet (a language used for describing the presentation

of a document written in a markup language like the HTML)

SLD - Styled Layer Descriptor (an XML schema specified by the Open

Geospatial Consortium OGC for describing the appearance of map layers)

The availability of the style formats depends, firstly, from the GeoServer.

MapStore, by default, will add all the supported format that the server provides. To

edit or create styles using the CSS format the CSS extension must be installed in

GeoServer

Once the new style is chosen, with a click on the button the following window

opens:

•

•

Note

http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://geoserver.org/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://docs.geoserver.org/latest/en/user/styling/css/install.html

Here the user can set the Title and the Abstract (optional), and through the Save

button the new style will be automatically added to the styles list.

Edit an existing style

Existing styles can be edited clicking on the button. The page that opens

allows the user to customize the style in the related format:

The editor is easy to approach thanks also to the following functions:

The sintax control highlights any possible error with a red underline (if error

are detected an icon with a red exclamation point will be shown in the

top-right side of the editor)

The autocomplete function suggests the possible style's properties in order to

prevents syntax errors:

•

•

The color picker, that can be activated through the square filled icon ()

near the color code, helps in choosing colors directly from the editor, showing

an interface like the following:

•

The autocomplete and the color picker functions are available only in the CSS

editor.

Visual Editor Style

MapStore also allows to edit the layers style using a Visual editor with a most user

friendly UI.Clicking on the button a section opens so that the

user can customize the style through with a visual style editor by adding/editing

symbolizers, which can be: Mark, Icon, Line, Fill and Text. It is anyway possible to

switch to the text editor mode if necessary for a more complex styling.

Warning

https://mapstore.geosolutionsgroup.com/mapstore/#/

Once a symbolizer has been added and customized, you can:

Filter the style rule, as explained here, in order to apply the style only to

certain layer features. It is possible clicking on the button.

Add a Scale denominator filter (max and min scale) to visualize the style

rule only within certain scale limits. This is possible by clicking the button.

Remove the symbolizer by clicking the button.

Mark

The mark type allows you to add a mark to the layer: clicking on the button a

mark panel appears:

•

•

•

The mark can have different Shape , Color , Stroke with different Color and Width

and customizable Radius and Rotation . Take a look at the following example.

Icon

With the icon panel, which opens by clicking on button, the style editor is

allowed to add an image as an icon (by specifying its URL) and customize the icon

Opacity , Size and Rotation angle:

Line

The line rule is used to style linear features of the layer: clicking on the button

a panel allows the user to edit the corresponding properties.

The editor can change the Stroke color , the Stroke width , the Line style (continuous,

dashed, etc), the Line cap (Butt, Round, Square) and the Line join (Bevel, Round,

Miter). An example can be the following one:

Fill

The Fill rule is used to style polygon features. Clicking on button, the editor is

allowed to customize the Fill color , the Outline color and the Outline width :

Text

The Text rule is used to style features as text labels. Text labels are positioned

either at points or along linear paths derived from the geometry being labelled.

Clicking on the button a specific panel opens:

The editor is allowed to type the name of the layer attribute to use for the Label

and the dropdown list is filtered accordingly to show the existing attributes that

are matching the entered text (the user can anyway directly select an attribute

from the list). Moreover, the style editor can customize the Font Family (DejaVu

Sans, Serif, etc), choose the font Color , Size , Style (Normal or Italic) and Halo

weight (Normal or Bold) and select the desired Halo color and Halo weight . It is also

possible to choose the text Rotation and Offset (x and y). En example can be the

following one

Style Methods

Different styles methods can be used for each style rule. Clicking on the

button, available on top of the panel of each symbolizer, the editor can choose one

of the following depending on the rule type:

Simple style

Classification style

Pattern mark style (available only for rules of type Line and Fill)

Patter icon style (available only for rules of type Line and Fill)

Simple style

The Simple style is the default style described above for each symbolizer.

Classification style

MapStore allows you to classify the style based on the attributes of the layer. The

Classification style is available for Marker, Line, Fill and Text by clicking on the

 button and choosing the Classification style options from the dropdown

menu.

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

It this case the editor is allowed to choose a Color ramp and the order (with

Reverse order) of the classification intervals colors. It is obviously possible to select

the layer Attribute to use for the classification along with the classification Method

(Quantile, Equal interval, Natural breaks and Standard deviation), the number of

classification Intervals and the Opacity (%) of each interval range. An example of

the Classification style for a Fill rule type can be the following one:

Pattern mark style

With the Pattern mark style it is possible to represent Line or Fill style rules with a

mark by clicking on the button and choosing the Pattern mark style options

from the dropdown menu.

The style editor can configure a Mark as explained here along with the usual

options available for rules of type line or fill depending on the selected symbolizer.

Take a look at the following example of the Pattern mark style for the Line rule

sample.

Patter icon style

With the Pattern icon style it is possible to represent Line or Fill style rules with an

icon by clicking on the button and choosing the Pattern icon style options

from the dropdown menu.

The style editor can configure the Icon as explained here along with the usual

options available for rules of type line or fill depending on the selected symbolizer.

Take a look at the following example of Pattern icon style for a Fill rule sample.

Styling on the 3D navigation

Thanks to the new improvements made to the Visual Style Editor editor, when 3D

Navigation is enabled, the editor has the ability to customize the style of 3D Tiles

and vector layers.

Styling of 3D Tiles layer

With MapStore it is possible to customize the style of a 3D Tiles layer client side.

The MapStore support is working in respect of the 3D Tiles Specification 1.0 and

on top of the Cesium Styling capabilities. Below is an example of how the Style

Editor of a 3D Tiles layer is appearing in the MapStore UI.

https://mapstore.geosolutionsgroup.com/mapstore/#/
http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html
https://github.com/CesiumGS/3d-tiles/tree/1.0/specification/Styling

For the 3D Tiles styling, while with the Code Text Editor it is possible to leverage

completely on the styling specifications:

The MapStore Visual Style Editor supports for now only a limited set of

capabilities:

Customization of the Fill color

Style Rule filtering based on the available properties dictionary defined in the

tileset.json

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://github.com/CesiumGS/3d-tiles/tree/1.0/specification#properties

Possibility to customize the radius in case of point cloud features•

Styling of Vector layer

In 3D mode MapStore allows to customize the style of the Vector layer through the

Visual Style Editor using the same styling options available in 2D mode as

described in the previous chapter.

In addition the 3D model rule type is also available. From the Visual Style Editor,

by clicking on button, the 3D model symbolizer panel opens to allow adding a

3D model (based on glTF, GLB is also allowed) as an external graphic by

specifying its URL (see also the Cesium documentation). Furthermore, it is possible

to customize the 3D model Scale , Rotation and Color . Take a look at the following

example.

For the Vector layer, the Visual Style Editor have some limitations:

It's possible to apply only one type of symbolizer at the time, so if the rule

editor shows multiple rule with the same filter, only the first one is used.

For the Line symbolizers: the Line cap and Line join options are not available

as properties in Cesium

Furthermore, for WFS layers, MapStore adds some additional styling options in

the Visual Style Editor such as:

Bring to front (available for Icon, Mark and 3D model symbolizers) to bring in

front and so to make visible (if set to true) all features covered by 3D Tile layers

and the Terrain layer (for this last case when the depth test against terrain

option is enabled in Global Settings).

Warning

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://github.com/KhronosGroup/glTF
https://cesium.com/learn/cesiumjs/ref-doc/ModelGraphics.html?classFilter=Model
https://mapstore.geosolutionsgroup.com/mapstore/#/

Height reference from ground (available for Mark, Icon, 3D Model and Text

symbolizers) to indicate the reference for the point height between None (to

the absolute zero of the ground), Relative (to the terrain layer level) or Clamp

(the feature is clamped to the Terrain, if present, or to the ground). It is also

possible to finely configure the Height value of the point symbols by choosing

between one of the attributes of the feature (where Point height indicates the

intrinsic height of the feature geometry) selecting Attribute Value or choosing

Constant Value that allows to set the raw value of the height.

•

Leader line (available for Mark, Icon, 3D Model and Text symbolizers) to add

a line to connect the point symbol with the Terrain/Ground to have a more

clear reference of the effective point position when the camera orientation

change. The editor can choose the Width of the line and the Color through the

usual color picker.

•

Clamp to ground to enable/disable the boolean property specifying whether

the line or polygon features should be clamped to the ground (this option is

available for Line and Fill symbolizers).

•

Clamp to ground reference to choose whether the drape effect, should

affect 3D Tiles , Terrain or Both . This option is available for Fill symbolizers and

it is only enabled when the Clamp to ground option is set to True

•

Feature Info Form

Through the last section of the layer settings panel, it is possible to decide the

information format that appears querying a layer with the Identify Tool:

In particular, the user can choose between:

Disable Identify to disable the Identify for the layer

Text

HTML

Properties

Template

•

•

•

•

•

Without selecting any format here, the Identify Tool will return the layers

information with the format chosen in Map Settings (in the Side Toolbar). Once a

user specifies the information format in layers settings, instead, that format will

take precedence over the map settings only for that specific layer.

Text

An example of layer information in text format can be:

HTML

An example of layer information in HTML format can be:

Note

Properties

An example of layer information in properties format can be:

Templates

In this case the user can customize the information format:

In particular, by clicking on the button, the following text editor appears:

Clicking on the button, the Identify Template editor allows to insert images in

different ways:

Using direct URLs of resources available on the web

Using URIs encoded in base64

Parsing needed image URLs from available feature attributes (eg. attributes

with URL value). The usual syntax can be used in this case to refer the

attribute value (eg. ${properties.IMAGE})

Parsing image URIs encoded in base64 from available feature attributes (eg.

attributes with base64 URIs values). The usual syntax can be used in this case

to refer the attribute value (eg. ${properties.IMAGE})

Here it is possible to insert the text to be displayed through the Identify Tool, with

the possibility to wrap the desired properties.

Let's make an example: we assume to have a layer where each record

corresponds to a USA State geometry in the map. In the Attribute Table of this

layer there's the STATE_NAME field that, for each record, contains a text value with

the name of the State.

If the goal is to show, performing the Identify Tool, only the State name, an option

could be to insert the following text on the Template text editor:

In this case, by clicking on the map, the Identify Tool returns:

Using the ${properties.NAME_OF_THE_FIELD} syntax, MapStore is able to parse the

response to the Identify Tool request by matching the configured placeholder.

Note

•

•

•

•

Filtering Layers

When using vector layers it might be useful to work with a subset of features.

About that, MapStore let the user set up a Layer Filter that acts directly on a

layer with WFS available and filter its content upfront. The map will immediately

update when a filter is applied.

The MapStore's filtering capabilities are working on top of the WFS specifications

so that service must be enabled if you want to filter a layer using the tools

described in this section.

Filter types

In MapStore it is possible to apply filters on layers in three different ways:

With the Layer Filter tool available in TOC

With the Advanced Search tool available from the Attribute Table

With the Quick Filter available in the Attribute Table

Layer Filter

This filter is applicable from the Filter layer button in TOC's Layers Toolbar

and it will persist in the following situations:

Using other tools like the Identify tool:

Applying another type of filter

Opening the map next time (you need to Save the map from the Side Toolbar

after applying a filter)

Once a Layer filter is set, it is possible to enable/disable it simply by clicking on the

button that will appear near the layer name in TOC:

Warning

•

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

This filter is applied through the Query Panel. Once the settings are chosen, it is

possible to Apply them. After that the user can:

Undo the last changes

Reset the filter to the initial situation

Save the filter in order to make it persistent

Advanced Search

This filter, applicable from Advanced Search button in Attribute Table,

behaves as follows:

It can be used to apply a filter to a layer for search purposes in Attribute Table:

this filter is applied in AND to the Layer Filter if it is already been set.

•

•

•

•

It is possible to sync this filter with the map through the icon:

It will be automatically removed/reapplied by closing/opening the Attribute

Table

Also this filter is applied through the Query Panel but in this case it is not possible

to Save it and make it persistent reopening the map the next time. The user is only

allowed to apply it by clicking on Search or eventually Reset it.

Quick Filter

The user can perform three type of quick filters:

Filter by attributes

Filter by clicked point in the map

Filter by viewport

Quick Filter by attributes

This filter is available for each colum in the Attribute Table just below the field

names and it can be also used in combination with other filter applied:

The user has the possibility to apply simple filters by attributes simply typing the

filter's value in the available input fields (Date or Time pickers are available

according to real attributes data types and a tooltip usually gives an information on

how to fill the filter's input field). Filtering by one or more attributes, layer records

in Attribute Table are automatically filtered accordingly.

•

•

•

•

•

If the user wants to filter by an attribute of type String, he can simply write

something inside the input box and the list of records in table will be automatically

filtered by matching with the input text.

If the User wants to filter by a numeric attribute, he can type directly a number or

an expression using the following operators:

Not equal (!= or !== or <>)

Equal or less than (<=)

Equal or greater than (>=)

Less than (<)

Greater than (>)

Equal (=== or == or =)

In order to filter a numerical filed matching the records greater than or equal to a

certain threshold value, an example can be:

•

•

•

•

•

•

Quick Filter by map interaction

It is possible to filter records in the Attribute Table by clicking on the map or doing

a selection directly in a map of multiple features. The user can activate the Filter

on the map button (once clicked the button turns blue) and then:

Click on the map over the features he wants to select

Add multiple features to the selection by pressing Ctrl and clicking again over

other features in map

Add multiple features to the selection by pressing Ctrl + Alt and drawing a

selection box in map

The list of records in the Attribute Table will be automatically filtered according to

such user selection and then the user can disable the geometry filter through the

Remove filter button.

Quick Filter by viewport

From the Attribute Table the user can filter data by map viewport through the

Filter by viewport button. Once clicked, the toggle button turns its state to

green and the list of records in the Attribute Table is filtered by showing only

records corresponding to layer features present in the current map viewport.

The list of records in the Attribute Table is automatically updated when the user

pan/zoom the map view. It is possible to deactivate the Filter by viewport by

clicking again the same toggle button.

The Quick Filter remains active as long as the Attribute Table is open but, unlike

the Advanced Search, closing the Attribute Table it will not reappear anymore if

the Attribute Table is re-opened in a second time.

Query Panel

This tool is used to define advanced filters in MapStore. It includes three main

sections:

Attribute Filter

Region of Interest

Layer Filter

•

•

•

Note

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Attribute filter

This filter allows to set one or more conditions referred to the Attribute Table

fields.

First of all it is possible to choose if the filter will match:

Any conditions

All conditions

None conditions

After that, the user can insert one or more conditions, that can also be grouped in

one or more condition groups (use the button in order to create a group).

A condition can be set by selecting a value for each of the three input boxes:

The first input box allows to choose a layer field

In the second input box it is possible to choose the operation to perform

(selecting a text field can be =, like, ilike or isNull, selecting a numerical field,

can be =, >, <, >=, <=, <> or ><)

The third input box (in case of fields of type String) provides a paginated list of

available field values already present in the layer's dataset (a GeoServer WPS

process is used for this). In case of numeric fields the user can simply type a

value to use for the filter.

•

•

•

•

•

•

the "paginated list of available field values" above is available only if the server

provides the WPS process gs:PagedUnique

A simple Attribute Filter applied for a numerical field can be, for example:

Region of interest

In order to set this filter the user can:

Select the Filter type by choosing between Viewport, Rectangle, Circle,

Polygon (selecting Rectangle, Circle or Polygon it is necessary to draw the

filter's geometry on the map)

Select the Geometric operation by choosing between Intersects, Is

contained, Contains

Applying a Circle filter with Intersect operation, for example, the process could be

similar to the following:

Once this filter is set, it is always possible to edit the coordinates and the

dimensions of the drawn filter's geometry by clicking on the Details button .

Editing a circle, for example, it is possible to change the center coordinates (x, y)

and the radius dimension (m):

Note

•

•

Layer filter

This tool allows to set cross-layer filters for a layer by using another layer or even

the same one.

This filter tool requires the Query Layer plugin installed in GeoServer

In order to set up a cross-layer filter the options below are required:

Target layer (between those present in the TOC)

Operation to be chosen between Intersects, Is contained or Contains

Optionally some Conditions (see Attribute filter)

In order to better understand this type of filter, let's make an example. We suppose

that the user want to filter the Italian Regions with the Unesco Item's one:

In particular, if our goal is to take a look at the Italian Regions that contain the

Unesco sites with serial code=1, the operations to perform can be the following:

Warning

•

•

•

https://docs.geoserver.org/stable/en/user/extensions/querylayer/index.html
https://docs.geoserver.org/stable/en/user/extensions/querylayer/index.html#installing-the-querylayer-module

Attribute Table

In GIS, the Attribute Table associated to a vector layer is a table that stores tabular

information related to the layer. The columns of the table are called fields and the

rows are called records. Each record of the attribute table corresponds to a

feature geometry of the layer. This relation allows to find records in the table

(information) by selecting features on the map and viceversa.

In MapStore, through the button in Layers Toolbar it is possible to access the

Attribute table:

Accessing this panel the user can perform the following main operations:

Edit records through the button

Filter records in Attribute Table in different ways as described in the Set filter

section below

Open the Advanced Search tool through the button

Activate the filter by the current viewport, through the button

Activate the filtering capabilities by clicking on map, through button

Using the quick filter by attribute

Download the grid data through the button

Create Widgets through the button

•

•

•

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Customize the attribute table display through the button

Zoom to features through the button available on each record or zoom to

the page max extent through the button (available only if the virtual

scrolling is disabled, it is enabled by default in MapStore).

When GeoServer is set to strict CITE compliance for WFS (by default), the feature

grid do not work correctly. This is because MapStore uses by default WFS 1.1.0

with startIndex/maxFeatures. This is not strict compliant with WFS 1.1.0

(GeoServer supports it but the request in strict mode is invalid). To solve it un-

check the CITE compliance checkbox in the "WFS" page of GeoServer "Services"

configurations using the GeoServer web interface

Manage records

The basic Web Feature Service allows querying and retrieval of features. Through

Transactional Web Feature Services (WFS-T) MapStore allows creation, deletion,

and updating of features.

By default editing functionalities are available only for MapStore Admin users.

Other users can use these tools only if explicitly configured in the plugin

configuration (see the APIs documentation for more details). In any case, the user

must have editing rights on the layer to edit it (see for example the GeoServer

Security Settings).

The Edit mode can be reached from the button in Attribute Table panel,

allowing to menage only the layer which the table refers to:

•

•

Warning

Warning

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://dev-mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.FeatureEditor
https://docs.geoserver.org/stable/en/user/security/webadmin/data.html
https://docs.geoserver.org/stable/en/user/security/webadmin/data.html

When the Edit mode is enabled only the editing functionalities are available to the

user, all other tools are deactivated.

By default, in Edit mode, you can see a panel like that following:

Through the Quit edit mode button you can stop the editing session to make

the other functionalities available again.

Create new features

Once the Edit mode is enabled it is possible to create a new feature by clicking on

the Add New Feature button . After clicking on it the user can fill out the

fields and edit the geometry of the new feature:

Note

To edit attributes MapStore provides some input fields based on the attribute type,

that forces the user to insert a valid value. If the attribute is of type text , MapStore

will also show a dropdown menu with the list of the existing values for that

attribute to allow a quick selection.

the dropdown menu is available only if the server provides the WPS process

gs:PagedUnique

The Missing geometry exclamation point in the second column of the

Attribute Table means that the feature doesn't have a geometry yet. It's possible to

add it later or draw it on the map before saving:

Note

In order to save the changes made until now, there's the button, whereas to

undo the changes there's the button.

Once a new record is created, it's possible to draw a geometry for it, by clicking on

the button that appears once that feature is selected. The process of drawing

a new geometry is a little different depending on the layer type:

For Polygons and Multipolygons layers, each click on the map add a new

vertex (the minimum is 3). Once the vertex are set, it is possible to change the

shape by creating new vertices or dragging the existing ones:

For Lines and Multilines layers the shape drawing function works more or less

in the same way. The only difference is that you need at least two vertices to

draw a line and not three like for polygons:

For Points layers a point is drawn for each click on the map

The user is always allowed to delete the drawn shape through the button.

Create new geometry with Snapping

To fine tune the vertex position while editing or creating a new feature geometry, it

is possible to leverage on the Snapping functionality. Through this function it

is possible to snap to other vertices of features belonging to the same layer or to

others while editing a feature.

The tool provides the ability to tune the snapping function so that the user can:

Choose one of the visible map layers in TOC to be used for the snapping

Choose where to snap the layer, enabling/disabling the Edge or/and the

Vertex

Set Tolerance for considering the pointer close enough to a segment or vertex

for snapping

Choose the Loading strategy of features to snap with by choosing one of the

available options from the dropdown menu. Available options are:

bbox: only features in the current viewport are loaded

all: all layer features are loaded

•

•

•

•

•

•

•

•

•

The snapping functionality is by default set to work with the same layer in editing

mode. By default, the Edge and the Vertex are enabled, the

Tolerance is set to 10 pixel and the Loading strategy is set to bbox.

Editing and removing existing features

In order to edit an existing feature, it is necessary to switch the Attribute Table in

editing mode by clicking the Edit mode button. If the goal is to edit the

Attribute Table records, the user can simply select them and type the desired

value into the input field. However, it is also possible to modify the geometry

associated with a record by editing it on the map (adding or changing its vertices).

It is possible to edit the value of an attribute for multiple records at once by

selecting the corresponding cell in the table and dragging the content onto the

multiple cells, as follows:

With a click on Save changes these changes will be persistent.

In Edit mode, the user can also delete some features by selecting them in the table

and clicking on the button.

Set filters

In the Attribute table it is possible to apply filters in four ways (as explained in the

Filtering layers section):

Advanced search

Click on map

Quick filter

Filter by viewport

Those filters, once applied, can be visible on the map by enabling the button.

Note

Note

•

•

•

•

Download the grid data

Form the Attribute table it is also possible to download the grid data through the

 button. The following window opens:

From this window it is possible to set:

The File Format (GML2 , Shapefile , GeoJSON , KML , CSW , GML3.1 or GML3.2)

The Spatial Reference System (by default Native or WGS84)

With a click on the button and the browser will download the file.

Customize Attribute table display

MapStore allows the user to customize the fields displayed in Attribute table

mainly in two way:

Ordering the records in alphabetic order (if it's a text field) or from the

minimum to the maximum value and viceversa (if it's a numerical field):

Deciding which columns to show and which to hide through the button:

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Widgets

In MapStore it is possible to create widgets from the layers added to the map.

Widgets are components such as charts, texts, tables and counters, useful to

describe and visualize qualitatively and quantitatively layers data and provide the

user the opportunity to analyze information more effectively.

Some widgets (in maps or in dashboards) need some WPS back-end support to

work:

The map widgets (dashboards) needs the WPS process gs:Bounds to zoom to

filtered data, if connected to a table.

For aggregate operations, chart and counter widgets need the WPS process

gs:Aggregate available in GeoServer to work.

Add a Widget

Once at least one layer is present in the map (see Catalog section for more

information about adding layers), it is possible to create a widget by selecting that

layer in the TOC and by clicking on the button from the Layer Toolbar or

from the Attribute Table. Performing these operations the Widget panel appears:

Note

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

From here the user can choose between four different types of widget:

Chart

Text

Table

Counter

Chart

Charts widget allow multi-selection of layer to create a widget that allows user to

configure chart options for each layer. And switch between multiple charts in a

widget.

•

•

•

•

Selecting a Layer or Layers, the following Chart options is presented to user:

From the chart configuration page, the user can perform the following operation

Edit chart name

Choose between Bar Chart, Pie Chart or Line Chart. By default, the bar chart is

selected.

•

•

From the toolbar of this panel the user is allowed to:

Go back to the chart type selection with the button

Connect or disconnect the widget to the map. When a widget is

connected to the map, the information displayed in the widget are

automatically filtered with the map viewport. When a widget is not linked, it

otherwise shows all the elements of that level regardless of the map viewport

Configure a filter for the widget data (more information on how to

configure a filter can be found in Filtering Layers section).

Add new layers to existing chart configuration

Delete the current layer and it's related chart configuration from the

wizard

Move forward to the next step when the settings are completed. The

button prohibits the user from proceeding further when some chart is invalid

Just below the chart's preview, the following configurations are available:

Define the X Attribute of the chart (or Group by for Pie Charts) choosing

between layer fields

Define the Y Attribute of the chart (or Use for Pie Charts) choosing between

layer fields

Define the aggregate Operation to perform for the selected attribute choosing

between No Operation , COUNT , SUM , AVG , STDDEV , MIN and MAX

The No operation option is used when the aggregation method is not needed for

the chart. If No Operation is selected, no aggregation will be carried out for the

chart and the WFS service will be used to generate the chart without using the

WPS process gs:Aggregate in GeoServer.

Enable the chart's legend by activating Display Legend

Choose the Color (Blue , Red , Green , Brown or Purple) of the chart (or the

Color Ramp for Pie Charts) or choose to Customize the color.

•

•

•

•

•

•

•

•

•

Note

•

•

Color customization

For Bar Charts and Pie Charts, MapStore provides the possibility to customize the

colors of the charts bars and slices. From the Color option dropdown menu, the

user can select the Custom option and open the Custom Colors Settings modal

through the button.

Inside this modal, the user is allowed to:

Change the default Color of bars or slices (depending on the chart type)

through the Color Picker. This color will be applied for all values for which a

Class Color has not been configured.

Select an Attribute in the dropdown list as a Classification attribute.

Once the attribute is chosen, new options appear in the Custom Color Settings

panel that allow the user to:

Enter a Default Class Label to be used in the legend for all values that will

not be specifically classified in the following list.

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

For both Default Class Label and Class Label '${legendValue}' can be used as a

placeholder for the Y Attribute (that can be further customized through the usual

Advanced Option).

Classify Classification Attribute values to assign a specific color in the chart

along with its Class Label to use for the chart legend. Only values of type

String or Number are currently supported.

Classification Attribute of type String

When the values of a classification attribute are of type String, the user can:

Note

•

Choose the Class Color through the Color Picker.

Choose the value of the Classification attribute through the dropdown menu

Class Value

Enter a Class Label to be used in the legend for the value entered in the Class

Value

For Class Label, '${legendValue}' can be used as a placeholder for the Y Attribute

(that can be further customized through the usual Advanced Option).

An example of Bar charts corresponding to this type of classification can be the

following:

Through the button the user can add new values before through the

button or after through

button.

•

•

•

Note

Classification Attribute of type Number

When the values of a classification attribute are numbers, the user can configure a

color ramp and so:

Choose the Class Color through the Color Picker

Choose the Min value of the Classification attribute

Choose the Max value of the Classification attribute

Enter a Class Label to be used in the legend for the value entered in the Class

Value

For Class Label two placeholders can be used in this case: ${minValue}, can be

used as a placeholder for Min Value and ${maxValue}, can be used as a

placeholder for Max Value; the ${legendValue} can be used in the same way as

specified above.

An example of Bar chart corresponding to this type of classification can be the

following:

Bar Chart Type

If the Classification attribute is added to the Bar Chart, in the Advanced Options,

the Bar Chart Type option is displayed.

•

•

•

•

Note

The user can customize the bars by choosing between:

Grouped. An example can be the following:

Stacked. An example can be the following:

•

•

By default, the bar chart type is Stacked

Advanced Options

In addition, only for Bar Charts and Line Charts, MapStore provides advanced

setting capabilities through the Advanced Options section.

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/

Through this section, the user is allowed to:

Show/Hide the chart's grid in backgroung with the Hide Grid control

Customize Y axis tick values by choosing the Type (between Auto , Linear ,

Category , Log or Date): the axis type is auto-detected by looking at data (Auto

option is automatically managed and selected by the tool and it is usually good

as default setting). The user can also choose to completely hide labels through

the Hide labels control or customize them by adding a Prefix (e.g. ~), a

custom Format (e.g. 0%: rounded percentage, '12%' or more) or a Suffix (e.g. Km).

It is also possible to configure a Formula to transform tick values as needed

(e.g. value + 2 or value / 100 or more)

•

•

More information about the syntax options allowed for Format are available here

and the allowed expression to be used as Formula are available here in the online

documentation.

Customize X axis tick values by choosing the Type (between Auto , Linear ,

Category , Log or Date): the axis type is auto-detected by looking at data (Auto

option is automatically managed and selected by the tool and it is usually good

as default setting). As per Y axis, the user can completely hide labels through

the Hide labels control or tune the rendering of tick labels with options like

Never skip labels (it forces all ticks available in the chart to be rendered

instead of simplifying the provided set based on chart size) and Label rotation

to better adapt X axis tick labels on the charts depending on the needs.

Note

•

https://d3-wiki.readthedocs.io/zh_CN/master/Formatting/
https://github.com/m93a/filtrex#expressions

The tick labels available for the X axis by enabling the option Never skip label

cannot be more than 200 in order to provide a clear chart and for performance

reasons.

Set the Legend Label name

Warning

•

The tooltips of the X and Y axis labels are available by hovering the mouse over the

charts. This way the labels are available even if the Hide labels option for the X

and Y axis is enabled.

Note

In order to move forward to the next step, only X Attribute, Y Attribute and

Operation are considered as mandatory fields.

Once the settings are done, the next step of the chart widget creation/

configuration is displayed as follows:

The user can:

Go back to the chart option with the button

Configure a filter for the widget data (more information on how to

configure a filter can be found in Filtering Layers section)

Add the widget to the map with the button

Just below the chart's preview, the user is allowed to set:

The widget Title

The widget Description

Warning

•

•

•

•

•

None of these fields are mandatory, it is possible to save/add the widget to the

map without filling them.

An example of chart widget could be:

The Chart toolbar, displayed in the right corner of the chart allows the user to:

Download the chart as a png through the button.

Zoom the chart through the button.

Pan the chart through the button.

Zoom in the chart through the button.

Zoom out the chart through the button.

Autoscale to autoscale the axes to fit the plotted data automatically through

the button.

Reset axes to return the chart to its initial state through the button.

Note

•

•

•

•

•

•

•

Toggle Spike Lines to show dashed lines for X and Y values by hovering the

mouse over the chart. This is useful to better see domain values on both axis in

case of complex charts. It is possible to activate that option through the

button.

Text

Creating a new text widget the following window opens:

Through the toolbar it is possible to:

Go back to the widget type selection with the button

Add the widget to the map with the button

Here the user can:

Write the title of the widget

Write the text of the widget

Format the text through the Text Editor Toolbar

From the Text Editor Toolbar the user can also add an URL Image through the

 button and add an Embedded Link through the button.

None of these options are mandatory, you can add the widget to the map without

filling in these fields.

•

•

•

•

•

•

Note

Note

An example of text widget could be:

Table

Adding a table widget to the map, a panel like the following opens:

The toolbar on the top of this panel is similar to the one present in Chart section.

Here the user is allowed to:

Enable/Disable the layer fields that will be displayed in the widget as

columns.

At least one field must be selected in order to move to the next configuration step.

Enter a Title for each column to be displayed as the table header in place of

the Name of the layer field

Enter a Description for each field to be displayed as a tooltip, visible moving

the mouse on the column header.

Once the desired fields are selected, a click on the button opens the

following panel:

•

Warning

•

•

In this last step of the widget creation, the toolbar and the information to be

inserted are similar to the ones in Chart section.

An example of table widget could be:

Counter

Selecting the counter option, the following window opens:

Also in this case the toolbar is similar to the one present in Chart section. The user

is allowed to:

Select the attribute to Use

Select the Operation to perform

Set the Unit of measure that will be displayed

In order to move forward to the next step, only the Use and the Count are

considered as mandatory fields.

Once the button is clicked, the panel of the last step appears:

•

•

•

Warning

Also in this case the toolbar and the information to be inserted are similar to the

ones in Chart section, with the only exception that the Filtering button is

missing.

An example of counter widget could be:

Manage existing widgets

Once widgets have been created, they will be placed on the bottom right of the

map viewer and the Widgets Tray appears:

Through the buttons available on each widget the user can perform the following

operations:

Drag and drop the widget to move it within the map area of the viewer and

resize it through the button (also available for widgets present in a

dashboard)

Pin the position and the dimension of the widget through the button

Collapse the widget through the button and expand it again by clicking

the related button in the Widgets Tray

•

•

•

The Widgets Tray allows the user to expand/collapse each single widget

individually or all of them at once by using the

button.

When both Timeline and widgets are present in a map, the Timeline button

appears in the Widgets Tray allowing the user to expand and collapse

it (widgets and Timeline can't anyhow be expanded at the same time).

Make the widget Full screen through the button (also available for

widgets present in a dashboard)

Access to the Title and Description info through the button, if this

information has been provided during the widget configuration/creation

Access widgets menu

Once a widget is added to the map, it is possible to access its Menu through the

 button. For Text, Table and Counter widgets, the following menu appears:

Note

Warning

•

•

From here the user can:

Edit the widget

Delete the widget

Only for Charts, the menu is like the following:

In particular, the user can also:

Show chart data in tabular representation

Download data in .csv format

Export Image in .jpg format

•

•

•

•

•

Export Layer Data

MapStore allows to export both vector and raster layers present in TOC. In order

to provide advanced export capabilities the WPS Download process must be

installed and available in GeoServer. MapStore performs a preventive check for

this as soon as the user opens the tool: if the WPS Download process is not

available, MapStore uses the WFS service as fallback and the export options are

limited (eg. only vector data can be exported). Once a layer is selected in the TOC,

the user can open the Export Data tool by clicking the button available in the

layer toolbar.

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://docs.geoserver.org/stable/en/user/community/wps-download/index.html

If the WFS service is the only one available, once the Export Data opens, the user

can only select the File Format and the Spatial Reference System (as explained

below).

Only for the Vector layer, the user can also download data by opening the

Attribute Table from the TOC and clicking the button.

From the Export Data panel the user can:

Select the Service, choosing between WPS and WFS (this option is present in

the form only if the WPS Download process is available, otherwise the WFS

service is used directly).

Select the File Format. The list of formats depends on the availability of the

WPS Download process in GeoServer. If the WPS process is available, the user

can choose between GeoJSON , wfs-collection-1.0 , wfs-collection-1.1 , Shapefile and

CSV for vector layers, and between ArcGrid , TIFF , PNG , JPEG , in case of

raster layers. If the WPS Download process is not available for some reasons,

MapStore provides the list of formats valid for the WFS service by looking at

the ones offered by the services capabilities (WFS Capabilities).

Select the Spatial Reference System (By default Native or WGS84)

Enable the Crop dataset to current viewport for downloading only the part

of the layer visible on the map at that moment (this option is present in the

form only if the WPS Download process is available)

Note

Note

•

•

•

•

Only for Vector layer, allows to consider for the download also an eventual

filter applied to the layer using the Filter layer tool (this option is present in the

form only if the WPS Download process is available)

Only for Raster layer (and if the WPS Download process is available) the user

can open the Advanced options to choose:

The Compression type used to store internal tiles (CCITT RLE , LZW , JPEG ,

ZLip , PackBits or Deflate)

The Compression quality for lossy compression (JPEG). Value is in the range

[0 : 1] where 0 is for worst quality/higher compression and 1 is for best

quality/lower compression

Tile Width of internal tiles, in pixels

Tile Height of internal tiles, in pixels

•

•

•

•

•

•

With a click on the button MapStore performs the export request. In

case of WPS Download process available, multiple export requests can be

performed from MapStore asynchronously. An information popup informs the user

when an export process starts and the user can check the status of the process

itself by opening the Export Data Result panel with a clicking on the button

available on the right side of the footer.

The Export Data Result provides the list of exports processes started by the user

and their status: as soon as the WPS completes the export operation, its status is

reported by MapStore to the user (in progress, completed, and so ready for

download, or failed). Therefore, the user can:

Check for eventual reported errors: a specific icon informs the user that the

process failed with a popup message.

Download the final zip file: clicking the button

Remove the final zip file: clicking the button

•

•

•

MapStore Toolbars

The main toolbar of MapStore, used by the user to interact on the map viewer, are:

The Search bar

The Side toolbar

Search Bar

The search bar is a tool that allows the user to query the layers in order to find a

specific information. In MapStore it is possible to perform the search in four

different ways:

By Location name

By Coordinates

By Configuring a search service

By Bookmarks

•

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Search by location name

The Search by location name, set by default when a new map is created, allows the

user to search places asking the OpenStreetMap Nominatim search engine.

Typing the desired place, the Nominatim seach engine is queried; selecting then

the desired record in the list of results, the map is automatically re-center/zoomed

to the chosen area that is also highlighted:

https://nominatim.openstreetmap.org/

Search by coordinates

Performing a Search by coordinates the user can zoom to a specific point and

place a marker in its position. That point can be specified typing the coordinates in

two different formats:

Decimal (the default format)

Aeronautical (that can be chosen through the button)

Once the coordinates are set, it is possible to perform the search with the

button. The displayed result is similar to the following:

Configuring a search service

MapStore allows the user also to extend or replace the default OSM results with

additional WFS Search Services. Selecting the Configure Search

Services option , the following window opens:

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

In order to create a new custom service, the button brings the user to a

page where he can set the WFS service properties, for example:

In particular, the information to be entered are:

Name of the service

WFS Service URL the user want to call

Layer to be queried

Specific Attributes (comma separeted fields) the user wants to query

When all the options are set, by clicking on the button a new panel opens,

where it is possible to choose the properties for the displayed results:

In this case, the user can define the following settings:

The Title displayed on the top of each results row (in the previous image, for

example, the chosen title for the results is the one corresponding to the

attribute NAME of the feature)

The Description to report in the results just below the title

•

•

•

•

•

•

The Priority, a parameter which determines the position of the records in the

results list. Lower values imply a higher positions in the results list and vice

versa. By default the OpenStreetMap Nominatim search engine result has

priority equals to 5, therefore in order to see the custom results in a higher

position a lower priority value is needed

The Launch Info panel allows the user to chose if and how the custom search

interact with the Identify tool. In particular, with the No Info option, the Info

panel doesn't show up once a record from the search results is selected.

Selecting All Layers or Single Layer the Identify tool is triggered, and the

related panel opens displaying the information of all/single layer(s) visible in

the map. With Single Layer instead, the Identify tool is triggered only for the

layer (if it is present and visible in the map) related to the selected record in

the search result list.

Note that, selecting All Layers or Single Layer options, the point used for Identify

request is a point belonging to the surface of the geometry of the selected record.

Moreover, using Single Layer, the Identify request will filter results to the selected

record and to its layer, using featureid which might be ignored by other servers, but

can be used by GeoServer to select the specific feature of the results, when

info_format is other than application/json. In order to achieve filtering of feature

on servers other than GeoServer, one can select the format (info_format) as

application/json for the layer to GetFeatureInfo from the layer settings in TOC to

allow filtering features by using the ID of the selected record.

Once all the option are set, it is possible to move forward with the Next button

 that opens the Optional properties panel:

•

•

Note

https://nominatim.openstreetmap.org/

Here the user can choose:

To Sort the results by the specified attribute

The Max number of features (items) displayed in the custom search results

The Max level of zoom to be set for the map when opening from the custom

search result

After the it is possible to see the custom WFS search service inside

the Available services list:

•

•

•

Once a search service is created, it is always possible to Edit it or Remove it

 from the list. By default the Override default services option is disabled, in

that case performing a search not only the custom search service results are

shown, but also the Nominatim ones:

Once the Override default services option is enabled, only the custom search

service results are shown:

Search by bookmark

MapStore allows the user to search by the preconfigured bookmarks, which can

zoom to a specific bounding box area or zoom along with reloading the visibility of

the layers. Selecting the Bookmark settings icon, the following window

opens:

In order to create a new bookmark, the button brings up Add new

bookmark page where the user set the Bookmark properties, for example:

In particular, the information to be entered are:

Title of the bookmark

Bounding Box property the user wish to zoom to

West, South, East and North

Toggle layer visibility reload, to enable/disable the layer visibility

reload when searched by bookmark

Note: The user can define bounding box value either manually or by selecting Use

current view as bounding box to fetch the current bounding box values

from the map view to populate the fields

When all the properties have been set, selecting the it is possible to

see the newly added bookmark in the View bookmarks list:

•

•

•

•

Once a bookmark has been created, it is always possible to Edit it or Remove

it from the list.

Side toolbar

The Side Toolbar is an important component, positioned on the right side of the

map viewer, that provides to the user the access to different tools of MapStore. The

following tools are the ones available by default:

In particular, with these options it is possible to:

Go back to the Homepage by clicking the button•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Login/Logout by clicking the button (for more information see the

Managing Users and Groups section)

Print the map by clicking the button

Export map in json format by clicking the button

Import files from your computer by clicking the button

Open the Catalog in order to connect to a remote service and add layers to the

map by clicking the button

Perform a Measure on the map by clicking the button

Save the map by clicking the button, in order to apply the changes made

in an existing map. Selecting this option, the Resources Properties window

opens, already filled with the current map properties

Save as when the user needs to save a copy of a map or save one for the first

time by clicking the button. Selecting this option an empty Resources

Properties window opens.

Delete Map in order to delete the current map by clicking the button

Access the map Settings by clicking the button, where the user can

change the current Language and select the Identify options

•

•

•

•

•

•

•

•

•

•

../managing-users-and-groups/
../print/
../import/
../catalog/
../measure/
../resources-properties/
../resources-properties/
../resources-properties/

When the 3D navigation is enabled, opening the Settings panel, the editor is

allowed to configure some options related to the Cesium viewer.

In particular, from the Map Settings it is possible to:

Enable the Show sky atmosphere to see the atmosphere around the globe

Enable the Show ground atmosphere to view the ground atmosphere on the

globe when the camera is far away

Enable the Show fog to allow additional performance by rendering less

geometry and dispatching less terrain requests

Enable the Depth test against terrain if primitives such as billboards,

polylines, labels, etc. should be depth-tested against the terrain surface instead

of always having them drawn on top of terrain unless they're on the opposite

side of the globe

Note

•

•

•

•

See the About this map panel by clicking the button, when Details are

present

Share the map by clicking the button

Open the MapStore Documentation by clicking the button

Start the Tutorial by clicking the button

Know more information About MapStore and the deployed Version of

MapStore by clicking the button

•

•

•

•

•

../share/
https://mapstore.readthedocs.io/en/latest/
https://mapstore.geosolutionsgroup.com/mapstore/#/

The Save, the Delete Map and the Share buttons are present in the Options Menu

only when the map has already been saved once.

Warning

Printing a Map

In MapStore it is possible to print a map by selecting the Print button from

Side Toolbar. The print process is composed by two main steps:

Print Settings definition

Result checking in Preview before download the printed file

Print settings

As soon as the Print button is chosen, the following window opens:

Through this window it is possible to:

Enter a Title and a Description, that will be shown on the print page

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Change the Format (PDF , PNG , JPEG)

Change the Coordinates System (EPSG:3857 , EPSG:4326)

Change the Rotation of the map (value in degrees)

Change the Resolution of the print (96 dpi , 150 dpi , 300 dpi)

Accessing Layout settings

Accessing Legend options

In Print settings preview there's the map portion that will be displayed on the print

sheet. In order to center the map the user can pan it until the preview displays the

desired extension

Layout

Opening the Layout settings menu, the following menu appears:

•

•

•

•

•

•

Note

From here, in particular, it is possible to:

Select the Sheet size (choosing between A3 and A4 format)

Choose to Include legend

Choose to place the Legend on distinct page from the map

Select the page orientation between Landscape and Portrait

Legend options

The Legend can be customized through the Legend options menu:

•

•

•

•

Through this menu the user is allowed to:

Configure labels by choosing font type and size, and by adding Bold and Italic

style

Enable the Force Labels option, that force the display of labels even if only one

rule is present (by default, if only one rule is present, the label is not displayed)

Enable the Font Anti Aliasing (when Anti Aliasing is on, the borders of the

labels font are smoothed improving the image quality)

Set the Icons size

Set the Dpi resolution of the legend

•

•

•

•

•

Preview

When the print settings are chosen, it is possible to access the preview by clicking

on the button. A window similar to the following appears:

Here it is possible to:

Zoom in/out int the preview

Navigate between pages (when more than one page is present)

Download the file in .pdf format

A simple printed map could be, for example, like the following:

•

•

•

Import Files

In MapStore it is possible to add map context files or vector files to a map. This

operation can be performed by clicking from the Side Toolbar. Following

these steps the import screen appears:

Here the user, in order to import a file, can drag and drop it inside the import

screen or select it from the folders of the local machine through the

button. Actually there's the possibility to import two different types of files:

Map context files (supported formats: MapStore legacy format, WMC)

Vector layer files (supported formats: shapefiles, KML/KMZ, GeoJSON and

GPX)

Shapefiles must be contained in .zip archives.

•

•

Warning

https://mapstore.geosolutionsgroup.com/mapstore/#/

Export and Import map context files

A map context is, for example, the file that an user download selecting the

button from the Side Toolbar. Map contexts can be exported in two different

format:

The file, is an export in json format of the current map context

state: current projections, coordinates, zoom, extent, layers present in the

map, widgets and more (additional information can be found in the Maps

Configuration section of the Developer Guide).

Adding a MapStore configuration file the behavior is similar to the following:

The (Web Map Context) file, is a xml format where only WMS

layers present in the map are exported including their settings related to

projections, coordinates, zoom and extension (additional information can be

found in the Maps Configuration section of the Developer Guide).

Adding a WMC configuration file the behavior is similar to the following:

Adding a map context file the current map context will be overridden.

Import vector files

Importing vector files, the Add Local Vector Files window opens:

•

•

Warning

https://mapstore.readthedocs.io/en/latest/developer-guide/
https://mapstore.readthedocs.io/en/latest/developer-guide/

In particular, from this window, it is possible to:

Choose the layer (when more than one layer is import at the same time)

Set the layer style or keep the default one

Toggle the Zoom on the vector files

Once the settings are done, the files can be added with the button and they

will be immediately available in the TOC nested inside the Imported layers group.

For example:

Currently is not possible to read the Attribute Table of the imported vector files

and for this reason also the Layer Filter and the creation of Widgets are not

allowed for those layers.

•

•

•

Warning

../attributes-table/
../filtering-layers/
../widgets/

Catalog Services

The Catalog Service for the Web (CSW) is an OGC Standard used to publish and

search geospatial data and related metadata on the internet. It describes

geospatial services such as Web Map Service (WMS) and Web Map Tile Service

(WMTS).

In MapStore the Catalog offers the possibility to access WMS, WFS, CSW, WMTS

and TMS Remote Services and to add the related layers to the map. By default, as

soon as a user opens the Catalog, a CSW a WMS and a WMTS Demo Services are

available, allowing to import layers from the GeoSolutions GeoServer. The user can

access the Catalog with a click on the button from the Side Toolbar. As soon

as you open it, the first display is like the following:

https://www.ogc.org/standards
https://mapstore.geosolutionsgroup.com/mapstore/#/

Adding Layers from Remote Services

In order to add a layer, the user can first of all open the catalog and choose from

the following dropdown menu the Remote Service from where the layer is going to

be added:

Once the Remote Service is set, it is possible to search the desired layer by typing

a text on the search bar:

By clicking on the button, the layer is finally added to the TOC and rendered

to the map viewer:

For those layers which have long descriptions or long metadata information, the

content is truncated in order to fit the Layer Card size. In order to access the

complete information, the user can expand the card using the button:

Managing Remote Services

MapStore allows also to add new Remote Services to the map project () or

Edit/Remove the existing ones ().

The adding/editing process is very similar and the only difference is that editing

an existing Service the input fields will be already filled with its settings, while

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/

adding a new one all the fields will be empty. Moreover only editing an existing

Service, it will be possible to remove it from the Services list.

Editing an existing Service, for example, the first display is the following:

From here the user is allowed to set the Service options, that can be divided into:

General settings

Advanced Settings

Once the options are properly set, it is possible to the Service. If the user

wants to discard the edits, instead, there's the button. An existing Service

can finally be removed from the Services list through the button (this

option is not available creating a new Remote Service).

General settings

The general settings are three mandatory fields that each Remote Service needs to

have:

•

•

In particular:

Url: the URL of the remote source service

Type: the type of the remote source service (between WMS, WFS, CSW, TMS,

WMTS and 3D Tiles)

Title: the title to assign to the catalog. This text will be used in the service

selection dropdown menu for this service.

Advanced settings

The Advances settings section opens by clicking on the icon:

•

•

•

The content of Advanced settings depends on the catalog type, but some options

are common to all the services types:

Search on service selection that allow to enable/disable the automatic loading

of the catalog records when the user opens that Service

Show preview that can show/hide layers thumbnails in Catalog

Catalog Types

CSW Catalog

The Catalog Service for the Web (CSW) is an OGC Standard used to publish and

search geospatial data and related metadata on the internet. It describes

geospatial services such as Web Map Service (WMS), Web Map Tile Service

(WMTS) and so on... MapStore actually supports only the Dublin Core metadata

schemas. ISO Metadata Profile is not supported yet.

In general settings of CSW service the user can specify the title to assign to this

service and the URL of the service.

•

•

https://www.ogc.org/standards

Advanced Settings

Server Type: to specify the server type of WMS online resources referred by

metadata exposed by the CSW service URL. Possible options are two:

Geoserver or No Vendor which can be for example MapProxy, MapServer or

other.

•

If the No Vendor is set, then MapStore will not use any vendor option supported

only by GeoServer in the OGC requests where this source is involved.

Format: to assign the default Tile format for the layers added to the map (e.g.

png , png8 , jpeg , vnd.jpeg-png , vnd.jpeg-png8 or gif) and to define the default

Information sheet format for the layers added to the map (text/plain , text/html

or application/json). The list of available formats is automatically retrieved from

the ones supported by the WMS server and can be also manually fetched

through the Fetch supported formats button when necessary.

The Tile and the Information sheet configured through this option will be

automatically used for all layers loaded from the involved catalog source (if not

configured the default Tile used is image/png and the default Information sheet

used is text/plain). For layers already loaded on the map, it is possible to change the

format through the Layer Settings tool as usual.

Tile size (WMS): it represents tile size (width and height) to be used for tiles of

all layers added to the map from the catalog source (256x256 or 512x512). For

layers already loaded on the map, it is possible to change the tile size through

the Layer Settings tool as usual.

Set Visibility Limit: if checked and scale limits present in the WMS Capabilities

(eg. MinScaleDenominator and/or MaxScaleDenominator), these will be

automatically applied to the layer settings when a layer is added to the map

from this source.

Show metadata template: this can be enabled when the user wants to insert in

the layer description a text with metadata information

The Metadata Template function is available for CSW Services only.

Note

•

Note

•

•

•

Warning

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings
https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings/#display

Metadata templates

In order to better understand this function, let's make an example supposing to

edit the GeoSolutions GeoServer CSW service:

Change the Format of the image that will be rendered on the map (png , png8 ,

jpeg , vnd.jpeg-png , vnd.jpeg-png8 or gif) for layers belonging to the selected

source

Show metadata template can be enabled when the user wants to insert in the

layer description a text with metadata information

Enabling the Show metadata template option appears a text editor through witch it

is possible to insert the custom metadata information for that service. In order to

dynamically parse each layer's metadata value the user can insert the desired

properties name with the format ${property_name} :

•

•

In this case it is possible to add a text like the following, in order to present desired

metadata properties:

Inserting this text and saving, the result should be that each layer will show its

properties in catalog with the format we set:

If some metadata are missing, the server response will be source Not Available

Static Filter and Dynamic Filter

From the Advanced Settings of the CSW catalog the user has the possibility to

configure a Static Filter and a Dynamic Filter to customize the search request.

In order to better understand this function, let's make an example supposing to

edit the GeoSolutions GeoServer CSW service:

From the Static Filter text area it is possible to insert the custom filter for that

service.

title: ${title}

description: ${description}

abstract: ${abstract}

boundingBox: ${boundingBox}

contributor: ${contributor}

creator: ${creator}

format: ${format}

identifier: ${identifier}

references: ${references}

rights: ${rights}

source: ${source}

subject: ${subject}

temporal: ${temporal}

type: ${type}

uri: ${uri}

Note

•

In order to present desired Static Filter configuration, it is possible to add a text

like the following:

Inserting this text and saving. The filter is applied, even in empty search.

From the Dynamic Filter text area it is possible to insert the custom filter to

applied in AND with Static Filter. The template is used with ${searchText}

placeholder to append search string

<ogc:Or>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>dc:type</ogc:PropertyName>
 <ogc:Literal>dataset</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>dc:type</ogc:PropertyName>
 <ogc:Literal>http://purl.org/dc/dcmitype/Dataset</ogc:Literal>
 </ogc:PropertyIsEqualTo>
</ogc:Or>

•

In this case it is possible to add a text like the following:

Inserting this text and saving, the filter is applied when text is typed into the

service search tool.

<ogc:PropertyIsLike wildCard='*' singleChar='_' escapeChar='\\'>
 <ogc:PropertyName>csw:AnyText</ogc:PropertyName>
 <ogc:Literal>${searchText}*</ogc:Literal>
</ogc:PropertyIsLike>

WMS/WMTS Catalog

WMS and WMTS Services are OGC Standards protocol for publishing maps (and

tile maps) on the Internet. The user can add these kind of services as catalogs to

browse and add to the map the layers published using these protocols.

In General Settings the user can set the title he wants to assign to this service

and the URL of the service to configure the service and its URL.

Advanced Settings

In addition to the standard options, only for WMS catalog sources, through the

Advanced Settings the user can configure also the following options:

https://www.ogc.org/standards

Localized styles (only for the WMS service) if enabled allows to include the

MapStore's locale in each GetMap, GetLegendGraphic and GetFeatureInfo

requests to the server so that the WMS server, if properly configured, can use

that locale to:

Use localized lables for Tiles in case of vector layers (the layer's style must

be properly configured for this using the ENV variable support)

Produce a localized layer legend in case of vector layers (the layer's style

must be properly configured to use the Localized tag for rule titles)

•

•

•

https://docs.geoserver.org/stable/en/user/styling/sld/extensions/substitution.html
https://docs.geoserver.org/stable/en/user/styling/sld/language.html

Produce a localized output for GetFeatureInfo requests (the freemarker

template need to be properly configured to retrieve the locale from the

request)

Enabling that option, all layers added to the map from this catalog source will be

localized as described above (it is possible to tune again that setting for each single

layer by opening the Layer Settings in TOC).

Set Visibility Limit: available only for WMS layers coming from CSW or WMS

catalog sources type. If checked and scale limits present in the WMS

Capabilities (eg. MinScaleDenominator and/or MaxScaleDenominator), these

will be automatically applied to the layer settings when a layer is added to the

map from this source

Single Tile (only for the WMS service): if checked, the layers loaded from the

involved catalog source are rendered as a single tile. For layers already loaded

on the map, it is possible to disable this option through the Layer Settings tool

as usual.

Allow not secure layers: if enabled allows the unsecure catalog URLs to be

used (http only). Adding layers from WMS sources with this option active will

also force the layer to use the proxy for all the requests, skipping the mixed

content limitation of the browser.

Server Type: to specify the server type of the used WMS service URL. Possible

options are two: Geoserver or No Vendor which can be for example MapProxy,

MapServer or other.

If the No Vendor is set, then MapStore will not use any vendor option supported

only by GeoServer in the OGC requests where this source is involved.

Format: to define the default Tile format for the layers added to the map (png ,

png8 , jpeg , vnd.jpeg-png , vnd.jpeg-png8 or gif) and to define the default

Information sheet format for the layers added to the map (text/plain , text/html

or application/json). The list of available formats is automatically retrieved from

the ones supported by the WMS server and can be also manually fetched

through the Fetch supported formats button when necessary.

•

•

•

•

•

Note

•

https://docs.geoserver.org/stable/en/user/tutorials/freemarker.html
https://docs.geoserver.org/stable/en/user/tutorials/freemarker.html
https://mapstore.geosolutionsgroup.com/mapstore/#/

The Tile and the Information sheet configured through this option will be

automatically used for all layers loaded from the involved catalog source (if not

configured the default Tile used is image/png and the default Information sheet

used is text/plain). For layers already loaded on the map, it is possible to change the

format through the Layer Settings tool as usual.

Tile size (WMS): it represents tile size (width and height) to be used for tiles of

all layers added to the map from the catalog source (256x256 or 512x512). For

layers already loaded on the map, it is possible to change the tile size through

the Layer Settings tool as usual.

Domain aliases: available only for WMS catalogs type. This option is used to

improve the performances of the application for tiled layer requests when

multiple domains can be defined server side for the configured catalog source

in MapStore (domain sharding). The user can configure multiple URLs

referring to the same WMS service through the Add alias button. Useful

information about other kind of performance improvements can be found in

the MapStore online training documentation.

TMS Catalog

The Tile Map Service (TMS) specifications include some not official/not standard

protocol for serving maps as tiles (i.e. splitting map up into a pyramid of images at

multiple zoom levels). MapStore allows to add to the map the following services

providers:

Custom TMS service, specifying the URL template for the tiles.

TMS 1.0.0 , setting the URL

Select from a list of known TMS services, with all the variants.

Note

•

•

•

•

•

https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings
https://mapstore.readthedocs.io/en/latest/user-guide/layer-settings/#display
https://training.mapstore.geosolutionsgroup.com/administration/best.html#performances

Select provider for TMS. The list of providers contains "custom", "TMS 1.0.0" and other resources

Since some of these services are not standard, using them in different CRSs may

cause problems. Therefore, keep in mind that changing CRS can cause problems

when these levels are on the map.

Custom TMS

Selecting the custom provider the user can insert the tile URL template manually.

The URL template is an URL with some placeholder that will be replaced with

variables. The placeholder are identified by strings between brackets. e.g.:

{variable_name} .

Note

https://mapstore.readthedocs.io/en/latest/user-guide/footer/#crs-selector

Edit a custom TMS

Allowed placeholder are:

{x} , {y} , {z} : coordinates of the tiles

{s} : subdomains, this provides support for domain sharding. By default this is

["a", "b", "c"] . User can customize the default by adding options.subdomains.

example:

•

•

{
 "options": {
 "subdomains": ["a", "b", "c", "d", "e"]
 }
}

When the user saves this custom catalog service and clicks on search, he will see

only one result, that can be added on the map: variants are not currently

sopported in MapStore for this provider type.

Browse custom TMS service. It contains only one result

SAMPLE CUSTOM

SAMPLE CUSTOM WITH ADVANCED OPTIONS

url: https://{s}.tile.opentopomap.org/{z}/{x}/{y}.png

url: https://nls-{s}.tileserver.com/nls/{z}/{x}/{y}.jpg

{
 "options": {
 "subdomains": [
 "0",
 "1",
 "2",
 "3"
]
 }
}

TMS 1.0.0

Selecting the "TMS 1.0.0" provider the user can insert the URL of the Tile Map

Service (see TMS Specification). For instance, in GeoServer, it is the URL of the

"TMS" link in the home page.

TMS 1.1.0 URL from GeoServer

When saved this, the user will be allowed to browse and add to the map the TMS

layers provided by the service. MapStore will filter the layers published showing

only the tile maps in the current EPSG.

Edit a TMS 1.0.0 provider

https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

Browse TMS 1.0.0 layers

SAMPLE TMS 1.0.0 SERVICES

TMS KNOWN SERVICES

The other known services are listed as providers below "custom" and "TMS 1.0.0".

They are a static list configured inside the application. Selecting one of the

provider listed and saving the new catalog service allows to browse al the variants

known for that service. For more information about the list of available providers,

see the developer documentation about Tile Providers

https://public.sig.rennesmetropole.fr/geowebcache/service/tms/1.0.0
https://osm.geobretagne.fr/gwc01/service/tms/1.0.0
https://gs-stable.geosolutionsgroup.com/geoserver/gwc/service/tms/1.0.0

Select a known TMS provider

Browse the TMS variants

3D Tiles Catalog

3D Tiles is an OGC specification designed for streaming and rendering massive

3D geospatial content such as Photogrammetry, 3D Buildings, BIM/CAD, and Point

Clouds across desktop, web and mobile applications.

MapStore allows to publish 3D Tiles contents in its 3D mode on top of the CesiumJS

capabilities. Through the Catalog tool, a specific source type to load 3D Tiles in the

Cesium Map can be configured as follows by specifying the URL of a reachable

tileset.json .

In General Settings of 3D Tiles service, the user can specify the title to assign to

this service and the URL of the service.

MapStore allows you to load also Google Photorealistic 3D Tiles and some

constraints need to be respected in this case. Since the Google Photorealistic 3D

Tiles are not ‘survey-grade’ at this time, the use of certain MapStore tools could be

considered derivative and, for this reason, prohibited. Please, make sure you have

read the Google conditions of use (some FAQs are also available online for this

purpose) before providing Google Photorealistic 3D Tile in your MapStore maps in

order to enable only allowed tools (e.g. Measurement and Identify tools should be

probably disabled). For this purpose it is possible to appropriately set the

configuration of MapStore plugins to exclude tools that could conflict with Google

policies. Alternatively, it is possible to use a dedicated application context to show

Photorealistic 3D Tiles by including only the permitted tools within it.

Warning

https://www.ogc.org/standards/3DTiles
https://github.com/CesiumGS/3d-tiles
https://github.com/CesiumGS/3d-tiles
https://cloud.google.com/blog/products/maps-platform/create-immersive-3d-map-experiences-photorealistic-3d-tiles
https://developers.google.com/maps/documentation/tile/policies
https://cloud.google.com/blog/products/maps-platform/commonly-asked-questions-about-our-recently-launched-photorealistic-3d-tiles

COG Catalog

A Cloud Optimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at being

hosted on a HTTP file server, with an internal organization that enables more

efficient workflows on the cloud environment. It does this by leveraging the ability

of clients issuing HTTP GET range requests to ask for just the parts of a file they

need.

MapStore allows to add COG layers (also as a background) through its Catalog tool

where a specific source type can be configured as follows by specifying the URL of

a reachable COG .tif resource.

In General Settings of a COG source type, it is possible to specify the service

Title and its URL .

To properly display COG layers in your MapStore map, it is necessary to add the

reference system definition supported by the COG in the MapStore projectionDefs

configuration

Note

https://www.cogeo.org

The COG catalog type in MapStore is still in experimental state and for this reason

not directly available in the default service types list of the Catalog tool. In order

to enable this service, update the default Catalog tool configuration in

localConfig.json or inside the application context wizard as shown below:

Advanced Settings

In addition to the standard options, only for COG catalog sources, through the

Advanced Settings the user can configure also the following option:

Warning

{
 "name": "MetadataExplorer",
 "cfg": {
 ...
 serviceTypes: [
 ...
+ { name: "cog", label: "COG" }
]
 }
}

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.MetadataExplorer

Download file metadata on search: this option will fetch metadata to support

the zoom to layer when the layer is added to the TOC.

The tool capabilities currently available for COG layers are:

Zoom to selected layer extent : in order to zoom the map to the layer's

extent

Access the Layer Settings to view/edit the General Information and

customize the Opacity value and the Visibility limits from the Display tab

Remove the layer

•

Note

•

•

•

Performing Measurements

The Measure tool in MapStore allows the user to perform different kind of

measurements (like distance, area and bearing etc.) on the map. It also provides

some additional functionalities that are described in this section of the

documentation. The tool is accessible from the Side Toolbar by selecting the

button that opens the following toolbar:

Through this window it is possible to:

Measure distance

Measure Area

Measure Bearing

Clear measures

Export the measures to GeoJSON

Add the measure as a layer in TOC

Add the measure as an Annotation

The user can perform more than one measurement simultaneously on the map and

then cancel it with the Clear Measures button

Measure distance

As soon as the measure window opens, by default the measure distance option is

selected . In order to perform a distance measure, each click on the map

correspond to a segment of the line (at least one segment is needed) while the

double click inserts the last line segment and ends the drawing session.

The available units of measure are:

•

•

•

•

•

•

•

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/

The length of a line segment is shown on the map together with the measurement

of the overall distance of all segments.

Measure area

Once the Measure Area button is selected , it is possible to start the drawing

session (in this case at least 3 vertices need to be indicated). Same as measuring

the distance, each click correspond to a vertex and the double click will indicate

the last one.

In this case the available units of measure are:

Each side's length of the polygon is reported in map along with its perimeter and

the area.

Measure bearing

The Bearing measurements allows you to measure directions and angles. In the

quadrant bearing system, the bearing of a line is measured as an angle from the

Note

Note

reference meridian, either the north or the south, toward the east or the west.

Bearings in the quadrant bearing system are written as a meridian, an angle and a

direction. For example, a bearing of N 30 W defines an angle of 30 degrees west

measured from north. A bearing of S 15 E defines an angle of 15 degrees east

measured from the south.

After selecting the Measure Bearing button the user can draw a line with

only two vertices that indicates respectively the starting and the ending point.

Export the measure

Measurements drawn on the map can be exported in GeoJson format through the

 button.

Add the measure as layer

Once a measure is drawn, it is possible to add it as a layer through the button.

The created layer is added to the Table of Contents as follows:

Add measure as annotation

Once a measure is drawn, it is possible to add it as an Annotation through the

button. The following panel opens:

From this step the creation process is the same described in the Annotations

section.

Measurement on the 3D navigation

When the 3D Navigation is enabled, the user has the ability to perform distance,

area, point coordinates, height from terrain, angle and slope measurements on the

3D map.

Measure distance on the 3D navigation

As soon as the measure window opens, by default the Measure distance in 3D

space option is selected . In order to perform a distance measure, each click

on the map correspond to a segment of the line (at least one segment is needed)

while the double click inserts the last line segment and ends the drawing session.

Measure area on the 3D navigation

Once the Measure Area in 3D space button is selected , it is possible to

start the drawing session (in this case, at least 3 vertices need to be indicated).

Same as measuring the distance, each click corresponds to a vertex and the

double click will indicate the last one.

Measure point coordinates

After selecting the Measure point coordinates button the editor can click

on a point on the map and know latitude, longitude and altitude of that point.

Measure height from terrain

Once the Measure height from terrain button is selected , it is possible to

click on a point on the map and know the distance from the point to the terrain.

Measure angle

Once the Measure angle in 3D space button is selected , the editor can

draw three points on the map and get the angle value.

Measure slope

Once the Measure slope button is selected , the editor can draw three points

on the map to create a triangular surface and get the slope value.

Annotations

Mapstore lets you enrich the map with special features which expose additional

information, mark particular position on the map and so on. Those features make

up the so called Annotations layers.

Starting from a new map or an already existing one, the editor can access the

Annotations button from the TOC panel on the top-left corner of the

map viewer.

The annotation panel will open:

Add new Annotation

To begin, from the annotation panel, the editor can open the new annotation panel

by selecting the button.

https://mapstore.geosolutionsgroup.com/mapstore/#/
../toc/

From here the editor can insert a Title (required), a Description (optional) and

choose between five different types of Geometries:

Marker

Line

Polygon

Text

Circle

After selecting a geometry type, the editor can:

Draw a Geometry on the map.

Enter the vertices of the geometry or modify the existing ones through the

Coordinates editor using Decimal or Aeronautical formats.

•

•

•

•

•

•

•

For Line and Polygon, add new vertices using the button and typing the

latitude and longitude values.

If the vertices are invalid, they are notified with a red exclamation point.

In this case, it is not possible to add new geometry or save the annotation until a

valid value is entered. It is still possible to interact with the geometries already

present in the annotation, by zooming in on it or deleting it, as follows:

Customize the Style of the annotation, as explained in the following paragraph.

Once the geometry has been saved through the Save button, for each

geometry created, the editor can perform the following operations:

Zoom to the geometry annotation on map through the button

Delete the geometry annotation through the button

Once all the Geometries have been created, the editor can save the annotation

through the Save button that will be visible in the annotation list:

•

Note

•

•

•

Then, if not present, a new Annotations layer will be created and added to the

TOC

../toc/

Styling Annotations

Based on which type of annotation was chosen, MapStore allows you to customize

the annotation style through a powerful editor. It is accessible from the Style tab of

the annotation viewer. During the style editing a preview placed on top of the

styler form shows a preview of the edited style.

https://mapstore.geosolutionsgroup.com/mapstore/#/

Marker

MapStore provides two types of Marker annotations, so you have to choose what

type do you prefer using the Type combo box (Marker is the default):

Marker types can be customized through the following editor:•

Choose the Shape , Color and Icon that best fit your needs.

Symbol types can have different Shape and Size , a Fill color with a

customizable Opacity level (%), a Stroke of different types (continuous, dashed,

etc) and customizable Color , Opacity and Width . Only few symbols are

provided by default in MapStore but a custom list of symbols can be

configured.

Polyline

Polyline annotations can be styled using the following editor:

•

You can customize the Stroke in order to consider the Line/Dash type (continuous,

dashed, dotted, etc), Color , Opacity and Width . You can also have styled Start/End

Points: enable the StartPoint Style/EndPoint Style panel using the corresponding

check box, the editor will be the same used for Marker/Symbol annotations.

Polygon

With polygonal annotations changing the style means choose the Shape and the

size the Size of the polygon, its Fill color (with custom Opacity), the type of the

Stroke (continuous, dashed, dotted, etc), its Color , Opacity and Width . See the

example below to better understand these options.

Text

Text annotations are a bit different from the geometric ones. They display a

formatted text on a given point of the map. The style editor allows you to customize

the text Font (Family , Size , Style , Weight), the Alignment (left , center or right)

and Rotation . You can also choose the text Fill color and its Opacity , the Stroke

type, its Color , Opacity and Width . Take a look at the following example.

Circle

Circle annotations can have custom Fill color (with custom Opacity), Stroke type

(continuous, dashed, dotted, etc) with custom Color , Opacity and Width . The

Center can be also customized through the same editor described for Marker

annotations. See the example below.

Click on to apply the style.

Managing Annotations

Once annotations are added to the TOC, the editor can Manage them by clicking

to button from the TOC toolbar and the Main Annotations panel will be open.

../toc/

From it, the editor is allowed to:

Download a file with all the existing annotations by clicking on button

Upload annotations from a valid json file by clicking on button

Zoom an annotation on map by clicking on button

Show/Hide an annotation on the map by clicking on button

From the Main Annotations Panel, by selecting an annotation from the list, the

editor is returned to the Annotation Viewer where the annotation can be edited.

•

•

•

•

In particular, the editor can:

Change the Coordinates and the Style by clicking a geometry from list of

geometries.

Download the annotation in json format and reused in other maps by clicking

on button

•

•

Map Views

The Map Views is a MapStore tool useful to set up multiple map views differently

configured and switch between them. A navigation functionality is also provided to

automatically activate each view one after the other in temporal sequence.

The Map Views plugin works both in 2D and 3D modes, but the 3D mode has

advanced options including the Mask, the Globe Translucency and the Clipping

(see next paragraph).

Add new view

Once the user opens a map, the Map Views tools can be opened through the

button available in the Side Toolbar.

To create a new simple view the user can simply move the map to the interested

area, enable the desired layers in TOC to be displayed in the map and finally click

on the button. The view will be created and visible in the Views list by clicking

the button.

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/

MapStore allows to customize and edit the new view by opening the Edit panel

through the button. Here the user is allowed to:

Add a text, images, videos or hyperlinks through the Description section. The

description is visible during the Views Navigation. Take a look at the following

example.

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Capture the view positions through the button or

change the longitude, latitude and height of the Camera Position and Center

Position (only available for the 3D mode) by using the Position section.

•

Modify the duration of the animation and enable/disable the transition effect

during the Views Navigation by using the Animation section.

•

When in 3D mode, use the Mask section to select a WFS or Vector layer

available in TOC to create a mask on all the 3D tiles visible in map. The mask

layer need to be added to the map before using this functionality so that it is

possible to use the layer features as masking areas: if multiple WFS or Vector

layers (with polygonal features) are present in the map, these are used all

merged together to represent the final masking areas.

•

If the user enables the Inverse option, simply the inverse mask is applied using

the same layer so that each feature is used to produce an hole on all visible 3D

Tiles.

Enable the translucency of the globe through Globe Translucency section so

that it is possible to see layers under the globe's surface.

•

Choose which layer should be visible when the view is active through the

Layer Options section. In 2D mode the user can simply enable or disable all

the layers present on TOC and change the opacity.

•

In 2D mode, the 3D Tiles and the Terrain layers are not displayed in the Layer

Options.

In 3D mode, using the same logic described above for the Masking option, it is also

possible to Clip (not Mask) each 3D Tiles or Terrain layers using a WFS or a vector

layer as a clipping source. Furthermore, in this case the user can also choose

which layer feature can be used as Clipping feature.

The clipping layer must have polygon convex features. Concave polygons are not

supported by this type of clipping.

Warning

Warning

Unlike the Mask option, described above, the Clip function is a more narrowly

focused tool because:

The clipping are is visible only on the selected 3D Tiles layer and not on the

whole view

It is possible to select the feature of the WFS or Vector layer that you want to

use for the clipping

3D Views navigations

Once multiple views are added to the Map Views tool it allows to visualize them in

sequence by clicking on the button. Doing that the presentation mode starts

and each view is displayed in the Map Viewer, together with its descriptive panel

(if configured) on the left side of the screen, for a time depended on the duration

previously configured.

The user can also choose to navigate each view manually using the navigation

toolbar provided by the tool.

Note

•

•

Street View

The Street View tool allows the user to browse Google Street View contents in

MapStore. Through the button available in the Side Toolbar, the tool can be

activated so that it is possible to navigate the map with Google Street View.

When the tool is activated, a window opens and the streets highlighted on the map

so that the user can select one of them with a simple click of the mouse.

By clicking on a street in the map, the tool window displays the Street View and

the user can navigate it as usual.

Zoom in/out on the street

•

https://www.google.com/streetview/
https://www.google.com/streetview/

Use the Pan Interaction to navigate all-around the street

Enable/disable the Full Screen

By default, the Street View plugin is ready to be configured for application

contexts, and is not available in the default plugin configuration due to licensing

reasons.

•

•

Note

Longitudinal Profile

Given a DEM or a bathymetric layer as a source and a provided path on it, this tool

allows to calculate the Longitudinal Profile and display it within an interactive

chart.

The Longitudinal Profile is not included by default in the MapStore configuration

but it can be configured within an application contexts if needed. The plugin works

only if the Longitudinal Profile WPS process is properly installed in GeoServer.

Look at the official online documentation to learn more about this process and how

to install it. The GeoServer module of the Longitudinal profile is available from

Geoserver v2.20.x of Aug 2023.

By clicking the Longitudinal Profile button, available in the Side Toolbar, a

drop down menu opens so that the user can manage the available options

including different ways to calculate the profile:

It is possible to draw a line directly on the map through

button

In alternative it is also possible to import a linear profile as a vector file

(available formats for this are GeoJSON , ShapeFile or DXF), through

 button

Note

•

•

http://geoserver.org/
https://docs.geoserver.org/latest/en/user/community/wps-longitudinal-profile/index.html

Finally, through button, the user can also select a

vector linear layer in TOC and then select the line feature representing the

desired profile path on map.

Chart

When the geometry of the profile path has been drawn on the map, the

Longitudinal Profile panel opens and the chart appears in the Chart tab.

•

../toc/

While the X axis indicates the distance from the starting point of the provided path,

the Y axis indicates instead the height of points along the profile calculated from

the provided path. The user can hover over the chart to interact between the chart

and the line of the map as follows:

The Chart toolbar, displayed in the right corner of the chart, allows the user to:

Download the chart as a png through the button.

Zoom the chart through the button.

Pan the chart through the button.

Zoom in the chart through the button.

Zoom out the chart through the button.

•

•

•

•

•

Autoscale to autoscale the axes to fit the plotted data automatically through

the button.

Reset axes to return the chart to its initial state through the button.

MapStore also allows to export the Longitudinal Profile as CSV , PNG or PDF file.

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Information

In the Information tab are reported all relevant indicators related to the

longitudinal profile calculation. In particular it is reported:

The layer used to calculate the profile

Total linear length of the profile

Cumulative elevation gain

Cumulative elevation loss

Number of points processed (the number of points varies according to the

pitch chosen).

Setting Parameters

Through the button it is possible to tune the profile

properties. The available parameters used to calculate the longitudinal profile are:

•

•

•

•

•

The Profile layer choosing between the available layer on the dropdown menu

The Distance choosing the maximum distance between two points along the

profile (in m)

The Chart Title to be used in the UI on the top of the chart.

•

•

•

GeoProcessing Tool

This tool aims to provide a set of geo-processing utilities on layers present in map.

WPS calls are made by the tool to produce the result to be displayed in the map.

Supported WPS processes are geo:buffer and gs:IntersectionFeatureCollection

(the WPS plugin need to be installed for your GeoServer version in order to use

this tool).

The GeoProcessing Tool is not included by default in the MapStore configuration

but it can be configured within an application contexts if needed or directly

included in the standard application configuration.

By clicking the GeoProcessing Tool button, available in the Side Toolbar, a

panel opens so that the user can choose the geographic operations between

Buffer and Intersection.

Note

https://docs.geoserver.org/latest/en/user/services/wps/install.html
../../developer-guide/local-config/

Buffer tool

The Buffer tool allows to create a buffer around the input geometries and when it

is selected, the user can:

Select a layer from the Source Layer option drop down menu. The dropdown

shows the layers available for the process from the ones present in TOC.

Select one of the layer features from the Source Feature option. The feature

can be selected from the dropdown menu or directly clicking on map by

activating the button.

Insert the desired Distance for the buffer (supported are m and km).

When all mandatory process parameters have been provided, it is possible to click

on button to start the process to generate and visualize the buffer layer.

The buffer layer is added in TOC inside a new group created for the purpose.

•

•

•

../toc/

Advanced Settings

Enabling the Advanced options the user can include further (not mandatory)

parameters for the Buffer process:

Enter the Quadrant Segments, that is the number of line segments used to

approximate a quarter circle.

Select the Style for the buffer end caps choosing between Round , Flat or

Square

•

•

Intersection tool

Once Intersection is selected as a process to be used from the first dropdown,

the user can also select the layer to use as Source Layer for the intersection as

well as the layer to be intersected with the given source (Intersection Layer

option). For both options it is possible to select a feature to use for the intersection

process; this is possible by enabling the buttons in order to select the layer

features directly with a click on the map. If no layer feature is provided for one of

the to layer options, the operation will be performed on the entire layer.

The user can then:

Select the Source Layer from the drop down menu.

Select the layer feature from the Source Feature. The feature can be selected

from the drop down menu or by clicking directly on the map by activating the

 button.

In the same way it is possible to select the Intersection Layer and the

corresponding Intersection Feature to obtain the new intersected layer by

clicking on button.

The new layer, result of the intersection of the features selected, will be added to

the TOC inside a dedicated group and visible in the map viewer.

•

•

../toc/

Advanced Settings

Enabling the Advanced options the user can include further (not mandatory)

parameters for the Intersection process:

Enter the First attribute to retain, which is the first attribute to display•

Enter the Second attribute to retain, which is the second attribute to display

Select the Intersection mode choosing between INTERSECTION , FIRST or

SECOND

Select the Percentages, choosing between False or True , to indicate whether

to generate area percentages.

Select the Areas enabled, choosing between False or True , to indicate

whether to generate area

•

•

•

•

Navigation Toolbar

The Navigation Toolbar is a navigation panel containing various elements that help

the user to explore the map. In particular, it is possible zooming, changing the

extent, navigating in 3D mode and querying objects on the map. Moreover, the

following icon is used to expand/collapse the navigation toolbar.

Geolocation tool

Through the Show my position the user can center the map on his position.

Therefore the button turns green.

The position is still active even when the user interacts with the map; with a single

click on the button it is possible re-center the map on his position. To disable the

position the button needs to be duble clicked.

Zooming tools

MapStore provides several tools allows the user to:

Increase the map zoom by using the zoom in icon

Decrease the map zoom by using the zoom out icon

Switch to full screen view

Go back to the previous map extent in the map navigation history

Go forward to the next map extent in the map navigation history

Zoom to the maximum extent the map

•

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

3D Navigation

The 3D navigation in MapStore is based on CesiumJS. If the 3D button in the

Navigation Toolbar is clicked, the map switch in 3D mode so map contents are

displayed on a 3D globe and it is possible to orbit around it through the compass

place in the upper right corner of the map.

The 3D mode in MapStore support also the rendering 3D Tiles layers once they

are added through the Catalog tool as explained here.

Identify Tool

The Identify tool allows to retrieve information about layers on the map. The

tool is active by default (the button is green). Therefore if the user click on a layer

in the map, the identify panel opens containing the layers information

corresponding to the clicked point in the map (also the coordinates of the clicked

point are reported in the identify panel).

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/

The layers information are reported in plain text by default. It is possible to change

the format by selecting the button in Side Toolbar where the user can select,

through the Identify response format menu, three different formats like: TEXT,

HTML and PROPERTIES.

The information will be returned in the format chosen by the user. For exaple with

PROPERTIES format as follows:

This global settings could be overwritten by a layer-specific configuration (see

Feature Info Form).

In addition to the layers information, the following are provided by the Identify

Tool:

The point address through the More Info button

Warning

•

The coordinates of the point•

The point coordinates are visualized in decimal or areonautical format. It is

possible to change the format by the setting button

The Highlight Features button allows to highlights on the map the

layers features corresponding to the retrieved information in the clicked point.

The Edit button allows the user to open the Attribute Table in edit mode

showing only layers records corresponding to the clicked point on the map.

Using the Coordinates Editor

In order to Identify layers features by typing coordinates instead of clicking on the

map, you can use the Coordinate Editor.

The coordinates can be in decimal or areonautical format depending on the user

needs. It is possible to change the format by the setting button

An example of search with Decimal coordinates as follows:

An example of search with Aeronautical coordinates as follows:

Identify Tool with more than one layer

In a map it is possible to have several overlapping layers. With the Identify tool the

user can retrieve information on one or more overlapping layers at the same time

in a certain point.

If the user clicks on the map where one or more overlapping layers are present,

the identify panel opens. The panel provides the layers information, therefore the

user can navigate different layers information from the layer select drop-down

menu where the layer options have been sorted as in TOC.

Note

•

•

../attributes-table/

In order to have information about one layer only the user can select the layer on

the Table of Contents, through the TOC button , and then click on the layer in

the map to perform the identify operation only for that selected layer in TOC. The

identify panel opens containing the layer information corresponding to the clicked

point in the map, as follows:

Floating Identify Tool

In MapStore the user can set the Identify tool in floating mode (Floating Identify

tool) instead of having the default one available through a click on the map. In that

case an identify popup will appears on the map as soon as the user hover over a

layer in the map.

In order to activate the Floating Identify Tool the user can select the button in

Side Toolbar. Here he can select the Hover option through the Trigger event for

Identify dropdown menu.

https://mapstore.geosolutionsgroup.com/mapstore/#/

As soon as the option Hover is selected, the user can hover the mouse over a layer

in the map in order to show the popup containing the identify information.

Background Selector

The background selector, located in the bottom left corner of the Viewer, allows

the user to add, manage and remove map backgrounds.

By clicking on the background selector several miniatures will be displayed. Those

miniatures can be selected in order to switch from a background to another (the

map backgrounds set by default in MapStore are Open Street Map, NASAGIBS,

OpenTopoMap, Sentinel 2 and the Empty Background).

For example choosing OpenTopoMap, the map background will change like in the

following image:

If the user has editing permissions on the map (independently on the role, see

Resource Properties section for more information about permissions), it is also

possible to add, edit or remove backgrounds.

Add background

A new background can be added through the button on the top of the

background selector main card. Performing this operation the Catalog panel opens

with the possibility to access the Remote Services:

Default Backgrounds service is available only accessing the Catalog from the

background selector, but if you add a new Remote Service from there, it will be

available also accessing Catalog from the Side Toolbar or from TOC. Default

Backgrounds represent a list of backgrounds that can be configured from

MapStore's configuration files (more information about that can be found in

Developer Guide's Map Configuration section).

Warning

../catalog/
../catalog/
../toc/
../../developer-guide/maps-configuration/

From the Catalog the user can choose the layers to add to the list of backgrounds:

As soon as a WMS layer is selected, the Add New Background window opens:

In particular, from this window, the user can perform the following operations:

Add a Thumbnail choosing the desired local file by clicking on image preview

area, or simply with the drag and drop function

Set the Title

Set the Format (between png , png8 , jpeg , vnd.jpeg-png or gif)

Choose the Style, between the ones available for that layer

•

•

•

•

Enable/disable the use of the layer cached tiles. If checked, the Tiled=true URL

parameter will be added to the WMS request to use tiles cached with

GeoWebCache. When the Use cache options is enabled, more controls are

enabled so that it is possible for the user to check if the current map settings

match any GWC standard Gridset defined on the server side for the given

WMS layer (Check available tile grids information). At the same time,

it is also possible to change the setting strategy (based on the WMTS service

response) to strictly adapt layer settings on the client side to the ones matching

any remote custom Gridset defined for the current map settings (Use remote

custom tile grids button). (More details on Layer Settings section.)

Add Additional Parameters of three different types: String, Number or

Boolean (these parameters will be added to the WMS request).

The thumbnail image size should be a square of 98x98px or 128x128px, max 500kb

and the supported format are jpg (or jpeg) and png

Once the options are chosen, with the button the new background layer is

definitively added to the background selector as a card and automatically set as

the current one.

Add WMTS background

In case of a WMTS layer added as a background layer, the Add New Background

window is a bit different:

•

•

Warning

https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms
https://docs.geoserver.org/latest/en/user/geowebcache/using.html#direct-integration-with-geoserver-wms

The user can perform the following operations:

Add a Thumbnail choosing the desired local file by clicking on image preview

area, or simply with the drag and drop function

Set the Title

Set the Attribution visible at the bottom left of the footer in the map viewer.

Edit background

It is possible to edit backgrounds by clicking on settings icon on top of each

background card:

•

•

•

Default Backgrounds layers can't be edited, with an exception for Sentinel 2: only

WMS Layers can be edited&/configured through the Background Selector.

The Edit Current Background window opens, allowing the user to customize the

same set of information when adding a new background (see previous section).

Remove background

It is possible to remove a background from the background selector by clicking on

remove icon on top-right of each card

Warning

By default, for new maps, all backgrounds from Default Backgrounds Service are

added to the background selector, and in Catalog they appear grayed (it's not

allowed to add the same default background twice): as soon as you remove one

from the background selector, it becomes selectable from the Catalog.

Note

Timeline

The Timeline is a MapStore tool for managing layers with a time dimension. It

makes possible to observe the layers' evolution over time, to inspect the layer

configuration at a specific time instant (or in a time range) and to view different

layer configurations time by time dynamically through animations.

The Timeline tool currently works only with WMS layers from GeoServer where

the WMTS-Multidim extension is installed (WMS time values in WMS Capabilities

is not supported yet). To use the MapStore Timeline at least GeoServer 2.14.5 is

required, but the recommended version is GeoServer 2.15.2 to have a complete

support for all of the features the Timeline tool can provide (e.g. the filter by

viewport). From now on, the layers that the Timeline can manage will be

addressed as time layers. From now on, the layers that the Timeline can manage

will be addressed as time layers.

When a layer with a time dimension is added to the map, the Timeline panel

becomes automatically visible and it allows the user to browse the layer over time.

Warning

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://docs.geoserver.org/stable/en/user/community/wmts-multidimensional/index.html

Widgets and Timeline cannot be expanded on the same map at the same time. See

this section to learn more about this.

Timeline histogram

The Histogram panel opens through the Expand time slider button .

In the Histogram panel some of the most relevant elements are the following ones:

A list of layers present in map with the time dimension available. It is possible

to hide this list with the Hide layers names button

The relative histogram that shows the layer' data for each time in which it is

defined. In order to manage the panel the user can zoom in/out on the

histogram, scroll the time axis and drag the current time cursor along it

The highlighted layer is the one whose histogram is displayed on the panel.

The highlighted layer in the time layers ' list drives the time management, from

now on it will be addressed as guide layer (See in the Animation Settings >

Timeline Settings > Snap to guide layer option).

Set a Time Range

In order to see a layer in a specific time instant the user can insert a data and a

time in the panel, as follows:

Note

•

•

Note

Note

The current time cursor changes its position according to the selected date and

viceversa: when the user drag that cursor along the time axis the date/time cells

will update their values.

In order to observe the layers in a finite fixed time interval the user can set a time

range through the Time range button . A date/time control panel opens to set

the range limits either by directly entering values in those cells or by dragging the

limits cursors along the histogram time axis, as follows:

Reset timeline

Based on the timeline configuration, the reset button can be made visible on

the timeline toolbar. It allows the user to reset the time data based on the current

mode of the timeline

When the current mode is single, the icon is represented as , and the

layer is selected in timeline, the time is set to nearest of now and when the layer

is not selected, the time is set to now

When the current mode is range, the icon is represented as , the time is

set to the full range of the layer

Reset button is made visible through plugin configuration i.e. resetButton: true

Show times available on map

Sometimes you might be interested to show in the timeline histogram only the

times instants currently visible on the map, especially when you are exploring a

big data set. This feature can be enabled by clicking the Map Sync button .

When this tool is active the timeline will show only the times of the features

available in the current map viewport.

Note

•

•

Note

Map Sync feature need at least GeoServer 2.15.2

Animations

The user can start a time animation by using the timeline tool through the

following buttons (by default the animation of layers in map is based on time values

related the guide layer, see the Animation Settings section > Timeline Settings

> Snap to guide layer option):

In order to start the animation the user can click on Play button . Once the

animation is started, the temporal layers in map are updated accordingly and the

user can see the animation progress also in the timeline histogram. Following the

sequence of steps, the cursor will shift each time to the next step in a certain time

interval, the frame duration.

Through the Stop button the user can stop the animation and the current

time cursor remains in the last position reached.

The Step backward button and the Step forward button allow the user

to change the current time. Therefore, by clicking on one of them, the cursor

Note

changes its position (to the previous or the next step) on the histogram, the date/

time values of the control cells will be updated accordingly and the layers in map

are updated too.

The user can pause the animation through the Pause button , as follows:

The user can also specify a time range. During the animation, the whole range will

be shifted step by step along the time axis and, in each step, the layers in map will

show data corresponding to that range of time.

Animation Settings

The animation behavior can be customized through the Settings button . It

allows the user to tune the Timeline and the Playback options.

By default, the Snap to guide layer is enabled. It allows to force the time cursor

to snap to the selected layer's data.

Note

If the time dimension of the layer has time ranges defined (start/end time) instead

of time instants, the user can choose the Time interval snap point by selecting

the option Start or End . An example of snapping to the End point could be the

following:

The user can disable Snap to guide layer to select the preferred time step through

the Animation Step option. For example, the process could be similar to the

following one:

The user can set the number of second between one animation frame and another

through the Frame Duration and enable the Follow the animation to visualize

the animation process also inside the histogram: the histogram will automatically

move to follow the animation.

Enabling the Animation Range the user can bound the animation execution to a

fixed time interval, the green range. The green range can be defined both

dragging the play/stop cursors directly on the histogram or filling the date/time

control cells of the extra panel displayed, as follows:

In order to properly set the Animation Ranger, some controls are available to help

the user:

Zoom the histogram until it fits the animation's green range time extension

through the Zoom to the current playback range button

Extend the animation's green range until it fits the current view range of the

histogram through the Set to current view range button

Extend the animation's green range until it fits the guide layer time extension

through the Fit to selected layer's range button

Layers Setting

The layers tab lists all the available time layers present in the map. The user can

toggle a layer to be shown/hidden in the timeline by clicking on the checkbox next

to the layer title.

•

•

•

Footer

In MapStore some of the map information are reported in the Footer. By default, as

soon as the user opens the map, the scale bar and the scale switcher are showed

so that the user can change the scale bar by zooming in/out the map or by

selecting a map scale through the scale switcher.

In order to visualize the map coordinates corresponding to the mouse pointer in

the selected Coordinate Reference System of the map, the user can click on the

button

CRS Selector

MapStore allows also to change the Coordinate Reference System of the map by

clicking on the Select Projection button . A CRS selector opens to select one

of the available CRSs, as follows:

The list of available CRSs depends on the CRS Selector configuration.

In order to search a desired CRS, the user can also filter the CRS list by typing in a

search input field.

Note

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.readthedocs.io/en/latest/developer-guide/local-config/#crs-selector-configuration

Exploring Dashboards

In MapStore, a Dashboard is a space where the user can add many Widgets, such

as charts, maps, tables, texts and counters, and can create connections between

them in order to:

Provide an overview to better visualize a specific data context

Interact spatially and analytically with the data by creating connections

between widgets

Perform analysis on involved data/layers

In order to create a new dashboard, the New Dashboard button appears in

MapStore Homepage once logged as Administrator or Normal user. With a click on

it, an empty dashboard workspace appears. This page is composed of a Topbar, a

Sidebar and a Viewer:

Topbar

Through the Topbar it is possible to:

Access GeoSolutions website with a click on the icon

Set the language, with the Language switcher:

1.

2.

3.

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/
https://www.geosolutionsgroup.com/

Go back to the Homepage with the button

Take a look at the account info, change password and logout, with the

button (more info about these options are available in Managing Users and

Groups section)

Options Menu

In the Options drop-down menu you can:

Export dashboard in json format

Import dashboard in json format (it will replace without asking the current

dashboard)

Save/Save as the dashboard

Delete the dashboard

Open the Share panel

Start the Tutorial

See the information about the deployed Version of MapStore in the About

panel.

•

•

•

•

•

•

•

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
../resources-properties/
https://mapstore.geosolutionsgroup.com/mapstore/#/

Sidebar

The Sidebar allows the user to:

Add new widgets with the button

See the connections between widgets with the button, available when

connections are present (more information about this option are available in

Connecting Widgets section)

Viewer

Once the widgets are added in the viewer it is possible to:

Change widgets position by moving them with a simple Drag and Drop and

resize them:

Access widgets menu from which the user can choose between several

options (more information about this menu's options can be found in Map's

Access Widget Menu section)

Take a look at the widget Description (more information about widget

Description can be found in Map's Access Widgets Info section)

•

•

•

•

•

Adding Widgets

With a click on the button in Sidebar the Widget panel opens, showing the list

of the available widget types that can be added to the dashboard:

In particular, it is possible to choose between:

Chart

Text

Table

Counter

Map

•

•

•

•

•

Creating Chart, Text, Table and Counter widgets the procedure is almost the same

as that described for create widgets in maps. The only minor differences are the

following:

In dashboards as soon as the user selects the widget type, a panel appears to

select the layer from which the widget will be created. MapStore allows you to

choose between CSW, WMS and WMTS GeoSolutions Services, present by

default, or by accessing WMS, WFS, CSW, WMTS and TMS Remote Services as

explained in the Managing Remote Services section

In dashboards the possibility to connect/disconnect widgets to the map is

replaced with the possibility to connect/disconnect the Map widgets together

or with other widget types (this point will be better explained in Connecting

Widgets section)

Creating Map type widgets, otherwise, is a functionality present only in

dashboards.

Map Widget

In dashboards, selecting the Map type widget, the following panel appears:

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/

Here the user can:

Go back to widget type selection through the button

Search for a map by writing its title

Select one or more maps from the list of maps (mandatory in order to move

forward)

Move forward to the next step through the button

Once a map has been selected, the panel display the layers present in the map in

the preview and lists the layer associated with the map.

If user has selected more than one map, the map wizard displays the map switcher

dropdown allowing user to select and configure the map.

•

•

•

•

Note

If the Empty Map has been selected the user can:

Create a map widget using an empty map

If the map selection has an empty map, then the user is prompted with an

option to enter map name

Upon adding the name, the map wizard displays the map switcher allowing

user to select and configure the map

Add layers to the map through the button, as follows:

/>

Note

•

•

•

•

On the Configure map options panel the user can toggle the layer visibility and

set layers transparency, as explained in Display options section. Furthermore, the

user can manage the layer with the new buttons present on the layer toolbar by

selecting the layer on the layers list.

Here, the user is allowed to:

Zoom to layers though the button

Access Layer Settings through the button

Remove layers through the button

Disable/Enable the Floating Identify Tool to retrieve Identify information about

layers available on the map through the button

The Floating Identify tool is active by default (the button is green)

Once the button is clicked, the last step of the process is displayed like the

following:

•

•

•

•

Warning

Here the user has the possibility to insert a Title and a Description for the widget

(optional fields) and to complete its creation by clicking on the button. After

that, the widget is added to the viewer space:

Legend widget

When at least one Map widget is created and added to the dashboard, there's the

possibility to add also the Legend widget, available in the widget types list:

Selecting the Legend widget, the user can choose the Map widget to which the

legend will be connected (when only a Map widget is present in the dashboard this

step is skipped):

Once a Map widget is connected, the preview panel is similar to the following:

Here the user can go back to the widget types section, connect or

disconnect the legend to a map and move forward to widget options.

If the last option is selected, a configuration panel similar to the Map widgets one

gives the possibility, before save, to set the Title and the Description for the Legend

widget.

An example of a Map widgets and a Legend widget is the following:

Connecting Widgets

In dashboards it is possible to connect the added widgets allowing the user to

inspect and interact with more than one of them at the same time.

Once at least one connection between widgets is set, it is possible to identify the

connected widgets turning on the connections button in the dashboard Sidebar

making it green . This will highlight the connected elements with a colored

bar on their upper side.

In general, you can connect:

Map widgets with other widgets

Table widgets with other widgets

Connecting Map widgets with other widgets

In dashboards it is possible to connect Map widgets with:

Other Map widgets

Chart widgets

Table widgets

Counter widgets

Legend widgets

Maps with other Maps

As soon as more than one Map widget is added to the dashboard, the connect/

disconnect button appears inside the Configure map options panel (accessible by

adding a new Map widget or editing an existing one).

•

•

•

•

•

•

•

With a click on it, if only another Map widget is present, by default the connection

will be made towards that Map widgets. When more than one Map widget is

present in the dashboard, instead, it is possible choose one through a page like the

following:

Maps with Charts, Tables and Counters

In order to connect Charts, Tables or Counters widget with Maps widget, the

procedure is similar to that seen in the previous section. The result is that the

information displayed in the Chart, Table or Counter changes accordingly with the

map portion displayed in the connected Map widget. For example the result could

be:

Connecting Charts with Maps:

Connecting Tables with Maps:

Connecting Counters with Maps:

•

•

•

When a pan or zoom operation is performed in the Map widget, the other

connected widgets are spatially filtered according to the Map viewport.

Maps with Legends

Also in this case the connecting procedure is similar to those seen previously, but

now the information contained in the Legend widget doesn't change according

with the map extension. An example can be the following:

Connecting Table widgets with other widgets

With the same procedure used for maps (see previous section) the user can

connect Table widgets with:

Map widgets

Other table widgets, only if it refers to the same layer

Chart widgets, only if it refers to the same layer

Counter widgets, only if it refers to the same layer

When a table is connected with other widgets, it became a Parent Table and a filter

appears on the top.

•

•

•

•

It is possible to apply a filter in the Parent Table simply by typing a text in the input

field present at the top of each column:

A Map widget that is connected to a Parent Table receives the alphanumeric filter

of the Table and:

Performs a zoom to the extent that contains all the Table widget records (the

result of the filter in the Table)

If the Map widget contains the same dataset (layer) of the Parent Table, also

the layer on map is filtered accordingly

Once a widget is connected to a map widget that is connected to a Parent Table at

the same time:

If the widget has been created on the same dataset (layer) of the Parent Table

then two filters will be applied in AND to the widget itself: the spatial filter of

the Map widget and the attribute filter defined in the Parent Table

If the dataset isn't the same, only the spatial filter of the Map widget will be

applied as usual: in the following example, the Counter refers to a level other

than that configured for the Parent Table

There are different combinations of connections, the image below illustrates the

allowed ones by reporting also the kind of filters applied for each case

•

•

•

•

Exploring Story

In MapStore, GeoStory is a tool that allows to create inspiring and immersive

stories by combining text, interactive maps, and other multimedia content like

images and video or other third party contents. Through this tool you can simply

tell your stories on the web and then publish and share them with different groups

of MapStore user or make them public to everyone around the world.

The user can approach a story in two different ways:

Creating a new story or editing an existing one through the Edit Mode

Enjoy the story and interact with it, through the View Mode

Edit Mode

The Edit Mode allows the user to edit a story by adding, removing or modifying the

elements inside it. This mode and its tools are used both to edit an existing story

and to create a new one.

In order to create a new story, the user can click on the New GeoStory button

 on MapStore home page. As soon as the user clicks on that button in home

page the story editor opens, it is composed of three main elements: the Topbar,

the Builder and the Sections Container (later simply called Container).

•

•

https://mapstore.geosolutionsgroup.com/mapstore/#/
https://mapstore.geosolutionsgroup.com/mapstore/#/

The Story content is organized in Sections, that can be added with the button

in the Container area. In particular, the user can add to the story the following kind

of sections:

Title Section

Banner Section

Paragraph Section

Immersive Section

GeoCarousel Section

Media Section

Web Page Section

View Mode

The View Mode corresponds to the final result of your story composition that will

be visible to end users on the web.

The user can access the View Mode also during the Story editing in order to have

a preview of its work on the Story itself. The Show preview button in

Builder's toolbar allows to do that and the first display looks like the following:

•

•

•

•

•

•

•

On top of the page there is a Top bar in which the story's informations (if properly

configured in edit mode) are displayed.

The elements available in the top bar can be the following:

Edit Story button that allows to switching back to the Edit Mode

Navigation bar allows to navigate between different sections of the story

The Title of the story configured in the story settings (edit mode)

The Logo of the story chosen by the story editor in the story settings

In order to set up this information the story editor neededs to go back in Edit Mode

and open the Setting button as explained in Story Setting.

The Story layout allows to navigate contents by scrolling up and down the Story

page by using the mouse or the Navigation bar.

•

•

•

•

Warning

Story Settings

The Story Settings panel allows the editor to customize the theme of the story and

configure which additional components should appear to end users in the story

view.

The Story settings panel is available in Edit Mode and it can be opened by clicking

on the Settings button .

Story Theme

The editor can customize the different components of the story through the

following sections:

The Theme to choose the default background and text color and the default

font of the whole story: clicking on the Change Color button a color picker

appears to allow selecting the desired color:

The Font Family to choose the default text font present in the whole story:

clicking on the search bar a dropdown menu opens to allow selecting the

desired font (Inherit, Arial, Georgia, Impact, Tahoma, Time New Roman,

Verdana). The default list of Font Families can be customized in the MapStore

configuration file.

The Overlay to choose the default background and text color of overlay

contents present in the Title Section and in the Immersive Section as well:

clicking on the Change Color button a color picker appears to allow

selecting the desired color:

The Shadow of overlay contents present in the Title Section and in the

Immersive Section: to enable or disable the shadow:

The color of Links. The story editor can choose the default color of the

hyperlink that may be present in the Text Contents.

Story Header

In the top bar of the story, if the editor enables them, the following components are

added:

•

•

•

•

•

The Title of the story, the default value is the title given to the story's resource

in MapStore.

The Font Size of the title: clicking on the search bar a dropdown menu opens

to allow selecting the desired size (14 px, 16 px, 18 px, 24 px, 28 px).

The story Logo, that can be for example an image that represents your

organization or something connected to the story itself.

The Navigation Toolbar to improve the story navigation for end users. Each

section of the story is reported in a tree and the editor can establish which

section should appear in the toolbar to allow end users to quickly navigate the

story.

Saving the story settings and going back in View Mode, the top bar looks like this:

•

•

•

•

Title Section

As soon as you create a new Story, by default, only a Title Section (the cover) is

present in the workspace. In this section the story editor can customize two

different elements: the title text and the cover's background.

Content

By default, the title section has the following placeholder with an empty

background behind it:

With a click inside the text area, it expands and the Text Editor Toolbar appears

allowing the story editor to type and/or edit the title text:

Once the text has been written, it is possible to configure the text area position and

its style from the component's toolbar:

The text window toolbar allows the user to change the following settings:

The Change size button allows to change the size of the text window in

Small, Medium, Large or Full.

The Align content button allows to align the text window, inside the

Container, on the Left, Center or Right.

The Change field theme button allows to change the text window theme

in Default (same default theme settings of the story, see Story Settings), Bright,

Dark or Custom (allows to customize background and text colors and enable or

disable the shadow)

The Remove button allows delete the title section.

When a section has only one content, and the story editor remove that content, the

entire section will be also automatically deleted.

Setting a title with Large size, aligned on the Center of the Container and with a

Bright theme, the result is something like:

•

•

•

•

Note

Background

For a Title sections it is possible to customize the background through the

background editing toolbar:

In case of an empty background, the background editing toolbar allows to:

Add a media content as a background, with the Change media

source button that opens the Media Editor

Change the height of the section through the Fit/adapt content button

It is possible to add three types of media contents as a background: images, videos

or maps.

Images

Once an image is added for the background, the result is something like this:

In this case the background editing toolbar allows to customize the image

background through the following settings:

Change media source allows to select the media content to use for the

section, clicking on this button the Media Editor opens

Change the content height through the Fit/adapt content button

Change the relation image/container, choosing between making the

background cover the whole container or making the whole background

visible inside the container

•

•

•

•

•

Change size between Small, Medium, Large or Full

Align content on the Left, Center or Right

Change the background theme to set the colour of the empty

background between Default (same default theme settings of the story, see

Story Settings), Bright, Dark or Custom (allows to customize the color of the

background).

The Align content and the Change field theme buttons are disabled if the image

size is full screen

Videos

Once a video is added for the background, the result is something like this:

The background toolbar, in this case, changes a little bit by including an additional

button:

The Audio, enabled by default, through which you can enable or mute the

video.

•

•

•

Warning

•

By clicking on the Make the whole background visible inside the container button

 other two buttons appear to perform the following operations:

Enable Autoplay to play the video automatically once the user is on it

Enable Loop to continuously repeat the video

The video play will be available only in View Mode of the story: it is not available in

edit mode except in the media editor as a preview.

Maps

In this case, adding a map as background, the result will be like this:

The background toolbar, in this case, changes a little bit by including an additional

button:

The Edit map configuration through which it is possible to Configure the

Map

•

•

Note

•

Banner Section

The Banner Section is similar to the Title Section and it is useful to easily create a

story banner without the title text content.

From the background editing toolbar the user can do the following actions:

Add a media content as a background opening the Media Editor through the

Change media source button and choose between images, videos or

maps.

Change the height of the section through the Fit/adapt content button

Remove the banner section through the Remove button

Once the media content has been added as a background of the section, the

editing toolbar changes to enable different functionality depending on the content

inserted: as explained here.

Below is an example of an image added as background in the Banner Section:

•

•

•

Paragraph Section

The Paragraph Section allows to insert a textual content to the story. The story

editor can also click on the button to add additional contents to this section

(like media, other paragraphs or embed third party contens). It is possible to

choose between:

Text Content to add another text content just below the current one

Media Content to open the Media Editor to add an image, a map or a

video.

Web Page Content to add an external web page

Text Content

By default, as soon as a Paragraph is added, an empty text content is already

present as a placeholder and the content toolbar allows to:

Change the size of the text content: clicking on the Change Size button a

dropdown menu appears to allow selecting between Small, Medium or Full

size:

•

•

•

•

Delete the Paragraph Section through the Remove button

The editor can write a text by clicking on the text content and customize it through

the Text Editor Toolbar. A possible result of adding and formatting the text can be

the following:

Media Content

Adding a media content, the Media Editor opens to allow adding the supported

media (like Image, Map or Video).

•

Images

An image added inside the paragraph section can be customized through the

Image Content Toolbar. Below is an example of a small, center-aligned image, just

below a text content:

Videos

A video added inside the paragraph section can be customized through the Video

Content Toolbar. Below is an example of a video, just below an image content:

Maps

A map added inside the paragraph section can be customized through the Map

Content Toolbar. Below is an example of a large, center-aligned map, just below an

Image content:

Web Page Content

Adding a web page content, the Web Page Windows opens allowing the user to

add the URL of an extenal web page. A web page added inside the paragraph

section can be customized through the Web Page Content Toolbar. Below is an

example of a medium, center-aligned web content, just below a map one:

Immersive Section

The immersive section is composed of two elements: the background and the

immersive content. As soon as you add an immersive section to your story, an

empty background with an empty text content will be displayed.

Content

Inside an Immersive Section the story editor can customize the content area

through the Immersive Content Toolbar:

In particular, it possible to:

The Change size button allows to change the size of the text window in

Small, Medium, Large or Full.

The Align content button allows to align the text window, inside the

Container, on the Left, Center or Right.

The Change field theme button allows to change the text window theme

in Default (same default theme settings of the story, see Story Settings), Bright,

Dark or Custom (allows to customize background and text colors and enable or

disable the shadow)

Below is an example of a small Immersive Content, aligned to the Right and with a

Dark field theme:

As soon as you add a text content, it appears available just below the current one.

With a simple click inside it, the user can write the text and customize the text

formatting through the Text Editor Toolbar. An example of a text content can be

the following:

•

•

•

The immersive content can include text, media contents or web pages. A new

content can be added inside the immersive content column through the

button, or it can be removed through the button.

Adding a media content, the Media Editor appears to allow the story editor to add

an Image, a Map or a Video. It is also possible to add a Web Page content as it is

explained in the Web Page Section. An example of immersive content with a text

and an image can be the following:

Background

For Immersive sections, it is possible to customize the background through the

background editing toolbar:

The background editing toolbar, when no media are applied, allows to:

Add a media as a background of the section, with the Change media source

button that opens the Media Editor

Once a media (image, video or map) is added to the background, an editing toolbar

appears in the upper left corner of the section allowing the user to manage the

background content.

•

The Background editing toolbar changes depending on the type of media

added to the background, as it is explained in the Background section.

Only for Immersive Section, when the user try to add another section of the same

type just below the current one, the added section is actually another immersive

content, that fits inside the same immersive section.

Note

GeoCarousel Section

The GeoCarousel section allows another kind of immersive experience than the

Immersive Section. The story editor can define a list of carousel cards to be

presented with an accompanying descriptive content and a geographic location. In

edit mode it is composed of three elements: the background map, the descriptive

panel and the carousel panel where the editor can manage carousel items.

Background

The background editing toolbar allows to add a map as a background of the

section, with the Change media source button that opens the Media Editor

as usual.

In the GeoCarousel Section the story editor, unlike the Immersive Section and the

Title Section, can only add a map as a background.

Once a map is selected for the background, the editing toolbar appears in the

upper left corner of the section allowing the story editor to manage the

background content.

Note

The Background editing toolbar allows the following actions:

Change media source allows to select the media content to use for the

section, clicking on this button the Media Editor opens.

The Edit map configuration allows to Configure the Map

Change size of the section between Small, Medium, Large or Full

Align content on the Left, Center or Right

Change the background theme to set the colour of the empty

background between Default (same default theme settings of the story, see

Story Settings), Bright, Dark or Custom (allows to customize the color of the

background).

The Align content and the Change field theme buttons are disabled if the map size

is full screen.

•

•

•

•

•

Warning

Descriptive panel

The Descriptive panel allows to put descriptive content such as text, image, video

or map for the different cards composing the GeoCarousel section. The story

editor can customize it through the Content Toolbar, as it is explained in the

Content section.

Carousel

The carousel is composed of a list of cards to be associated with a geographic

location. It is located at the bottom of the GeoCarousel section and as soon as the

section is added to the story, it has by default the following empty card ready to be

configured:

Once a card is selected in edit mode, the story editor can perform the following

operations through the Cards editing toolbar:

Edit the card: clicking on this button the Edit Card panel opens to allow

adding Thumbnail and Title. An example can be the following:

•

Delete the card

Add marker on map or modify the current marker position: clicking on

this button the Map Inline Editor opens, and the story editor can click a point

on map to add a new marker or change its position as follows:

In the upper left corner of the Carousel panel, a Carousel toolbar allows to:

Add card to the carousel

Remove the GeoCarousel Section

Each carousel item as well as its marker on the map is numbered to be better

identified.

•

•

•

•

Note

GeoCarousel section in View Mode

In a GeoCarousel section, in view Mode, the user can perform the following

operations:

Select a carousel card to view related descriptive content

Select a marker on the map to display its carousel card name popup and view

its descriptive content

Use the left and right arrows to browse the different geocarousel content

•

•

•

Media Section

Media Sections are similar to Paragraph Sections but the main difference is that as

soon as the story editor try to add a new Media Section, the Media Editor appears,

asking to define the media that is going to be added. An example of a new Media

Section with an image added can be like the following:

Once the first media is added to the Media Section it is possible to add new media,

text contents or web page contents or remove the existing ones as decribed also in

the Paragraph Sections.

Web Page Section

Through this kind of sections the story editor can embed third party contents in

the story (like other web pages available on the web). The Web Page Section is

similar to the Paragraph Section and the Media Section: adding this section a

modal window opens to specify the URL of the web page that is going to be added.

Below an example of a Web Page Section that embed a Wikipedia site page:

It is possible to add or remove multiple Web Page contents in the same way of text

and media contents as it is explained in the Paragraph Sections.

Text Editor Toolbar

With the Text Editor Toolbar it is possible to customize the text by modifying the

following aspects:

Font to choose the text font (Inherit, Arial, Georgia, Impact, Tahoma, Time New

Roman, Verdana)

Block Type by choosing between the available ones (Normal, H1, H2, H3, H4,

H5, H6, Blockquote, Code)

Text style to insert text in Bold , Italic , Underline or

Strikethrough

Monospace to insert the same space between words

Alignment inside the text window (Left, Center, Right or Justify)

Color Picker to change the text color

Bullet list to create a Unordered list or Ordered list

Indent/Outdent to indent the text in relation to the left margin or to the

right margin

Link to configure a hyperlink for the selected portion of text. The

GeoStory editor can define hyperlinks to external web pages by choosing the

External link option in the Link target dropdown menu and entering the

related URL. As an alternative, it is also possible to define a hyperlink to other

sections of the same GeoStory by choosing one of the sections available in the

Link target dropdown menu.

•

•

•

•

•

•

•

•

•

In order to setup an hyperlink to an external website, the protocol must be

specified (e.g., http:// or https://).

Remove to remove the formatting

Note

•

Image Content Toolbar

As soon as an image content is added, the Image Content Toolbar appears on top of

the image:

Through this toolbar, the story editor is able to perform the following operation:

Change media source accessing the Media Editor

Change size choosing between Small, Medium, Large

Hide caption button to show/hide the description under the image: this

button is present only if a description has been provided for the image

resource (see the Media Editor tool for example)

•

•

•

Remove the image content•

Video Content Toolbar

As soon as a video content is added, the Video Content Toolbar appears on top of

the video:

Through this toolbar, the story editor is able to perform the following operation:

Change media source to open the Media Editor and change (or

configure) the media content

Mute video to disable the video audio

Enable Autoplay to play the video automatically once the user is on it

Enable Loop to continuously repeat the video

Hide caption button to show/hide the description under the video: this

button is present only if a description has been provided for the video resource

(see the Media Editor tool for example)

•

•

•

•

•

Remove the video content

Inside the Media Editor you can watch a preview of the video before adding it to

the story. The video play will be available only in View Mode of the story: it is not

available in edit mode except in the media editor as a preview.

•

Note

Map Content Toolbar

As soon as a map content is added, the Map Content Toolbar appears on top of the

map component:

In particular, through this toolbar, the story editor is able to perform the following

operation:

Change media source accessing the Media Editor

Edit map configuration through which it is possible Configure the map

Change size choosing between Small, Medium, Large

Hide caption button to show/hide the description under the map: this

button is present only if a description has been provided for the map resource

(see the Media Editor tool for example)

Remove the map content

•

•

•

•

•

Web Page Content Toolbar

As soon as a Web Page Content is added, the toolbar appears on top of the content

itself:

In particular, through this toolbar, the editor is able to perform the following

operation:

Change horizontal size choosing between Small, Medium, Large and

Full

Edit web page URL accessing the web page windows to change the web

URL

Change vertical size choosing between Small, Medium, Large

•

•

•

Remove the Web Page content•

Media Editor Window

The Change media source button allows to access the Media Editor:

Through this window, you can add or edit three different types of media:

Images

Videos

Maps

Images

In order to add an image, the stroy editor can click on the Images tab in

order to switch to the images section. In this section of the media editor window,

with a click on the Add button , it is possible to define the image settings.

•

•

•

In particular, it is possible to insert the following parameters:

The Source of the image (its URL)

The Title of the image

The Alternative text, that appears if the link is broken

A Description, used to explain the contents of the image. The description is

available in the images preview list and, if the image is added as content in the

Pharagraph section, in the Immersive section or in the Media section, under

the image, as follows:

•

•

•

•

The Credits, displayed on the bottom-right of the image

Source and Title are mandatory fields.

With a click on Save , the image is included in the list of the available images

ready to be selected for the current story. The image also becomes immediately

available on preview.

•

Warning

It is always possible to change the image settings through the Edit button

also in a second time.

Once selectd in the list, the image can be included in the story by clicking on the

Apply button .

Videos

In order to add a video, the stroy editor can click on the Video tab in

order to switch to the videos section. In this section of the media editor window,

with a click on the Add button , it is possible to define the video settings.

Note

In particular, it is possible to insert the following parameters:

The URL of the video

The Title of the video

A Description, used to explain the contents of the video. The description is

available in the viedos preview list and it can appear under the video itself if

the video is added as a content of a section (Pharagraph section, Immersive

section or Media section)

The Credits, displayed on the bottom-right of the video

Video URL and Title are mandatory fields.

•

•

•

•

Warning

With a click on Save , the video is included in the list of the available videos

ready to be selected for the current story. The video also becomes immediately

available on preview.

Once selectd in the list, the video can be included in the story by clicking on the

Apply button .

Maps

To add a map to the story, the story editor can click on the Maps tab and

so swich to the map section of the Media Editor. Here the list of maps ready to be

used for the story is available: the editor can search and select a map in the list to

apply it in the story or create a map from scratch by clicking on the Add button

 to open the Map Editor.

Once the map is ready, the story editor can click on Ok button to proceed

with the next step and therefore insert the related map metadata like Thumbnail,

Title and Description.

The description is available in the maps preview list and it can appear under the

map itself if the map is added as a content of a section (Pharagraph section,

Immersive section or Media section).

With a click on Save button the map is saved and it will be available in the list

of the Current Story maps. The story editor can select it to be used as a map

component in the story by clicking on Apply button .

Note

By default a drop down list on the top right corner of the Media Editor allows to

switch between maps currently used in the story (so the story editor can use again

a map already present in the story if needed) and existing maps already available

inside the MapStore catalog (that means that also classic maps created in

MapStore can be used inside a Story).

Below is an example of a Map used as a background of a Title Section:

Note

Configure the map

With the Edit map configuration button the Map Inline Editor opens to give

the opportunity to do quick customizations (like basic map settings, layer opacity

and something more) to the map (more advanced customizations then, are allowed

only through the Advanced Map Editor).

Layers

The Map Inline Editor opens with the Layers section available, where it is possible

to edit the layers settings (by selecting a layer in the TOC) and the visibility of

layers present in the map:

Control the layer transparency by scrolling left and right the transparency bar

.

Toggle the layer visibility by switching off and on the "eye" icon.

Setting

The Setting section allows the user to:

•

•

Enable/disable the Zoom in/out on the map

Change the position of the Zoom in/out by choosing one of the options

available in the dropdown menu

•

•

Enable/disable the Pan interaction on the map

Enable/disable the Identify on the map. As reported in the Identify tool

section, also for map sections in a story it is possible to enable the Identify tool

in one of the format supported by MapStore (TEXT, HTML or PROPERTIES)

•

•

The Identify request is performed as usual when the user clicks on a layer in the

map, as follows:

Advanced map editor

Inside the Map Inline Editor Toolbar the Advanced map editor button is also

available to allow advanced customization to the map: clicking on that button, a

MapStore viewer opens for this purpose.

Note

The available tools to modify the map are the following:

Adding the Layers by using the button in the Option menu

 as it is explained in the Catalog Services.

Adding Annotations by clicking on the button in

the Option menu as it is explained in the Adding Annotations.

Import a map or a vectorial file by clicking on the button in

the Option menu as it is explained in the Import files.

Change Background as it is explained in the Background Selector

Edit Layers by clicking on the Layers button as it is explained in the

Table of Contents

Once the advanced map editing is complete, it is possible click on Apply to see the

final result in the story.

•

•

•

•

•

Requirements

In this section you can have a glance of the minimum and recommended versions

of the tools needed to build/debug/install MapStore

War Installation

You can download a java web container like Apache Tomcat from and Java JRE

Debug / Build

These tools needs to be installed (other than Java in versions above above):

Tool Link Minimum Recommended Maximum

Java link 8 9 11¹

Tomcat link 8.5 9 9¹

Tool Link Minimum Recommended Maximum

npm link 8 8 8.19.4²

NodeJS link 16 16 16.20.1²

Java (JDK) link 8 9 11¹

Maven link 3.1.0 3.6

python³ link 2.7.9 3.7

https://www.java.com/it/download/
https://tomcat.apache.org/download-80.cgi
https://www.npmjs.com/get-npm
https://nodejs.org/en/
https://www.java.com/en/download/help/develop.html
https://maven.apache.org/download.cgi
https://www.python.org/downloads/

Here some notes about some requirements and reasons for max version indicated,

for future improvements and maintenance :

¹ About Java and Tomcat

For execution tested on Java v11.

Build with success with v11, only smoke tests passing on v13, errors with

v16.(Details on issue #6935)

Running with Tomcat 10 causes this issue #7524.

note node 14.18.1 / npm 6.14.15 causes this issue on MapStore project

system.

Node 18 causes webpack issue needs to be solved by changing the hash

algorithm or setting proper flags.

² About NodeJS and NPM:

If you are using Node >= 12 you can remove the -

max_old_space_size=2048 config for the compile script

³ Python is only needed for building documentation.

Running in Production

System requirements

Database

In production a PostgreSQL database is recommended:

Notes

•

•

•

•

• •

•

•

•

Resource Minimum Recommended

Processor 2 Core 2 Core

Memory 2 GB 4 GB

Tool Link Minimum Recommended Maximum

Postgres link 9.6 13 13

https://github.com/geosolutions-it/MapStore2/issues/6935
https://github.com/geosolutions-it/MapStore2/issues/7524
https://github.com/geosolutions-it/mapstore-project/issues/18
https://stackoverflow.com/questions/69394632/webpack-build-failing-with-err-ossl-evp-unsupported
https://www.postgresql.org/

Quick Setup and Run

Please make sure to have installed all the software as for requirements before to

proceed.

Clone the repository:

Start the demo locally:

Then point your preferred browser to http://localhost:8081.

This application runs the Java backend at localhost:8080 . Make sure to have both

ports 8080 and 8081 free before to run.

Other useful commands

Quick Build and Deploy

Install latest Maven, if needed, from here (version 3.1.0 is required).

Note

git clone https://github.com/geosolutions-it/MapStore2.git

npm cache clean # this is useful to prevent errors on Windows during install

npm install

npm start

Note

Run tests
npm test

run test with hot reload
npm run test:watch

#generate test documentation
npm run doc:test

http://localhost:8081
https://maven.apache.org/download.cgi

Build the deployable war:

Where version_identifier is an optional identifier of the generated war that will be

shown in the settings panel of the application.

Deploy the generated mapstore.war file (in product/target) to your favourite J2EE

container (e.g. Tomcat).

Here you can find how to setup the database.

./build.sh [version_identifier]

Main scripts

Here a summary of the main utility scripts to run and build MapStore.

npm scripts

Command Description

npm install download dependencies and init the front-end

environment

npm start start development instance (both front end and back-

end)

npm run app:start start development instance (both front end and back-

end)

npm run fe:start start front-end dev server

npm run be:start start backend dev server (embedded in tomcat, with

cargo)

npm run fe:build build front-end

npm run be:build build backend

npm test run test suite once

npm run test:watch run continuous test suite running (useful during

developing)

npm run lint run ESLint checks

npm run i18n checks missing strings in mandatory i18n files (ref to

en-US)

npm run jsdoc:build build JSDoc

Other scripts are present for backward compatibility, but they are deprecated and

will be removed in the future.

bash scripts

Where version_identifier is an optional identifier of the generated war that will be

shown in the settings panel of the application and profiles is an optional list of

comma delimited building profiles (e.g. printing , ldap).

Command Description

npm run jsdoc:test build JSDoc in a directory available running npm start

(for test)

npm run jsdoc:clean clean JSDoc

npm run doc:build build MkDocs documentation

npm run doc:start start mkdocs serve to have a live preview while editing

documentation

npm run generate:icons generate icons from svg files

npm run

generate:changelog

generate changelog for the MapStore release

Command Description

./build.sh [version_identifier] [profiles] build the deployable war (in product/target)

Infrastructure

MapStore leverages a full separation of concerns between the backend and the

frontend.

The frontend is a Javascript web application communicating with MapStore own

web services using AJAX and external ones through an internal, configurable,

proxy.

The backend is a suite of web services, developed in Java and deployed into a J2EE

container (e.g. Apache Tomcat).

Frontend

The frontend is based on the ReactJS library and the Redux architecture, which is

a specific implementation of the Flux architecture.

https://facebook.github.io/react/
http://rackt.github.io/redux/
http://facebook.github.io/flux/

It allows plugging different mapping libraries (with Leaflet and OpenLayers as

our first implementation targets) abstracting libraries implementation details using

ReactJS web components and actions based communication.

Backend

Backend services include at least (but not only) these ones:

Generic, configurable, HTTP-Proxy to avoid CORS issues when the frontend

tries to communicate with external services, based on the GeoSolutions http-

proxy project.

Internal storage for non structured resources (json, XML, etc.) based on the

GeoSolutions GeoStore project.

Configuration services, to allow full application(s) and services configurability

•

•

•

https://github.com/geosolutions-it/http-proxy
https://github.com/geosolutions-it/http-proxy
https://github.com/geosolutions-it/geostore

Security with the ability to configure authentication using an internal or

external service, and a flexible authorization policy for services and resources

access.

•

Developing with MapStore

MapStore is both an application and a framework. This guide is both for

developers who want to extend MapStore and for those who want to create their

custom application using MapStore as a framework.

MapStore as an application

MapStore is 99% client side, and uses some Java back-end services

Back-end mainly consists in services included from external projects (GeoStore,

MapFish Print, HTTP-Proxy...) plus some small service owned by MapStore, all

written in Java.

Developing with MapStore as an application means to develop directly on the

project. You can add plugins or improve the existing code base and, hopefully,

send pull requests on GitHub to include your improvements in the main project.

MapStore as a Framework

The recommended way to use MapStore as a framework is to create a project that

includes MapStore as a sub-folder. For this purpose we created a script that

generates the main folder structure and the necessary files Project Creation

Script.

This setup allows to create your application or customizations inside the js

directory and/or add custom back-end services (the set-up allows to create a

project that builds a Java WAR package). Keeping your customization separated

and MapStore as a git sub-modules has the followind advantages:

Clear separation between the framework and your customization

Easy framework update: updating the git sub-module.

Easy customization of MapStore: You can fork the project, if you need hard

customization. If your customization can be included in MapStore, you can do a

pull request to the main project and work on a branch while waiting the pull

request merge.

•

•

•

Folders structure

This is the overall framework folder structure:

+-- package.json
+-- pom.xml
+-- build.sh
+-- .editorconfig
+-- Dockerfile
+-- ...
+-- build (build related files)
 +-- karma.conf.*.js
 +-- tests.webpack.js
 +-- webpack.config.js
 +-- prod-webpack.config.js
 +-- docma-config.json
 +-- testConfig.json
 +-- ...
+-- java (java backend modules)
 +-- pom.xml
 +-- services
 +-- web
 +-- printing
+-- translations (i18n localization files)
 | +-- data.en-US.json
+-- utility (general utility scripts and functions)
 | +-- eslint
 | +-- build
 | +-- projects
 | +-- translations
+-- web (frontend module)
 +-- client
 | +-- index.html (demo application home page)
 +-- plugins (ReactJS smart components with required reducers)
 +-- components (ReactJS dumb components)
 | +-- category
 | | +-- <component>.jsx (ReactJS component)
 | | +-- ...
 | | +-- __tests__ (unit tests folder)
 | | +-- <component>-test.jsx
 | +-- ...
 +-- actions (Redux actions)
 +-- configs (JSON config files like localConfig.json, pluginsConfig.json, new.json,
newgeostory.json, etc)
 +-- epics (redux-observable epics)
 +-- reducers (Redux reducers)
 +-- stores (Redux stores)
 ...
 product (the MapStore main application)
 +...

Developing with MapStore

Due to the dual nature of the project (Java backend and JavaScript frontend)

building and developing using the MapStore framework requires two distinct set

of tools

Apache Maven for Java

NPM for JavaScript.

A basic knowledge of both tools is required.

Start developing

To start developing the MapStore framework you have to:

download developer tools and install frontend dependencies locally:

After a while (depending on the network bandwidth) the full set of dependencies

and tools will be downloaded to the node_modules sub-folder.

start the local dev server instances with:

Then point your preferred browser to http://localhost:8081/?debug=true#/. By

default the frontend works using the local dev server as backend. This

configuration is suggested if you want to develop.

npm start will run both front-end on port 8081 and back-end on port 8080 (make

sure to have both the ports available). The first time back-end will take a lot to

start, downloading all the dependencies.

If you still want to start only the frontend because you have the backend running

in a tomcat container for example you may simply run

•

•

•

npm install

•

npm start

Note

npm start

https://maven.apache.org/
https://www.npmjs.com/
http://localhost:8081/?debug=true#/

See the dedicated section in this page for more info

Frontend

You can run only the front-end running npm run fe:start . Running this script

MapStore will run on port 8081 and will look for the back-end at port 8080 .

If you want to use an online instance of MapStore as backend, instead of the local

one, you can define the environment variable MAPSTORE_BACKEND_URL to the

desired URL.

for more customizations on devServer you can edit the build/devServer.js file.

Debugging

The development instance uses file watching and live reload, so each time a

MapStore file is changed, the browser will reload the updated application.

Use your favorite editor / IDE to develop and debug on the browser as needed.

We suggest to use one of the following:

Visual Studio Code with the following plugins:

ESLint dbaeumer.vscode-eslint

EditorConfig for VSCode editorconfig.editorconfig

Atom with the following plugins:

editorconfig

linter

linter-eslint

react

lcovinfo

minimap & minimap-highlight-selected

highlight-line & highlight-selected

export MAPSTORE_BACKEND_URL=https://dev-mapstore.geosolutionsgroup.com/
mapstore
npm run fe:start # this command lunches only the front-end

Note

•

•

•

•

•

•

•

•

•

•

•

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig
https://atom.io/

Sublime Text Editor with the following plugins:

Babel

Babel snippets

Emmet

Redux Dev Tools

When you are running the application locally using npm start you can debug the

application with redux dev tools using the flag ?debug=true

It also integrates with the browser's extension, if installed.

This way you can monitor the application's state evolution and the action triggered

by your application.

Unit tests

To run the MapStore frontend test suite you can use:

You can also have a continuously running watching test runner, that will execute

the complete suite each time a file is changed, launching:

Usually during the development you may need to execute less tests, when working

on some specific files.

You can reduce the tests invoked in npm run test:watch execution by editing the file

tests.webpack.js and modifying the directory (/web) and/or the regular expression

that intercept the files to execute.

To run ESLint checks launch:

More information on frontend building tools and configuration is available here

•

•

•

•

http://localhost:8081/?debug=true#/

npm test

npm run test:watch

npm run lint

http://www.sublimetext.com/
https://github.com/gaearon/redux-devtools
https://github.com/zalmoxisus/redux-devtools-extension
frontend-building-tools-and-configuration

Backend

In order to have a full running MapStore in development environment, you need to

run also the backend java part locally. This runs automatically with npm start . If

you want to run only the backend, you can use npm run be:start .

The back end will run on port 8080 and will look for the front-end at port 8081. If

you want to change the back-end port, you can set the environment variable

MAPSTORE_BACKEND_PORT to the desired port.

Defaults Users and Database

Running MapStore backend locally, on start-up you will find the following users:

admin , with ADMIN role and password admin

user with USER role with password user

You can login as admin to set-up new users and access to all the features reserved

to ADMIN users.

The database used by default in this mode is H2 on disk. You can find the files of

the database in the directory webapps/mapstore/ starting from your execution

context. Check how to set-up database in the dedicated section of the

documentation.

Running Backend

When we say "running the backend", in fact we say that we are running some sort

of a whole instance of MapStore locally, that can be used as backend for your

frontend dev server, or for debugging of the backend itself.

Embedded tomcat

MapStore is configured to use a maven plugin-in to build and run mapstore locally

in tomcat. To use it you have to:

npm run be:start

Now you are good to go, and you can start the frontend

Your local backend will now start at http://localhost:8080/mapstore/. If you want to

change the port you can edit the dedicated entry in product/pom.xml , just

export MAPSTORE_BACKEND_PORT=8082
npm start # or npm run be:start

•

•

•

http://localhost:8080/mapstore/

remember to change also the dev-server proxy configuration on the frontend in

the same way.

Local tomcat instance

If you prefer, or if you have some problems with mvn cargo:run , you can run

MapStore backend in a tomcat instance instead of using the embedded one. To do

so, you can :

download a tomcat standalone here and extract to a folder of your choice

To generate a war file that will be deployed on your tomcat server, go to the

root of the Mapstore project that was git cloned and run ./build.sh . This might

take some time but at the end a war file named mapstore.war will be generated

into the product/target folder.

Copy the mapstore.war and then head back to your tomcat folder. Look for a

webapps folder and paste the mapstore.war file there.

To start tomcat server, go to the terminal, cd into the root of your tomcat

extracted folder and run ./bin/startup.sh (unix systems) or ./bin/startup.bat

(Windows). The server will start on port 8080 and Mapstore will be running at

http://localhost:8080/mapstore . For development purposes we're only interested

in the backend that was started on the tomcat server along with Mapstore.

Even in this case you can connect your frontend to point to this instance of

MapStore.

Debug

To run or debug the server side part of MapStore we suggest to run the backend

in tomcat (embedded or installed) and connect in remote debugging to it. This

guide explains how to do it with Eclipse. This procedure has been tested with

Eclipse Luna.

Enable Remote Debugging

for embedded tomcat you can configure the following:

•

•

•

•

Linux
export MAVEN_OPTS="-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,address=4000,server=y,suspend=n"

Windows
set MAVEN_OPTS=-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,address=4000,server=y,suspend=n

https://mapstore.readthedocs.io/en/latest/developer-guide/requirements/

then start tomcat

For your local tomcat, you can follow the standard procedure to debug with

tomcat.

Setup eclipse project

Run eclipse plugin

Import the project in eclipse from File --> Import

Then select Existing project into the Workspace

Select root directory as MapStore root (to avoid eclipse to iterate over all

node_modules directories looking for eclipse project)

import all projects

Start Debugging with eclipse

Start Eclipse and open Run --> Debug Configurations

Create a new Remote Java Application selecting the project "mapstore-

product" setting:

host localhost

port 4000

Click on Debug Remote debugging is now available.

NOTE With some version of eclipse you will have to set suspend=y in mvn options

to make it work. In this case the server will wait for the debug connection at port

4000 (address=4000)

npm start # or npm run start:app, or npm run be:start (this last only for the backend)

•

mvn eclipse:eclipse

•

•

•

•

•

•

•

•

•

Building and deploying

To create the final war, you have several options:

full build (including all tests, syntax checks, frontend, backend and

documentation):

./build.sh [version_identifier] [profiles]

Where version_identifier is an optional identifier of the generated war that will be

shown in the settings panel of the application and profiles is an optional list of

comma delimited building profiles (e.g. printing , ldap , binary)

separated builds (skipping all the tests and checks, mainly for development

purposes):

In this case we have 2 separated commands that can be run separately, for

instance if you are working on back-end only, so you don't need to re-compile the

front-end part every time.

Building the documentation

MapStore generates 2 types of documentation:

JSDoc: generated from source code, provides a reference of the API and for

the plugins configurations

MkDocs: generated from markdown files, provides guides for the developers

and users

API and Plugins documentation (JSDoc)

The API and plugins documentation is automatically generated using docma.

Docma parses the JSDoc comments in the source code and generates a static

HTML documentation.

•

•

build the front-end
npm run fe:build

build the back-end, including the front-end parts build in the previous command
mvn clean install -Dmapstore2.version=[version_identifier] [profiles]

•

•

http://onury.github.io/docma/

Refer to the existing files to follow the documentation style of various parts of the

application:

actions

reducers

components

epics

plugins

Please see http://usejsdoc.org/ for further information about how to write proper

documentation in JSDoc.

To install docma:

npm install -g docma

While developing you can generate the documentation to be accessible in the local

machine by:

npm run jsdoc:test

The resulting doc will be accessible from http://localhost:8081/mapstore/docs/

For the production deploy a different npm task must be used:

npm run jsdoc:build

The documentation will be accessible from the /mapstore/docs/ path

The generated folders can be removed with:

npm run jsdoc:clean

Users and developers documentation (MkDocs)

Make sure to install the proper python dependencies for Mkdocs. See the

dedicated page here

Build the mkdocs and generate md files to test in local machine by:

npm run doc:build

Start the built-in dev-server of mkdocs to preview and test documentation live by:

•

•

•

•

•

Note

https://github.com/geosolutions-it/MapStore2/blob/master/web/client/actions/controls.js
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/reducers/controls.js
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/components/buttons/FullScreenButton.jsx
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/epics/fullscreen.js
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/plugins/Login.jsx
http://usejsdoc.org/
http://localhost:8081/mapstore/docs/

npm run doc:start

Understanding frontend building tools

Frontend building is delegated to NPM and so leverages the NodeJS ecosystem.

In particular:

a package.json file is used to configure frontend dependencies, needed tools

and building scripts

babel is used for ES6/7 and JSX transpiling integrated with the other tools

(e.g. webpack)

webpack-dev-server is used to host the development application instance

mocha/expect is used as a testing framework (with BDD style unit-tests)

webpack: as the bundling tool, for development (see webpack.config.js),

deploy (see prod-webpack.config.js) and test (see test.webpack.js)

karma is used as the test suite runner, with several plugins to allow for custom

reporting, browser running and so on; the test suite running is configured

through different configuration files, for single running or continuous

testing

istanbul/coveralls are used for code coverage reporting

Including the printing engine in your build

The printing module is not included in official builds by default.

To build your own version of MapStore with the this module, you can use the

printing profile running the build script:

For more information or troubleshooting about the printing module you can see

the dedicated section

•

•

•

•

•

•

•

./build.sh [version_identifier] printing

https://www.npmjs.com/
https://github.com/geosolutions-it/MapStore2/blob/master/package.json
https://babeljs.io/
http://webpack.github.io/docs/webpack-dev-server.html
http://mochajs.org/
https://github.com/mjackson/expect
http://webpack.github.io/
https://github.com/geosolutions-it/MapStore2/blob/master/build/webpack.config.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/prod-webpack.config.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/tests.webpack.js
http://karma-runner.github.io/
https://github.com/geosolutions-it/MapStore2/blob/master/build/karma.conf.single-run.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/karma.conf.continuous-test.js
https://github.com/geosolutions-it/MapStore2/blob/master/build/karma.conf.continuous-test.js
https://gotwarlost.github.io/istanbul/
https://www.npmjs.com/package/coveralls

Main Frontend Technologies

The main tecnologies used on the mapstore 2 are:

ReactJS (View)

Redux (state management)

ReactJS

ReactJS 0.16.x is used to develop MapStore. The main purpose of ReactJS is to

allow writing the View of the application, through the composition of small

components, in a declarative way.

Components are written using a "templating" language, called JSX, that is a sort of

composition of HTML and Javascript code. The difference between JSX and older

approaches like JSP is that JSX templates are mixed with Javascript code inside

javascript files.

ReactJS component example

Component definition:

Component usage:

Properties, State and Event handlers

Components can define and use properties, like the title one used in the example.

These are immutable, and cannot be changed by component's code.

Components can also use state that can change. When the state changes, the

component is updated (re-rendered) automatically.

•

•

class MyComponent extends React.Component {
 render() {
 return <h1>{this.props.title}</h1>;
 }
}

React.render(<MyComponent title="My title"/>, document.body);

class MyComponent extends React.Component {
 state = {

https://facebook.github.io/react/index.html
https://react-bootstrap.github.io/introduction.html
https://react-bootstrap.github.io/introduction.html

In this example, the initial state includes a title property whose value is

CHANGE_ME .

When the h1 element is clicked, the state is changed so that title becomes

CHANGED .

The HTML page is automatically updated by ReactJS, each time the state changes

(each time this.setState is called). For this reason we say that JSX allows to

declaratively describe the View for each possible application state.

Lifecycle hooks

Components can re-define some lifecycle methods, to execute actions in certain

moments of the component life. Lifecycle API is changed in react 16 so please

refer to the official documentation.

Redux

Redux, and its companion react-redux are used to handle the application state and

bind it to ReactJS components.

Redux promotes a unidirectional dataflow (inspired by the Flux architecture) and

immutable state transformation using reducers, to achieve predictable and

reproducable application behaviour.

A single, global, Store is delegated to contain all the application state.

The state can be changed dispatching Actions to the store.

Each action produces a new state (the state is never changed, a new state is

produced and that is the new application state), through the usage of one or more

reducers.

 return {
 title: 'CHANGE_ME'
 };
 };
 changeTitle = () => {
 this.setState({
 title: 'CHANGED'
 });
 };
 render() {
 return <h1 onClick={this.changeTitle}>{this.state.title}</h1>;
 }
}

https://facebook.github.io/react/docs/component-specs.html
http://redux.js.org/index.html
https://github.com/reactjs/react-redux
https://facebook.github.io/flux/

(Smart) Components can be connected to the store and be notified when the

state changes, so that views are automatically updated.

Actions

In Redux, actions are actions descriptors, generated by an action creator. Actions

descriptors are usually defined by an action type and a set of parameters that

specify the action payload.

Reducers

Reducers are functions that receive an action and the current state and:

produce a new state, for each recognized action

produce the current state for unrecognized actions

produce initial state, if the current state is undefined

Store

The redux store combines different reducers to produce a global state, with a slice

for each used reducer.

const CHANGE_TITLE= 'CHANGE_TITLE';

// action creator
function changeTitle(newTitle) {
 return {
 type: CHANGE_TITLE,
 title: newTitle
 };
}

•

•

•

function reducer(state = {title: "CHANGE_ME"}, action) {
 switch (action.type) {
 case CHANGE_TITLE:
 return {title: action.title};
 default:
 return state;
 }
}

var rootReducer = combineReducers({
 slice1: reducer1,
 slice2: reducer2
});
var initialState = {slice1: {}, slice2: {}};

The Redux store receives actions, through a dispatch method, and creates a new

application state, using the configured reducers.

You can subscribe to the store, to be notified whenever the state changes.

Redux Middlewares

Redux data flow is synchronous. To provide asynchronous functionalities (e.g.

Ajax) redux needs a middleware. Actually MapStore uses 2 middlewares for this

purpose:

Redux thunk (going to be fully replaced by redux-observable)

Redux Observable

Redux thunk

This middleware allows to perform simple asynchronous flows by returning a

function from the action creator (instead of a action object).

This middleware is there from the beginning of the MapStore history. During the

years, some better middlewares have been developed for this purpose. We want to

replace it in the future with redux-observable.

Redux Observable and epics

This middleware provides support for side-effects in MapStore using rxjs. The

core object of this middleware is the epic

var store = createStore(rootReducer, initialState);

store.dispatch(changeTitle('New title'));

store.subscribe(function handleChange() {});

•

•

// action creator
function changeTitleAsync() {
 return (dispatch, getState) => {
 myAsyncPromise.then((newTitle) => {
 dispatch({
 type: CHANGE_TITLE,
 title: newTitle
 };)
 });
 }
}

http://redux.js.org/docs/advanced/Middleware.html

The epic is a function that simply gets as first parameter an Observable (stream)

emitting the actions emitted by redux. It returns another Observable (stream) that

emits actions that will be forwarded to redux too.

So there are 2 streams:

Actions in

Actions out

A simple epic example can be the following:

Every time a 'PING' action is emitted, the epic will emit also the 'PONG' action.

See :

Introduction to RxJS for MapStore Developers

redux-observable site

rxjs Observable as a reference for methods

setting up the middleware to integrate epics with your store

Redux and ReactJS integration

The react-redux library can be used to connect the Redux application state to

ReactJS components.

This can be done in the following way:

wrap the ReactJS root component with the react-redux Provider component,

to bind the Redux store to the ReactJS view

explicitly connect one or more (smart) components to a all or part of the state

(you can also transform the state and have computed properties)

function (action$: Observable<Action>, store: Store): Observable<Action>;

•

•

const pingEpic = action$ =>
 action$.filter(action => action.type === 'PING')
 .mapTo({ type: 'PONG' });

•

•

•

•

•

React.render(
 <Provider store={store}>
 {() => <App />}
 </Provider>,
 document.getElementById('container')
);

•

https://docs.google.com/presentation/d/1Ts-yZGc12VMr9oG8xMqwptUmMjdsKI2uZh4Mr5shYhA/edit?usp=sharing
https://redux-observable.js.org/
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
https://redux-observable.js.org/docs/basics/SettingUpTheMiddleware.html

The connected component will get automatic access to the configured slice

through properties:

connect(function(state) {
 return {
 title: state.title,
 name: state.namespace + '.' + state.name,
 };
})(App);

function render() {
 return <div><h1>{this.props.title}</h1><p>{this.props.name}</p></div);
}

Plugins Architecture

The architecture of MapStore based on the concept of plugins. Every tool of

MapStore is a plugin, that are the main building blocks of the application.

A plugin in MapStore an entity that can be:

rendered in the application (via a React components)

connected to a Redux store, so that some properties are automatically wired

to the standard MapStore state

wired to standard actions for common events to trigger

In addition a plugin:

declares some reducers that adds some parts to the global state, if needed

declares some epics that need to be added to the redux-observable middleare,

if needed

inject in other plugin react components to be rendered (for communication,

extensions, etc.)

is fully configurable to be easily customized to a certain level

The plugins are managed by PluginContainer (typically a Page , but not necessarily)

that is a React component that renders the plugins in the application and handle

proper dependencies.

Plugins are used in different contexts:

Standard plugins Plugins that are used in the standard MapStore application

and that are part of the framework.

Custom plugins Plugins developed in a custom MapStore project (see Setup

a MapStore Project)

Extensions: Plugins that can be build and installed in an existing instance of

MapStore (see Extensions)

For more information about how to create a plugin, see Create your plugins

•

•

•

•

•

•

•

•

•

•

../extensions/
../plugins-howto/

Internationalization

MapStore offers the support for internationalization (I18N). To provide this

functionality MapStore uses react-intl. In this section you can find which

configuration and JS files are involved in the I18N system.

How MapStore chooses the current language

MapStore first checks the browser's language. If it is not supported, MapStore will

be visible in english, if present, or the first language available. Anyway the locale

can be forced using a flag locale=codeLang where codeLang can be one en,it,de...

e.g.

A user can change the selected language from UI. MapStore will load the proper

files to update the page localized in the selected language.

Configuration files

To provide support to a specific language MapStore need to have the necessary

setup in the LocaleUtils.js file (see below [section for details about to configure this

file]). In addition you need the proper translations files.

Let's imagine that the variable code is 'en', CODE is 'EN' standing for english. For

each language you need to have messages file containing the localized strings, a

flag image to identify the language and some html fragments (optional) for

some specific plugins.

Messages: located in web\client\translations folder. For each language there is a

json file named data.code-CODE.json. e.g. data.en-EN.json .

Flags: located in web\client\components\I18N\images\flags folder. For each

language flag image named code-CODE.png of 16px x 11px is required.

Fragments: actually only for cookies policy (required only if the Cookie

plugin is present) located in web\client\translations\fragments\cookie folder and

named cookieDetails-code-CODE.html. We recommend to add it for any

language you want to support at least by copying the english version.

localhost:8081/?locale=en#/

•

•

•

https://github.com/yahoo/react-intl

How to configure supported languages in MapStore

You can configure MapStore to provide to the user only a restricted list of

selectable languages by setting "initialState.defaultState.locales" variable in

localConfig.json . e.g :

Setting locales in localConfig.json file is doable only for supported locales present

in LocaleUtils.js. The default behavior is to use those already configured in

"supportedLocales" object. You can customize the messages by editing the

data.code-CODE.json files.

The locale property determines the language to use for the application. If not

specified, the language will be selected checking the browser's locale first. If the

browser locale is not supported, MapStore will select the first language available

in supportedLocales .

Example of localConfig.json with the optional locale property.

"defaultState":
{
 "locales": {
 "supportedLocales": {
 "en": {
 "code": "en-US",
 "description": "English"
 },
 "it": {
 "code": "it-IT",
 "description": "Italiano"
 }
 }
 }
}

The property locale could be useful inside custom application where the locale is

stored in other sources rather than using the browser language:

How to add a new language

Let's say we want to add the russian language. In order to add a new language to

MapStore you need to follow these steps:

Update the localConfig.json file in web\client folder adding the new language

entry: Add the following in the initialState.defaultState.locales object

Update the LocaleUtils.js file in web\client\utils : add a param in the ensureIntl()

function like and the relative require i.e: 'intl/locale-data/jsonp/ru.js'

{
 "locale": "it-IT", // locale code

 "defaultState": {
 "locales": {
 "supportedLocales": {
 "en": {
 "code": "en-US",
 "description": "English"
 },
 "it": {
 "code": "it-IT",
 "description": "Italiano"
 }
 }
 }
 }
}

// example
import { getConfigProp } from '@mapstore/framework/utils/ConfigUtils';
import cookies from 'js-cookie';

// ...
const locale = cookies.get('app_locale'); // locale code it-IT for example
if (locale) {
 setConfigProp('locale', locale);
}
// ...

•

"ru": {
 code: "ru-RU",
 description: "Pоссийский"
}

•

update the addLocaleData() call with the new locale obj i.e.:

add the flag image for the selected language inside

web\client\components\I18N\images\flags naming it ru-RU.png

add the new translations file inside web\client\translations naming it data.ru-

RU.json (remember to change the locale property of this file into ru-RU)

create a fragment related to the cookie module inside

web\client\translations\fragments\cookie naming it cookieDetails-ru-RU.html

require('intl/locale-data/jsonp/ru.js');

•

const ru = require('react-intl/locale-data/ru');
addLocaleData([...en, ...it, ...fr, ...de, ...es, ...ru]);

•

•

•

Custom Dependencies

Mapstore has some custom dependencies in order to fix bugs not integrated in the

official libraries yet. All these customized libraries are available on npm registry.

Here is a list of customizations:

library version issue reason github

wkt-

parser

1.2.1 #2175 Fixes axis order

recognition. For this

reason we customized it

with

"@geosolutions@wkt-

parser 1.2.2"

https://

github.com/

geosolutions-

it/wkt-parser/

tree/release

proj4 2.4.5-

alpha

#2175 Fixes axis order

recognition. For this

reason we customized it

with

"@geosolutions@proj4

2.4.6" and its wkt-parser

dependency with

"@geosolutions@wkt-

parser 1.2.2". Note that

shpjs will use this

customized version of

proj4 and wkt-parser

https://

github.com/

geosolutions-

it/proj4js/tree/

release_2.4.6

react-

joyride

1.10.1 is a re-publish on npm of

a fix made here , we

therefore are using

"@geosolutions@react-

joyride 1.10.2"

https://

github.com/

geosolutions-

it/react-

joyride/tree/

release

https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/wkt-parser/tree/release
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/geosolutions-it/proj4js/tree/release_2.4.6
https://github.com/ddeath/react-joyride/tree/fixed-positioning-and-overlay
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release
https://github.com/geosolutions-it/react-joyride/tree/release

Aliases

Only proj4 and react-joyride are using aliases in order to maintain original

webpack requires like:

const proj4 = require("proj4");

const joyride = require('react-joyride').default;

see this for current status of aliases

library version issue reason github

mocha 6.2.0-

uncaught

#3693 Customized in order to

make some test run.

More in detail, we

removed uncaught

exceptions handler

because it was making

some test failing

(waiting for a better

solution). Published

"@geosolutions/mocha

6.2.1-3". mocha is being

moved from

node_modules/

@geosolutions/mocha to

node_modules/mocha in

order to make the test

be runnable

https://

github.com/

geosolutions-

it/mocha/tree/

release_v6.2.1

jsdoc 3.4.3 #1978 ES6 syntax not parsed by

Docma, so we published

"@geosolutions/jsdoc

3.4.4" with other related

dependencies also on

our npm, like acorn-jsx,

espree and tv4

https://

github.com/

geosolutions-

it/jsdoc/tree/

release

acorn-

jsx

4.0.1 #1978 Added support for

instance properties (e.g.

state), we published

"@geosolutions/acorn-jsx

4.0.2"

https://

github.com/

geosolutions-

it/acorn-jsx/

tree/release

•

•

https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/mocha/tree/release_v6.2.1
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/jsdoc/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/acorn-jsx/tree/release
https://github.com/geosolutions-it/MapStore2/blob/master/build/buildConfig.js#L82

More info

Here you can find more information about customization

https://github.com/geosolutions-it/MapStore2/issues/4569

Styling and Theming

The look and feel is completely customizable either using one of the included

themes, or building your own. Themes are built using less.

You can find the default theme here: https://github.com/geosolutions-it/

MapStore2/tree/master/web/client/themes/default

Theme Structure

theme.less is the entry point for all the main imports and it needs to be properly

required in buildConfig.js or in your webpack.config.js in the themeEntries.

theme.less imports

.
+-- themes/
| +-- theme-name/
| +-- icons/
| +-- icons.eot
| +-- icons.svg
| +-- icons.ttf
| +-- icons.woff
| +-- icons.woff2
| +-- img/
| +-- less/
| +-- mixins/
| +-- bootstrap.less
| +-- css-properties.less
| +-- theme.less
| +-- mapstore.less
| +-- common.less
| +-- style-module.less
| +-- .less files for all the other modules
| +-- base.less
| +-- bootstrap-theme.less
| +-- bootstrap-variables.less
| +-- icons.less
| +-- ms2-theme.less
| +-- ms-variables.less
| +-- theme.less
| +-- variables.less

http://lesscss.org/
https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes/default
https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes/default

below an example of entry configuration:

MapStore uses a themeEntries function to automatically create the entries for

default themes that can be found under the web/client/themes directory

Default themes in web/client/themes directory are useful to have an overview of the

structure described above.

Note: we suggest to place the theme folder inside a themes directory for MapStore

project

file description

base.less contains a declaration of font colors and background defined

for data-ms2-container attribute which is usually the body

tag

icons.less contains font-face declaration for glyphs, it extends the

bootstrap glyphicons to use custom MapStore icons

bootstrap-

theme.less

contains all the less style for bootstrap components

ms2-theme.less contains all the less style for MapStore components

variable.less contains the import of mapstore variables and the override

of bootstrap variables

entry: {
 ...other entries,
 'themes/theme-name': path.join(__dirname, 'path-to', 'theme-name', 'theme.less')
},

const themeEntries = require('./themes.js').themeEntries;

entry: {
 ...other entries,
 ...themeEntries
},

https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes
https://github.com/geosolutions-it/MapStore2/tree/master/web/client/themes

Structure of .less files

Each less file that represent a MapStore plugin or component is composed by two

sections:

Theme section includes all the styles and classes that should change based

on css variables. All the new declared selector must be included in a special

function called #ms-components-theme . The #ms-components-theme function

provide access to all the available variables of the theme via the @theme-vars

argument.

Layout section includes all the styles and classes that should not change in a

simple customization.

Example:

ms-variables.less

MapStore uses basic less variables to change theme colors, buttons sizes and

fonts. It possible also to override bootstrap less variable for advanced

customization. Basic variables can be found in the ms-variable.less file

New declarations in MapStore should have the following structure:

•

•

// **************
// Theme
// **************
#ms-components-theme(@theme-vars) {
 // here all the selectors related to the theme
 // use the mixins declared in the web/client/theme/default/less/mixins/css-properties.less
 // to use one of the @theme-vars

 // eg: use the main background and text colors to paint my plugin
 .my-plugin-class {
 .color-var(@theme-vars[main-color]);
 .background-color-var(@theme-vars[main-bg]);
 }
}

// **************
// Layout
// **************

// eg: fill all the available space in the parent container with my plugin
.my-plugin-class {
 position: absolute;

height: 100%;
 width: 100%;
}

// here

global: @ms-rule-value

local: @ms-name-of-plugin--rule-value

@ms suffix for MapStore variable

name-of-plugin for local variable it's important to write the name of plugin in

kebab-case

rule-value value to use in compiled CSS, some examples:

color generic color variable

text-color color for text

background-color color for background

border-color color for border

less/ directory

The less/ directory contains all the modules needed to create the final CSS of

MapStore.

Each file in this directory is related to a specific plugin or component and the files

are named based on the plugin's name are referring to.

common.less file can be used for generic styles.

inline styles

Inline styles should be applied only for values that change dynamically during the

lifecycle of the application, all others style should be moved to the related .less file.

The main reason of this choice is to allow easier overrides of styles in custom

projects.

Add New Theme

To support a new theme for mapstore product:

create a new folder in the themes folder with the name of your theme

create less files in the folder (at least theme.less , as the main file and

variables.less , to customize standard variables)

add the new theme to the index file, with the id corresponding to the theme

folder name

•

•

•

•

•

•

•

1.

2.

3.

https://github.com/geosolutions-it/MapStore2/blob/master/web/client/themes/index.js

If you are not using themeEntries a new entry needs to be added in the

buildConfig.js

You can then switch your application to use the theme adding a new section in the

appConfig.js file:

Custom Theme for project

In a mapstore project normally the theme configuration is placed in the themes/

directory

Styles can be overridden declaring the same rules in a less module placed in a

new project.

Below steps to configure a custom theme and override styles:

add the following files to the themes folder of the project:

import in theme.less all the needed less module

update webpack configuration to use the custom style (webpack.config.js,

prod-webpack.config.js)

initialState: {
 defaultState: {
 ...
 theme: {
 selectedTheme: {

id: <your theme id>
 }
 },
 ...
 }
}

•

.
+-- themes/
| +-- default/
| +-- less/
| +-- my-custom-module.less
| +-- theme.less
| +-- variables.less

•

@import "../../MapStore2/web/client/themes/default/theme.less";
@import "./variables.less";
@import "./less/my-custom-module.less";

•

module.exports = require('./MapStore2/buildConfig')(
 {

update variables.less to override existing variables

update my-custom-module.less to override existing rules or add new rules

Custom Theme for contexts

You can configure a list of themes to be used inside a context.

In order to do that you have to:

create the themes in the themes/ folder as described below

edit ContextCreator plugin in the localConfig.json

example

 '__PROJECTNAME__': path.join(__dirname, "js", "app"),
 '__PROJECTNAME__-embedded': path.join(__dirname, "MapStore2", "web", "client",
"product", "embedded"),
 '__PROJECTNAME__-api': path.join(__dirname, "MapStore2", "web", "client",
"product", "api")
 },
- themeEntries,
+ {
+ "themes/default": path.join(__dirname, "themes", "default", "theme.less")
+ },
 ...

•

/* change primary color to blue */
@ms-primary: #0000ff;

•

/* change the background color of the page*/
.page {
 background-color: #d9e6ff;
}

•

•

{
 "name": "ContextCreator",
 "cfg": {
 "documentationBaseURL": "https://mapstore.geosolutionsgroup.com/mapstore/docs/
api/plugins",
 "backToPageDestRoute": "/context-manager",
 "backToPageConfirmationMessage": "contextCreator.undo",
 "themes": [{
 "id": "complete-theme-override",
 "type": "link",
 "href": "dist/themes/complete-theme-override.css",
 "defaultVariables": {
 "ms-main-color": "#000000",
 "ms-main-bg": "#FFFFFF",
 "ms-primary-contrast": "#FFFFFF",
 "ms-primary": "#078aa3",

for each theme you can define:

id id of the theme equal to its name

type values can be

link will require a href property

href path to find the css once built

defaultVariables variables of the theme used to initialize the pickers

(optional)

basicVariables these are the variables used as default values if a theme is not

selected (optional)

Suggested ways to create a custom theme for a
context

Complete theme override

This example will create a complete css file and is not recommended if you want a

light version and you just need to customize the variables (for this check next

paragraph)

Add the following files to the themes folder of the project

 "ms-success-contrast": "#FFFFFF",
 "ms-success": "#398439"
 }
 },
 {
 "id": "partial-theme-override",
 "type": "link",
 "href": "dist/themes/partial-theme-override.css"
 },
 {
 "id": "only-css-variables",
 "type": "link",
 "href": "dist/themes/only-css-variables.css"
 }
],
 "basicVariables": {
 "ms-main-color": "#000000",
 "ms-main-bg": "#FFFFFF",
 "ms-primary-contrast": "#FFFFFF",
 "ms-primary": "#078aa3",
 "ms-success-contrast": "#FFFFFF",
 "ms-success": "#398439"
 }
 }
}

•

•

•

•

•

in theme.less put

in variables.less you can put the mapstore variables customizations

Only css variables

This example is perfect if you just want to customize a few colors of the theme

in theme.less put

+-- themes/
| +-- theme-name/
| +-- theme.less
| +-- variables.less

/*
 * This example will contain a complete mapstore theme with some customization
 * it will be selectable inside context theme step selector
*/

/*
 * it includes the main theme and this will recompile the whole theme
*/
@import "../../MapStore2/web/client/themes/default/theme.less";

/*
 * it includes some changes to css variables
*/
@import "./variables.less";

/*
* Note: You can always expand it with new less/css rules
*/

/*
 * A variable that will override the default css one
*/
@ms-primary: #2E13FE;

+-- themes/
| +-- theme-name/
| +-- theme.less
| +-- variables.less

/*
 * This example is the lightest version of all three examples
 * it will be selectable inside context theme step selector
 * this examples is limited to changing the css variables only,
 * but you can always expand it as we did for partial-theme-override
*/

In the variables.less you can do put your variable customizations

partial theme override

Note: These three styles are an example on how is possible to approach on the

mapstore customizations. You could extend/combine them together to create a

more complex theme.

/*
 * This will import as (reference) https://lesscss.org/features/#import-atrules-feature-
reference
 * It's used to import external files, but without adding the imported styles
 * to the compiled output unless referenced.
 *
*/
@import (reference) "../../MapStore2/web/client/themes/default/theme.less";

/*
 * it includes some changes to css variables
*/
@import "./variables.less";

/*
 * this will create only one class with the :root selector inside
 * it's important to place the variable overrides before calling the css-variable mixin
generator
 * which is called .get-root-css-variables
*/
.get-root-css-variables(@ms-theme-vars);

/*
* Note: You can always expand it with new less/css rules
*/

+-- themes/
| +-- theme-name/
| +-- less/
 | +-- plugin-name.less

/*
 * We can use this method when we want to customize some part of the theme
 * without the need to include the theme in its completeness
*/

/*
 * here you can apply some other overrides, like the size of thumbnails for backgrounds
*/
@import "./less/drawer-menu.less";

/*
* Note: You can always expand it with new less/css rules
*/

Tips

When you develop locally

and you want to reduce the building time

and you don't need themes that are not the default theme

then you can comment this in the webpack-config.js

•

•

•

•

 {
 ["themes/default"]: path.join(__dirname, "themes", "default", "theme.less")
 /*,
 ["themes/complete-theme-override"]: path.join(__dirname, "themes", "complete-
theme-override", "theme.less"),
 ["themes/partial-theme-override"]: path.join(__dirname, "themes", "partial-theme-
override", "theme.less"),
 ["themes/only-css-variables"]: path.join(__dirname, "themes", "only-css-variables",
"theme.less")
 */
 },

Working with Extensions

The MapStore2 plugins architecture allows building your own independent

modules that will integrate seamlessly into your project.

Extensions are plugins that can be distributed as a separate package (a zip file),

and be installed, activated and used at runtime. Creating an extension is similar to

creating a plugin. If you are not familiar with plugins, please, read the Plugins

HowTo page first.

Developing an extension

The easiest way to develop an extension is to start from the MapStoreExtension

project that gives you a sandbox to create/test and build your extension.

Read the readme of the project to understand how to run, debug and build a new

extension starting from the sampleExtension in the project.

Here you can find some details about the structure extension files, useful for

development and debugging.

An extension example

A MapStore extension is a plugin, with some additional features.

import {connect} from "react-redux";

import Extension from "../components/Extension";
import Rx from "rxjs";
import { changeZoomLevel } from "../../../web/client/actions/map";

export default {
 name: "SampleExtension",
 component: connect(state => ({
 value: state.sampleExtension && state.sampleExtension.value
 }), {
 onIncrease: () => {
 return {
 type: 'INCREASE_COUNTER'
 };
 }, changeZoomLevel
 })(Extension),
 reducers: {
 sampleExtension: (state = { value: 1 }, action) => {
 if (action.type === 'INCREASE_COUNTER') {
 return { value: state.value + 1 };

https://github.com/geosolutions-it/MapStoreExtension
https://github.com/geosolutions-it/MapStoreExtension
https://github.com/geosolutions-it/MapStoreExtension/blob/master/README.md

As you can see from the code, the most important difference is that you need to

export the plugin descriptor WITHOUT invoking createPlugin on it (this is done in

extensions.js in dev environment and when installed it will be done by the

extensions load system). The extension definition will import or define all the

needed dependencies (components, reducers, epics) as well as the plugin

configuration elements (e.g. containers).

Dynamic import of extension

MapStore supports dynamic import of plugins and extensions.

Dynamically imported plugins or extensions uses lazy-loading: components,

reducers and epics will be loaded once plugin or extension is in the list of plugins

configured for the current page (eg. via localConfig.json or plugins selected to be

included in a context).

 }
 return state;
 }
 },
 epics: {
 logCounterValue: (action$, store) =>
action$.ofType('INCREASE_COUNTER').switchMap(() => {
 /* eslint-disable */
 console.log('CURRENT VALUE: ' + store.getState().sampleExtension.value);
 /* eslint-enable */
 return Rx.Observable.empty();
 })
 },
 containers: {
 Toolbar: {
 name: "SampleExtension",
 position: 10,
 text: "INC",
 doNotHide: true,
 action: () => {
 return {
 type: 'INCREASE_COUNTER'
 };
 },
 priority: 1
 }
 }
};

Application context could have plugins configured to be loaded optionally using the

Extensions Library. Such plugins will be loaded only after being directly activated

by the user in the extensions library UI.

Regardless if extension uses lazy-loading or not, its epics will be muted once

extension is not rendered on the page. For more details see Epic state.

There are few changes required to make extension loaded dynamically:

Create Module.jsx file in js/extension/plugins/ and populate it with js/extension/

plugins/Extension.jsx content.

Update content of js/extension/plugins/Extension.jsx to be like:

Update js/extensions.js and remove createPlugin wrapper from Extension export.

File content should look like:

Distributing your extension as an uploadable module

The sample project allow you to create the final zip file for you.

The final zip file must have this form:

the file named index.js is the main entry point, for the module.

an index.json file that describes the extension, an example follows

assets folder, that contains additional bundles (js, css) came out from the

bundle compilation. All additional files (js chunks, css ...) must stay in this

folder.

Note

1.

2.

import {toModulePlugin} from "@mapstore/utils/ModulePluginsUtils";
import { name } from '../../../config';

export default toModulePlugin(name, () => import(/* webpackChunkName:
'extensionName' */ './Module'));

3.

import Extension from './extension/plugins/Extension';
import { name } from '../config';

export default {
 [name]: Extension
};

•

•

•

optionally, a translations folder with localized message files used by the

extension (in one or more languages of your choice)

index.json

The `index.json file should contain all the information about the extension:

An id that identifies the extension

A version to show in UI. Semantic versioning is suggested.+

title and description to display in UI, mnemonic hints for the administrator

plugins the list of plugins that it adds to the application, with all the data useful

for the context manager. Format of the JSON object for plugins is suggested

here

plugins section contains the plugins defined in the extension, and it is needed to be

configured in the context-editor. See Context Editor Configuration

Installing Extensions

Extensions can be uploaded using the context creator UI of MapStore. The storage

and configuration of the uploaded zip bundle is managed by a dedicated MapStore

•

my-extension.zip
|── index.js
├── index.json
├── assets
 ├── css
 └── 123.abcd.css
 └── ...
 └── js
 └── 456.abcd.js
 └── ...
└── translations
 └── data.en_EN.json
 └── ...

•

•

•

•

{
 "id": "a_unique_extension_identifier",
 "version": "1.0.0",
 "title": "the title of the description",
 "description": "a description of the extension",

"plugins": [{
 "name": "MYPlugin",
 "title": "extensions.a_unique_extension_identifier.title",
 "description": "",
 "defaultConfig": {},
 "...": "..."
 }]
}

https://github.com/georchestra/mapstore2-georchestra/issues/15#issuecomment-564974270

backend service, the Upload Service. The Upload Service is responsible for

unzipping the bundle, storing javascript and the other extension assets in the

extensions folder and updating the configuration files needed by MapStore to use

the extension:

extensions.json (the extensions registry)

pluginsConfig.json.patch (the context creator plugins catalog patch file)

Updating Extensions

Please refer to the How to update extensions section of user guide to get more

information about extensions update workflow.

Extensions and datadir

Extensions work better if you use a datadir, because when a datadir is configured,

extensions are uploaded inside it, so they can live outside the application main

folder (and you don't risk to overwrite them when you upgrade MapStore to a

newer version).

Extensions for dependent projects

Extensions build in MapStore actually can run only in MapStore product. They can

not be installed in dependent projects. If you have a custom project, and you want

to add support for extensions, you will have to create your build system for

extensions dedicated to your application, to build the Javascript with the correct

paths. Moreover, to enable extensions to work with the datadir in a dependent

project (MapStore product is already configured to use it) you need to configure

(or customize) the following configuration properties in your app.jsx :

Externalize the extensions configuration

Change app.jsx to include the following statement:

Externalize the context plugins configuration

Change app.jsx to include the following statement:

•

•

ConfigUtils.setConfigProp("extensionsRegistry", "rest/config/load/extensions.json");

ConfigUtils.setConfigProp("contextPluginsConfiguration", "rest/config/load/
pluginsConfig.json");

Externalize the extensions assets folder

Change app.jsx to include the following statement:

Assets are loaded using a different service, /rest/config/loadasset .

Managing drawing interactions conflict in extension

Extension could implement drawing interactions, and it's necessary to prevent a

situation when multiple tools from different plugins or extensions have active

drawing, otherwise it could end up in an unpredicted or buggy behavior.

There are two ways how drawing interaction can be implemented in plugin or

extension:

Using DrawSupport (e.g. Annotations plugin)

By intercepting click on the map interactions (e.g. Measure plugin)

Making another plugins aware of your extension starts drawing

If your extension using DrawSupport - you're on the safe side. Extension will

dispatch CHANGE_DRAWING_STATUS action. This action can be traced by another

plugins or extensions, and they can control their tools accordingly.

If your extension is using CLICK_ON_MAP action and intercepts it perform any

manipulations on click - you need to make sure that your extension also dispatch

REGISTER_EVENT_LISTENER action (see Measure plugin as an example) when your

extension activates drawing.

It should also dispatch UNREGISTER_EVENT_LISTENER once drawing interaction

stops.

Making your extension aware of another plugin drawing

There is a helper utility named shutdownToolOnAnotherToolDrawing . This is a wrapper

for a common approach to dispatch actions that will toggle off drawing

interactions of your extension whenever another plugin or extension starts

drawing.

extensionEpics.js:

ConfigUtils.setConfigProp("extensionsFolder", "rest/config/loadasset");

•

•

with this code located in extension's epics your tool yourToolName will be closed

whenever:

feature editor is open

another plugin or extension starts drawing.

"shutdownToolOnAnotherToolDrawing" supports passing custom callback to

determine whether your tool is active (to prevent garbage action dispatching if it's

already off) and custom callback to list actions to be dispatched.

Using "ResponsiveContainer" for dock panels

Starting with MapStore v2022.02.00, layout improvements have been introduced

which, in addition to other changes, introduce a new sidebar menu to be used

instead of the burger menu.

All extensions using DockPanel or DockablePanel components have to be updated if

their dock panel is rendered on the right side of the screen, next to the new

sidebar menu.

Following changes should be applied (MapTemplates plugin can be a reference for

the changes needs to be applied):

Make your extension aware of the map layout changes by getting

corresponding state value using following selector:

It will get offset from the right and the bottom that needs to be applied to the

ResponsiveContainer

Replace DockPanel , DockablePanel , ContainerDimensions (if used) with the

ResponsiveContainer and make sure that dock content is a child of

ResponsiveContainer :

was:

export const toggleToolOffOnDrawToolActive = (action$, store) =>
shutdownToolOnAnotherToolDrawing(action$, store, 'yourToolName');

•

•

1.

createSelector(
 ...
 state => mapLayoutValuesSelector(state, { height: true, right: true }, true),
 ...
 (dockStyle) => ({
 dockStyle
 })
)

2.

become:

With the applied changes dock will be rendered properly both for layout with

BurgerMenu and SidebarMenu .

return (
 <DockPanel
 open={props.active}
 position="right"
 size={props.size}
 bsStyle="primary"
 title={<Message msgId="mapTemplates.title"/>}
 style={{ height: 'calc(100% - 30px)' }}
 onClose={props.onToggleControl}>
 {!props.templatesLoaded && <div className="map-templates-
loader"><Loader size={352}/></div>}
 {props.templatesLoaded && <MapTemplatesPanel
 templates={props.templates}
 onMergeTemplate={props.onMergeTemplate}
 onReplaceTemplate={props.onReplaceTemplate}
 onToggleFavourite={props.onToggleFavourite}/>}
 </DockPanel>
)

return (
 <ResponsivePanel
 containerStyle={props.dockStyle}
 style={props.dockStyle}
 containerId="map-templates-container"
 containerClassName="dock-container"
 className="map-templates-dock-panel"
 open={props.active}
 position="right"
 size={props.size}
 bsStyle="primary"
 title={<Message msgId="mapTemplates.title"/>}
 onClose={props.onToggleControl}
 >
 {!props.templatesLoaded && <div className="map-templates-
loader"><Loader size={352}/></div>}
 {props.templatesLoaded && <MapTemplatesPanel
 templates={props.templates}
 onMergeTemplate={props.onMergeTemplate}
 onReplaceTemplate={props.onReplaceTemplate}
 onToggleFavourite={props.onToggleFavourite}/>}
 </ResponsivePanel>
);

Making other dock panels closed automatically
when extension panel is open

All the dock panels open next to the sidebar should be mutually excluded. Active

dock panel should be closed whenever another panel is open.

Array at state.maplayout.dockPanels.right contains list of panels that can be extended

or modified by extension by dispatching updateDockPanelsList action.

Please note that adding dock into the list will automatically close previously active

panel, so it's a good idea to dispatch the action on app initializing or when dock

panel is open. Measurement plugin can be used as a reference of implementation,

see openMeasureEpic & closeMeasureEpic in epics/measurement.js .

Printing Module

The printing module of MapStore is a back-end service not included by

default in the binary package that allows to create a printable PDF from the

current map.

The printing module is required by the Print plugin of MapStore, so if you want

to have the Print plugin working in your application, you have to include also the

printing module in your MapStore installation.

Including the printing module in MapStore

Because MapStore doesn't include the printing module by default, to use it you

need to build from the source a MapStore.war that includes it or add the missing

files to an existing MapStore deployed.

Building from the Source

If you want to include the printing module in your MapStore, by building the

source code, you have to add the profile printing (profiles can be added as 2nd

argument of the build.sh script, after the version that is the 1st. If you have more

then one profile, you can add them separated by ,):

MapStore projects also allow to use the printing profile to include this module. So

you can use the same printing profile to build your custom MapStore project

including the printing module.

Adding to an existing MapStore

If you have an existing and deployed instance of MapStore and you want to add

the printing module, you can build only the printing extension as a zip running

mvn clean install -Pprintingbundle from the official Mapstore project. The zip bundle

will created in java/printing/target/mapstore-printing.zip .

Note

./build.sh [version_identifier] printing

https://github.com/geosolutions-it/MapStore2

You can copy the content of this zip bundle into the root of mapstore application

(<app_root> , for instance webapps/mapstore in Tomcat):

files from zip directory WEB-INF/classes must be placed in <app_root>/WEB-INF/

classes

files from zip directory WEB-INF/lib must be placed in <app_root>/WEB-INF/lib

for the printing configuration files (if they are missing)

these files must be placed in <app_root>/printing

Then restart your java container.

Configuring the print

This printing module includes the MapStore printing engine, that is a fork of

MapPhish print (version 2), with some additional functionalities you can find in the

Wiki page.

!!! note: The module was originally written for GeoServer, so on the Github wiki

you can find information about downloading and installing it in GeoServer, but if

you include the engine directly in MapStore you don't need any other installation.

MapStore

The MapStore print module on the front-end is implemented by the Print plugin

inside localConfig.json . Make you sure to have this plugin in plugins/(mode) section.

If so, this will will automatically check the presence of the back-end module and

show the entry in the Burger Menu, if the back-end service is present.

In localConfig.json you will find also a printUrl configuration that refers to the

(relative) URL where the main entry point of the application is available. (the

default should enough)

Print Settings

This fork uses the same configuration files of the original library to define the

various print layouts and options. This files is in the directory resources/geoserver/

print , and they will be copied in WEB-INF/classes in the final war file.

config.yml : The main file that configures the layout. More information about

this configuration file in the original documentaiton

print_header.png : The header, referred in config.yml

•

•

•

•

•

https://github.com/geosolutions-it/MapStore2/tree/master/java/printing/resources/geoserver/print
https://github.com/geosolutions-it/mapfish-print/
http://www.mapfish.org/doc/print/
https://github.com/geosolutions-it/mapfish-print/
http://www.mapfish.org/doc/print/configuration.html

Arrow_north_CFCF.svg the north indicator, referred in config.yml

Troubleshooting

I can not see the "Print" entry in the menu

Please check if:

"Print" plugin is present in localConfig.json --> plugins --> desktop .

You are using a desktop browser. The plugin is not designed for a mobile

devices (tablet, smartphone...), for this reason it is not included in plugins -->

mobile

The service at url http(s)://<your-domain>/<applciation-base-paath>/pdf/info.json is

responding. Example: https://example.com/mapstore/pdf/info.json . The URL of this

info.json is configured (by default as relative URL) in localConfig.json -->

printUrl entry.

Looking at the JSON returned by the request above, the URLs in the entries

printURL and createURL are reachable, and the domain, (the port) and the

schema (http/https) of these URLs are the same of MapStore.

I have an error printing (using Reverse Proxy/HTTPS)

When you open MapStore from the browser, MapStore do a request to the main

entry point (info.json) of the printing module. This entry point provides a set of

URLs where to find all the print related services. These URLs are generated

starting from the current request.

A common practice is to use a reverse proxy in front of a Java Application Server,

and so MapStore (this is used also to add https, if the reverse proxy is part of a

web server). If this reverse proxy is not properly configured anyway, MapStore

will not be able to correctly generate the URLs of the printing services, and this

may cause an error when you try to print a PDF.

To avoid this problem, you can use several solution, depending on your setup and

your reverse proxy.

Setting up your proxy

Some typical solutions are:

Using AJP instead of http (this forwards all the information by default)

•

•

•

•

•

•

Using rewrite engine to rewrite the requests. (apache web server)

Using non-standard headers, X-Forwarded-Host and X-Forwarded-Proto .

Forcing PRINT_BASE_URL of printing module

If, for any reason, you can not modify the proxy configuration, MapStore printing

module provides a system variable PRINT_BASE_URL that you can set to force the

URLs returned by info.json to be resolved from it.

A useful trick can be to set as a relative URL (relative to MapStore) to make it work

in any context (only for MapStore).

or you can use the absolute URL:

Example for Apache HTTP server
ProxyPass /mapstore ajp://localhost:8010/mapstore
ProxyPassReverse /mapstore ajp://localhost:8010/mapstore

•

example for Apache HTTP server
RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule ^ https://%{HTTP_HOST}%{REQUEST_URI}
RedirectMatch ^/$ /mapstore/
ProxyRequests Off
ProxyPreserveHost On
ProxyVia full

•

example for nginx
proxy_set_header X-Forwarded-Proto https;

JAVA_OPTS= "$JAVA_OPTS -DPRINT_BASE_URL=pdf"

JAVA_OPTS= "$JAVA_OPTS -DPRINT_BASE_URL=https://example.com/mapstore/pdf"

How to use a CDN

The LeafletDraw plugin and the MapStore theme are linked via rawgit.com but in

production it should be used a proper CDN.

Once you have a stable version:

upload the LeafletDraw plugin and the MapStore theme on your CDN

edit the index.html file to use your published resources.

•

•

http://rawgit.com/Leaflet/Leaflet.draw/v0.2.4/dist/
https://github.com/geosolutions-it/MapStore2-theme/tree/master/theme/default
https://github.com/geosolutions-it/MapStore2/blob/master/web/client/index.html

FAQ

Troubleshooting

Autowatch doesn't work on Linux

You should need to increase max_user_watches variable for inotify.

Other References

How to use a CDN

echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf && sudo sysctl -p

•

Code conventions

In order to preserve quality, maintainability and testability when you develop in

MapStore you should follow the following rules and best practices.

TL;DR

Access to the state using state selectors

Prefer plugins cfg over initialState for plugins configurations

Use web/client/libs/ajax in your hooks or in redux-observable for async

Access to the state using state selectors

Is strongly recommended to not access to the state directly inside the

mapStateToProps function of react-redux . Use (or define) selectors in the selectors

directory. This provides the following advantages:

Selectors can be reused in epics.

Ready to use optimization with reselect

Simplify future refactoring

Easy unit testing and bug identification

Wrapping all the access to the state inside well-defined selector makes easier to

add functionalities and will increase code maintainability. You should always reuse

existing selectors (or create new ones) to access to the application state for core

application functionalities. It will help also future refactoring because any change

to the state structure (from the reducer point of view) or data source (from the

components point of view) requires only changes to the interested selectors.

A selector should be placed into the proper selectors/<state-slice>.js file with the

same name of the relative reducer. When a selector retrieves data from more than

one state slices, you should place it in the selector nearest by concern. For

instance isFeatureGridOpen should be placed into featuregrid

If you don't work on a core functionality, where the state is shared between many

components, defining the selector directly in the plug-in is not denied.

•

•

•

•

•

•

•

Prefer plugin configuration over initialState

In order to create self contained plugins that can be reused you should prefer to

configure the plugins using cfg . Using initialState should be considered

deprecated. When the configuration is needed at an higher level (e.g. application

state, for epics or to share this information), you should properly initialize the state

of the plugin on your own triggering an action on mount/unmont. (cfg are passed

to the plugin as react props).

Use custom axios version for async requests

Using web/client/libs/ajax (a customized axios with some interceptors) for AJAX

request contains interceptors to support proxyUrl and authenticationRules settings

specified in localConfig.json ,so you should prefer to use this enhanced version of

axios.

Using axios + RxJS means that you will have to wrap axios calls in something like:

Use defer to allow the usage of RxJS retry. We still not support real AJAX

cancellation at all, but we would like to provide some utility function/operator to

bind axios cancellation functionalities into the RxJS flow in the future.

Rx.Observable.defer(() => axios.post(...)).map...

Documentation guidelines

Each new feature/tool in MapStore should be documented in the User Guide in

order to explain the involved functionalities and illustrate how it works.

All new front-end technologies, development procedures, best practices and

guidelines on the involved components in MapStore should be properly

documented too: the Developers Guide must be kept up-to-date for this.

The Developer and User guide documentation are built on the Read the Docs

hosting platform. The MapStore's documentation files are available in the docs/

section of this repository; Mkdocs is used in MapStore as documentation

generator, you can look at the available online documentation for more information

on how to use it (MapStore uses his own customized MkDocs Material theme for

both User and Developer documentations).

General Guidelines

Internal links

When creating internal links between pages (.md files), make sure to use full link

to the paragraph instead of using only the relative path to the file. As using relative

path will not work in exported PDF document.

Instead of creating a link [FAQ]('../dev-faq/') , use [FAQ]('../dev-faq/#faq') or [FAQ]('../dev-

faq.md#faq') or [FAQ]('dev-faq.md#faq')

Building documentation

The documentation is built on RTD (Read the Docs) documentation hosting

platform.

But in order to build it locally, there are certain steps that needs to be followed:

1. Python installation

Install Python 3 and pip following the instructions on the python web site for your

operating system.

Example

https://mapstore.readthedocs.io/en/latest/user-guide/home-page/
https://mapstore.readthedocs.io/en/latest/developer-guide/
https://docs.readthedocs.io/en/latest/index.html
https://github.com/geosolutions-it/MapStore2/tree/master/docs
https://docs.readthedocs.io/en/latest/intro/getting-started-with-mkdocs.html
https://docs.readthedocs.io/en/latest/intro/getting-started-with-mkdocs.html#getting-started-with-mkdocs
https://squidfunk.github.io/mkdocs-material/
https://docs.readthedocs.io/en/latest/index.html
https://www.python.org/downloads/
https://www.python.org/downloads/

Pip is automatically installed when python is downloaded from python.org, if not,

follow this instruction to install it

2. Libraries installation

Install all the libraries/plugins in docs/requirements.txt using pip while matching

the exact version present.

pip install -r docs/requirements.txt

3. Build the documentation

Build the docs using the command mkdocs build .

If you want to generate also the PDF, you need to add set the environment

variable ENABLE_PDF_EXPORT to 1 before to run mkdocs build . The build with the

PDF option takes around 5 minutes to finish.

This will build the documentation and puts the built files into site folder and the

pdf generated into site\pdf\mapstore_documentation.pdf

The documentation can be launched using index.html in site folder

4. Editing the documentation

To live build and test the documentation locally, run the following command:

This command will start the built-in dev-server of MkDocs that lets us preview the

documentation as we work on it.

The documentation will be available at http://localhost:8000. Every time you save

some documentation file, the page will be automatically updated.

Note

export ENABLE_PDF_EXPORT=1
mkdocs build

mkdocs serve

https://pip.pypa.io/en/stable/installation/
http://localhost:8000

make you sure to not have set ENABLE_PDF_EXPORT=1 while testing live, in order

to avoid build the pdf every time that takes a long time to be generated.

Note

Migration Guidelines

General update checklist

updating an existing installation

updating a MapStore project created for a previous version

To update an existing installation you usually have to do nothing except eventually

to execute queries on your database to update the changes to the database

schema.

In case of a project it becomes a little more complicated, depending on the

customization.

This is a list of things to check if you want to update from a previous version valid

for every version.

Take a list to migration notes below for your version

Take a look to the release notes

update your package.json to latest libs versions

take a look at your custom files to see if there are some changes (e.g.

localConfig.js , proxy.properties)

Some changes that may need to be ported could be present also in pom.xml

files and in configs directory.

check for changes also in web/src/main/webapp/WEB-INF/web.xml .

Optionally check also accessory files like .eslinrc , if you want to keep aligned

with lint standards.

Follow the instructions below, in order, from your version to the one you want

to update to.

Migration from 2023.02.xx to 2024.01.00

Removing possibility to add custom fonts to the Map

From this version we limited the load of the font to FontAwesome.

•

•

•

•

•

•

•

•

•

•

If you have changed the property fonts inside Map plugin it will not longer load

the font. A possible fix would be to add the font to the *.html files in your

application.

make sure that the localConfig.json does not have fonts property in Map plugin

The following css is added automatically if needed

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-

awesome.min.css"/> inside the head tag.

Fixing background config

From this version in order to fix default 3d background config a change is needed

here:

update localConfig.json by adding visibility: false to the Empty Background

entry in

intialState.defaultState.catalog.default.staticServices.default_map_backgrounds.backgrounds

update new.json by adding visibility: false to the Empty Background entry.

Adding spatial filter to dashboard widgets

In order to enable the possibility to add in and the spatial filter to the widgets (see

#9098) you have to edit the QueryPanel config in the plugins.dashboard array of the

localConfig.json file by adding:

useEmbeddedMap: flag to enable the embedded map

spatialOperations: The list of spatial operations allowed for this plugin

spatialMethodOptions: the list of spatial methods to use.

•

•

•

•

•

•

...
"dashboard": [
...
{
 "name": "QueryPanel",
 "cfg": {
 "toolsOptions": {
 "hideCrossLayer": true,
 "useEmbeddedMap": true
 },
 "spatialPanelExpanded": false,
 "spatialOperations": [
 {"id": "INTERSECTS", "name": "queryform.spatialfilter.operations.intersects"},
 {"id": "CONTAINS", "name": "queryform.spatialfilter.operations.contains"},
 {"id": "WITHIN", "name": "queryform.spatialfilter.operations.within"}
],
 "spatialMethodOptions": [

https://github.com/geosolutions-it/MapStore2/issues/9098

MapFish Print update

The MapFish Print library has been updated to work with the latest GeoTools

version and Java 11 as well as being aligned with the same dependency used by

the official GeoServer printing extension (see this issue https://github.com/

geosolutions-it/mapfish-print/issues/65) For this reason, if you are using the

printing plugin in your project you have to update it by following the following

steps:

Change the version of the mapfish-print dependency in the project pom.xml

file:

Add the mvn repository where this library is hosted in the repositories section

of the same pom.xml (usually in web folder of a project)

Annotations plugin refactor

The Annotation plugin has been updated to be supported also in 3D maps. This

update introduced some changes:

All the configurations related to the "Annotations" plugin has been removed

from localConfig.json defaultState entry and moved to the cfg property of the

plugin

 {"id": "BBOX", "name": "queryform.spatialfilter.methods.box"},
 {"id": "Circle", "name": "queryform.spatialfilter.methods.circle"},
 {"id": "Polygon", "name": "queryform.spatialfilter.methods.poly"}
],
 "containerPosition": "columns"
 }
}

•

 <!-- mapfish-print -->
 <dependency>
 <groupId>org.mapfish.print</groupId>
 <artifactId>print-lib</artifactId>
- <version>geosolutions-2.3-SNAPSHOT</version>
+ <version>2.3-SNAPSHOT</version>

•

 <repository>
 <id>osgeo-snapshot</id>
 <name>Open Source Geospatial Foundation Repository</name>
 <url>https://repo.osgeo.org/repository/snapshot/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>

•

https://github.com/geosolutions-it/mapfish-print/issues/65
https://github.com/geosolutions-it/mapfish-print/issues/65

The annotations reducers is not needed anymore inside the default reducers of

the app

Please update by:

Removing annotations entry from your localConfig.json defaultState

If you customized the app, you can remove the annotations reducer from

default reducers.

If some customizations were applied to the Annotations plugin in defaultState ,

apply these changes to the plugin configuration, following the documentation

of the plugin.

Migration from 2023.01.02 to 2023.02.00

About plugin cfg changes

Starting this release 2023.02.00 we have included a new cfg option the About

plugin called githubUrl

We suggest you to edit About plugin cfg of localConfig.json adding the following

inside configs/pluginsConfig.json you can add this to the About plugin definition

NodeJS/NPM upgrade

In this release we updated all our systems to use node 16/NPM 8. This because

Node 12 is actually out of maintenance. We are going to support soon more recent

•

•

•

•

{
- "name": "About"
+ "name": "About",
+ "cfg": {
+ "githubUrl": "https://github.com/GITHUB_USER/REPO_NAME/tree/"
+ }

 "name": "About",
 "glyph": "info-sign",
 "title": "plugins.About.title",
 "description": "plugins.About.description",
 "dependencies": [
 "SidebarMenu"
-]
+],
+ "defaultConfig": {
+ "githubUrl": "https://github.com/GITHUB_USER/REPO_NAME/tree/"
+ }
 },

versions of NodeJS solving the related issues. So make you sure to use the correct

version of NodeJS/NPM to build things correctly. See the requirements section of

the document for the details.

Visualization mode in map configuration

The map configuration stores the information related to the visualization mode 2D

or 3D after saving a map. This update include also following changes:

maptype default state configuration inside the initialState of localConfig.json

needs to be removed. If a MapStore project needs a particular setup (eg. use

only OpenLayers for 2D maps, initialize the app in 3D, ...) it is possible to

override the default map libraries configuration with the new mapType

property in the localConfig.json file, see documentation here.

the changeMapType action has been deprecated in favor of the

changeVisualizationMode action

the application does not expose the pathname of the viewer with mapType

anymore. Example: the old path /viewer/openlayers/1 becomes /viewer/1

the app pages inside a MapStore project must be updated with a new entry,

only for projects with custom pages and that are using context applications,

here an example:

•

{
 // ...
 "initialState": {
 "defaultState": {
 // ...
- "maptype": {
- "mapType": "{context.mode === 'desktop' ? 'openlayers' : 'leaflet'}"
- },
 // ...
 }
 }
 // ...
}

•

•

•

import MapViewer from '@mapstore/product/pages/MapViewer';
import productAppConfig from "@mapstore/product/appConfig";

const appConfig = {
 ...productAppConfig,
 pages: [
 // my custom pages ...,
 {
 name: "mapviewer",
 path: "/viewer/:mapId/context/:contextId",
 component: MapViewer

Clean up of old maven repositories

The old spring maven repositories that do not exist anymore have been removed

from the pom.xml files. They are not needed anymore, so you can remove them

from your pom.xml files too.

New Permalink plugin

As part this release, permalink plugin is added to MapStore. The new plugin is

already configured in standard MapStore application, but if you are working on a

project or if you customized the configuration files, you may need to update them

to introduce the new plugin.

In any case on an existing installation you must update the database adding the

category to make the plugin work.

Add Permalink plugin to localConfig.json

In the case you customized your configs/localConfig.json file in your project/

installation, to add the permalink plugin you will have to update it as following:

Add the "Permalink" plugin to the pages you want to use this plugin. Pages

plugins are in the plugins section in the root of localConfig.json , so you have to

add "Permalink" entry to desktop , dashboard and geostory arrays, like this:

 }
]
};

- <!-- Spring -->
- <repository>
- <id>spring-release</id>
- <name>Spring Portfolio Release Repository</name>
- <url>https://maven.springframework.org/release</url>
- <snapshots>
- <enabled>false</enabled>
- </snapshots>
- </repository>
- <repository>
- <id>spring-external</id>
- <name>Spring Portfolio External Repository</name>
- <url>https://maven.springframework.org/external</url>
- <snapshots>
- <enabled>false</enabled>
- </snapshots>
- </repository>

•

{
 "desktop": [

To activate the functionality, you must add a new permalink section to plugins

root object of localConfig.json , as shown below

Using Permalink in new contexts

The plugins available for contexts are listed in the file configs/pluginsConfig.json . In

your project/installation, you may need to edit this configuration to make the

plugin selectable for your context. Existing contexts need to be updated

separately, after applying these changes

Find the "Share" plugin configuration in the plugins array in the root of

pluginsConfig.json configuration file and modify it as shown below (adding

children and autoEnableChildren sections:

 ...
 "Permalink",
 ...
],
 "dashboard": [
 ...
 "Permalink",
 ...
],
 "geostory": [
 ...
 "Permalink",
 ...
]
}

•

{
 "permalink": [
 "Permalink",
 "FeedbackMask"
]
}

•

 {
 "name": "Share",
 "glyph": "share",
 "title": "plugins.Share.title",
 "description": "plugins.Share.description",
 "dependencies": [
 "SidebarMenu"
],
 "children": [
 "Permalink"
],
 "autoEnableChildren": [
 "Permalink"

Add "Permalink" plugin configuration to the plugins array in the root of

pluginsConfig.json

the app pages inside a MapStore project must be updated with a new entry,

only for projects using permalink feature, here an example:

Database Update

Add new category PERMALINK to gs_category table. To update your database you

need to apply this SQL scripts to your database

POSTGRESQL

H2

ORACLE

]
 }

•

 {
 "name": "Permalink",
 "glyph": "link",
 "title": "plugins.Permalink.title",
 "description": "plugins.Permalink.description"
 },

•

import Permalink from '@mapstore/product/pages/Permalink';
import productAppConfig from "@mapstore/product/appConfig";

const appConfig = {
 ...productAppConfig,
 pages: [
 // my custom pages ...,
 {

name: "permalink",
 path: "/permalink/:pid",
 component: Permalink
 }
]
};

-- New PERMALINK category
INSERT INTO geostore.gs_category(id, name) VALUES
(nextval('geostore.hibernate_sequence'), 'PERMALINK') ON CONFLICT DO NOTHING;

-- New PERMALINK category
INSERT INTO gs_category(name) VALUES ('PERMALINK');

Migration from 2022.02.02 to 2023.01.00

Log4j update to Log4j2

With this release Log4j has been updated to Log4j2. The Log4j API has changed

with version 2. Basically if you customized logging properties, you have to update

the properties file following the log4j properties file migration section.

If you have a downstream project, you will have also to update your dependencies

in pom.xml and your Java code, following the suggestions in log4j2 dependencies and

code update section.

For more information or more details about how to migrate, follow the official

documentation.

!!! note: A compatibility tier has been added in order to allow to use old

configurations. Anyway it is strongly suggested to update your files as soon as

possible.

log4j2 properties file migration

To have logging properly work on MapStore then it is needed to:

Rename log4j.properties file to log4j2.properties .

Edit the properties to configure it according to the log4j2 syntax. See the

Configuration with Properties section on the official documentation page. Below

the old and the new default log4j configuration files are juxtaposed:

log4j.properties

-- New PERMALINK category
INSERT INTO gs_category(id, name) VALUES (hibernate_sequence.nextval,
‘PERMALINK');

•

•

log4j.rootLogger=INFO, fileAppender

log4j.appender.consoleAppender=org.apache.log4j.ConsoleAppender
log4j.appender.consoleAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.consoleAppender.layout.ConversionPattern=%p %d{yyyy-MM-dd
HH:mm:ss.SSS} %c::%M:%L - %m%n

log4j.logger.it.geosolutions.geostore.services.rest=INFO
log4j.logger.org.hibernate=INFO
log4j.logger.com.trg=INFO

File appender
log4j.appender.fileAppender=org.apache.log4j.RollingFileAppender
log4j.appender.fileAppender.layout=org.apache.log4j.PatternLayout

https://logging.apache.org/log4j/2.x/manual/migration.html
https://logging.apache.org/log4j/2.x/manual/migration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html

log42.properties

The main difference applies to how define the Log level on a per package basis. If

in previous version of log4j a single property was defining both the package and

the level now we need two distinct properties, one to define the name (the

package) and the other for the level:

before

now

Note that the second part of the property key in the log4j2 (restsrv in the example)

can be whatever string of choice, with the only requirement to be the same for the

name and the level property.

log4j.appender.fileAppender.layout.ConversionPattern=%p %d{yyyy-MM-dd
HH:mm:ss.SSS} %C{1}.%M() - %m %n
log4j.appender.fileAppender.File=${catalina.base}/logs/mapstore.log

rootLogger.level = INFO
appenders= console, file

appender.console.type = Console
appender.console.name = LogToConsole
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %p %d{yyyy-MM-dd HH:mm:ss.SSS} %c::%M:%L -
%m%n
rootLogger.appenderRef.stdout.ref = LogToConsole
rootLogger.appenderRef.console.ref = LogToConsole

appender.file.type = File
appender.file.name = LogToFile
appender.file.fileName=${sys:catalina.base}/logs/mapstore.log
appender.file.layout.type=PatternLayout
appender.file.layout.pattern=%p %d{yyyy-MM-dd HH:mm:ss.SSS} %C{1}.%M() - %m
%n
rootLogger.appenderRef.file.ref = LogToFile

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level= INFO
logger.hibernate1.name=org.hibernate
logger.hibernate1.level=INFO
logger.trg1.name=com.trg
logger.trg1.level=INFO

•

log4j.logger.it.geosolutions.geostore.services.rest=INFO

•

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level= INFO

log4j2 dependencies and code update

In your downstream project you will have to replace, where you used (typically in

backend and web folders) the following dependencies:

with

!!! note: of course you can use properties of maven to not repeat the version

numbers everytime, or dependency management.

Moreover, if you have some custom code, you will hae to replace the use of

getLogger . Example:

 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>${log4j.version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>${slf4j.version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>${slf4j.version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>${slf4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.19.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.19.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-slf4j-impl</artifactId>
 <version>2.19.0</version>
 </dependency>

private static final Logger LOGGER = Logger.getLogger(MyClass.class);

with

where LogManager can be imported as:

Update database schema

This new version introduced the attributes for user groups. This requires an

update to your database applying the scripts available here. You have to apply the

script *-migration-from-v.1.5.0-to-v2.0.0 of your database. For instance on

postgreSQL, you will have to execute the script postgresql/postgresql-migration-from-v.

1.5.0-to-v2.0.0 .

!!! note: The script assumes you set the search path for your db schema. Usually in

postgres it is geostore . So make you sure to set the proper search path before to

execute the script in postgres. (e.g. SET search_path TO geostore;)

!!! note: If you don't want to or you can not execute the migration script, you can

set in geostore-datasource-ovr.properities the following property to make MapStore

update the database for you

Migration from 2022.02.00 to 2022.02.01

Package.json scripts migration

With this release we are refactoring a bit the naming of the scripts maintaining

retro compatibility avoiding builds on ci/cd systems to break. Anyway we suggest

to align them as listed here

The main changes are:

We have removed travis and mvntest scripts.

Most of the scripts are now prefixed with app or fe or be to make them more

clear.

private static final Logger LOGGER = LogManager.getLogger(MyClass.class);

import org.apache.logging.log4j.LogManager;

```properties
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=update
``

• 

• 

https://github.com/geosolutions-it/geostore/tree/master/doc/sql/migration
https://github.com/geosolutions-it/MapStore2/blob/master/utility/projects/projectScripts.json


Now npm start  is an alias of npm run app:start  and starts both front-end and

back-end.

Although it is optional we suggest to align your project to these changes. In order

to align your repository you should:

update your package.json  to latest scripts, you can copy them from utility/

projects/projectScripts.json  in MapStore2 repository.

update your build.sh  to use the latest scripts, instead of the old ones. See 

project/standard/templates/build.sh  in MapStore2 repository.

update in your repository web/pom.xml  of your project to receive the backend

property from ENV variables.

• 

• 

• 

• 

@@ -14,6 +14,7 @@
   <properties>
     <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
     <tomcat.version>8.5.69</tomcat.version>
+    <tomcat.port>8080</tomcat.port>
   </properties>

   <dependencies>
@@ -400,7 +401,7 @@
                         ${project.build.directory}/apache-tomcat-${tomcat.version}
                     </home>
                     <properties>
-                        <cargo.servlet.port>8080</cargo.servlet.port>
+                        <cargo.servlet.port>${tomcat.port}</cargo.servlet.port>
                         <cargo.logging>low</cargo.logging>
                     </properties>
                 </configuration>
@@ -419,6 +420,18 @@
     </plugins>
   </build>
     <profiles>
+        <profile>
+            <id>dev-custom-port</id>
+            <activation>
+                <property>
+                    <name>env.MAPSTORE_BACKEND_PORT</name>
+                </property>
+            </activation>
+            <properties>
+                <!-- Override only if necessary -->
+                <tomcat.port>${env.MAPSTORE_BACKEND_PORT}</tomcat.port>
+            </properties>
+        </profile>
         <profile>
             <id>printing</id>
             <activation>



Migration from 2022.01.02 to 2022.02.00

HTML pages optimization

We removed script and css link to leaflet CDN in favor of a dynamic import of the

libraries in the main bundle, now leaflet is only loaded when the library is selected

as map type of the viewer. You can update the project HTML files by removing

these tags:

We also made asynchronous the script to detect valid browser. This should slightly

improve the initial requests time. You can updated the script in your project as

following:

Update plugins.js to make upstream plugins use dynamic import

We've updated plugins.js  in MapStore to make most of the plugins use dynamic

import. plugins.js  of your project have to be updated separately.

- <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/leaflet/1.3.1/
leaflet.css" />
- <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/leaflet.draw/1.0.2/
leaflet.draw.css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/
font-awesome.min.css" />
<link rel="shortcut icon" type="image/png" href="https://cdn.jslibs.mapstore2.geo-
solutions.it/leaflet/favicon.ico" />
<!--script src="https://maps.google.com/maps/api/js?v=3"></script-->
- <script src="https://cdnjs.cloudflare.com/ajax/libs/leaflet/1.3.1/leaflet.js"></script>
- <script src="https://cdnjs.cloudflare.com/ajax/libs/leaflet.draw/1.0.2/leaflet.draw.js"></
script>

<script async type="text/javascript" src="https://unpkg.com/bowser@2.7.0/es5.js" 
onload="checkBrowser()"></script>
<script type="text/javascript">
    function checkBrowser() {
        var browserInfo = bowser.getParser(window.navigator.userAgent);
        var isValidBrowser = browserInfo.satisfies({
            "edge": ">1",
            "chrome": ">1",
            "safari": ">1",
            "firefox": ">1"
        });
        if (!isValidBrowser) {
            window.location.href = "unsupportedBrowser.html"
            document.querySelector("container").style.display = "none";
        }
    }
</script>



Please use web\client\product\plugins.js  file as a reference listing plugins whose

definition can be changed to support dynamic import.

To use dynamic import for plugin, please update its definition to look like:

See Dynamic import of extension to have more details about transforming

extensions to use dynamic import.

Version plugin has been removed

We no longer maintain the Version plugin since we have moved its content inside

the About plugin (see here for more details)

We suggest you to clean up your project as well:

remove Version entry it from a local list of plugins.js

remove Version entries it from a localConfig.json and pluginConfig.json

add About entry into other pages of mapstore plugins array:

dashboard

geostory

mobile

remove DefinePlugin  entries dedicated to git revision retrieved by git-revision-

webpack-plugin , if any, from webpack-config.js  or prod.webpack-config.js , because

they have been moved to the file build/BuildUtils.js

check that in your package.json you have this extends rule

edit the version of the @mapstore/eslint-config-mapstore to 1.0.5 in your

package.json so that the new globals config will be inherited

{
    ...
    AnnotationsPlugin: toModulePlugin('Annotations', () => import(/* webpackChunkName: 
'plugins/annotations' */ '../plugins/Annotations')),
    ...
}

• 

• 

• 

• 

• 

• 

• 

• 

"eslintConfig": {
    "extends": [
      "@mapstore/eslint-config-mapstore"
    ],
    ...

• 

https://github.com/geosolutions-it/MapStore2/issues/7934#issuecomment-1201433942


this may fail on gha workflows, in that case we suggest to edit directly your

package.json with globals taken from mapstore framework

Support for OpenID

MapStore introduced support for OpenID for google and keycloak. In order to

have this functionalities and to be aligned with the latest version of MapStore you

have to update the following files in your projects:

geostore-spring-security.xml  (your custom spring security context) have to be

updated adding the beans and the security:custom-filter  entry in the 

<security:http>  entry, as here below:

Note

• 

        <security:csrf disabled="true"/>
        <security:custom-filter ref="authenticationTokenProcessingFilter" 
before="FORM_LOGIN_FILTER"/>
        <security:custom-filter ref="sessionTokenProcessingFilter" 
after="FORM_LOGIN_FILTER"/>
+        <security:custom-filter ref="keycloakFilter" before="BASIC_AUTH_FILTER"/>
+        <security:custom-filter ref="googleOpenIdFilter" after="BASIC_AUTH_FILTER"/>
        <security:anonymous />
    </security:http>

    <security:authentication-manager>
        <security:authentication-provider ref='geoStoreUserServiceAuthenticationProvider' /
>
    </security:authentication-manager>
+
+
+    <bean id="preauthenticatedAuthenticationProvider" 
class="it.geosolutions.geostore.services.rest.security.PreAuthenticatedAuthenticationProvider">
+    </bean>
+
+    <!-- OAuth2 beans -->
+    <context:annotation-config/>
+
+    <bean id="googleSecurityConfiguration" 
class="it.geosolutions.geostore.services.rest.security.oauth2.google.OAuthGoogleSecurityConfiguration"/
>
+
+    <!-- Keycloak -->
+
+   <bean id="keycloakConfig" 
class="it.geosolutions.geostore.services.rest.security.keycloak.KeyCloakSecurityConfiguration"/
>
+
+    <!-- END OAuth2 beans-->
+
+    <!--  security integration inclusions  -->



web.xml : add the following content to the file:

applicationContext.xml  for consistency, we added mapstore-ovr.properties  files to

be searched in class-path and in the data-dir, as for the other properties files:

Upgrading the printing engine

The mapfish-print based printing engine has been upgraded to align to the latest

official 2.1.5 in term of functionalities.

An update to the MapStore printing engine context file ( applicationContext-print.xml )

is needed for all projects built with the printing profile enabled. The following

sections should be added to the file:

+    <import resource="classpath*:security-integration-$
{security.integration:default}.xml"/>

</beans>

• 

@@ -34,6 +34,17 @@
        <listener-class>org.springframework.web.context.ContextLoaderListener</listener-
class>
    </listener>

+    <!-- Allow to use RequestContextHolder -->
+    <filter>
+        <filter-name>springRequestContextFilter</filter-name>
+        <filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
+    </filter>
+    <filter-mapping>
+        <filter-name>springRequestContextFilter</filter-name>
+        <url-pattern>/*</url-pattern>
+    </filter-mapping>
+
+
    <!-- Spring Security Servlet -->
    <filter>

• 

@@ -49,6 +49,7 @@
         <property name="order" value="10"/>
         <property name="locations">
             <list>
+                 <value>classpath:mapstore-ovr.properties</value>
                 <value>file:${datadir.location:}/geostore-datasource-ovr.properties</value>
                 <value>file:${datadir.location:}/mapstore-ovr.properties</value>
             </list>

<bean id="configFactory" class="org.mapfish.print.config.ConfigFactory"></bean>
+<bean id="threadResources" class="org.mapfish.print.ThreadResources">
+    <property name="connectionTimeout" value="30000"/>
+    <property name="socketTimeout" value="30000" />



Also, remember to update your project pom.xml with the updated dependency:

locate the print-lib dependency in the pom.xml file

replace the dependency with the following snippet

+    <property name="globalParallelFetches" value="200"/>
+    <property name="perHostParallelFetches" value="30" />
+</bean>

<bean id="pdfOutputFactory" class="org.mapfish.print.output.PdfOutputFactory"/>
+
+<bean id="metricRegistry" class="com.codahale.metrics.MetricRegistry" lazy-
init="false"/>
+<bean id="healthCheckRegistry" 
class="com.codahale.metrics.health.HealthCheckRegistry" lazy-init="false"/>
+<bean id="loggingMetricsConfigurator" 
class="org.mapfish.print.metrics.LoggingMetricsConfigurator"  lazy-init="false"/>
+<bean id="jvmMetricsConfigurator" 
class="org.mapfish.print.metrics.JvmMetricsConfigurator" lazy-init="false"/>
+<bean id="jmlMetricsReporter" class="org.mapfish.print.metrics.JmxMetricsReporter" 
lazy-init="false"/>

• 

• 

<dependency>
    <groupId>org.mapfish.print</groupId>
    <artifactId>print-lib</artifactId>
    <version>geosolutions-2.1.0</version>
    <exclusions>
        <exclusion>
            <groupId>commons-codec</groupId>
            <artifactId>commons-codec</artifactId>
        </exclusion>
        <exclusion>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-annotations</artifactId>
        </exclusion>
        <exclusion>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
        </exclusion>
        <exclusion>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
        </exclusion>
        <exclusion>
            <groupId>org.springframework</groupId>
            <artifactId>spring-web</artifactId>
        </exclusion>
        <exclusion>
            <groupId>org.springframework</groupId>
            <artifactId>spring-context</artifactId>
        </exclusion>
    </exclusions>
</dependency>



Finally, to enable printing in different formats than PDF, you should add the

following to your config.yml  file (at the top level):

Replacing BurgerMenu with SidebarMenu

There were several changes applied to the application layout, one of them is the

Sidebar Menu that comes to replace Burger menu on map viewer and in contexts.

Following actions need to be applied to make a switch:

Update localConfig.json and add "SidebarMenu" entry to the "desktop" section:

Remove "BurgerMenu" entry from "desktop" section.

Using Sidebar Menu in new contexts

Contents of your pluginsConfig.json  need to be reviewed to allow usage of new

"SidebarMenu" in new contexts. Existing contexts need to be updated separately,

please refer to the next chapter for instructions.

Find "BurgerMenu" plugin configuration in pluginsConfig.json  and remove 

"hidden": true  line from it:

Add SidebarMenu  entry to the "plugins" array:

formats:
  - '*'

• 

{
    "desktop": [
        ...
        "SidebarMenu",
        ...
    ]
}

• 

• 

    {
    "name": "BurgerMenu",
    "glyph": "menu-hamburger",
    "title": "plugins.BurgerMenu.title",
    "description": "plugins.BurgerMenu.description",
    "dependencies": [
        "OmniBar"
    ]
}

• 

{
    "plugins": [
        ...
        {



Go through all plugins definitions and replace BurgerMenu  dependency with 

SidebarMenu , e.g.:

Also the StreetView  plugin needs to depend from SidebarMenu .

Updating existing contexts to use Sidebar Menu

Contexts created in previous versions of MapStore will maintain old Burger Menu.

There are two options allowing to replace it with the new Sidebar Menu:

Using manual update.

Using SQL query to update all contexts at once.

Before going with one of the approaches, please make sure that changes to 

pluginsConfig.json  from previous chapter are applied.

To update context manually:

Go to the context manager (#/context-manager) and edit context you want to

update.

Move to the step 3: Configure Plugins.

            "name": "SidebarMenu",
            "hidden": true
        }
        ...
    ]
}

• 

    {
      "name": "MapExport",
      "glyph": "download",
      "title": "plugins.MapExport.title",
      "description": "plugins.MapExport.description",
      "dependencies": [
        "SidebarMenu"
      ]
    }

• 

{
      "name": "StreetView",
      "glyph": "road",
      "title": "plugins.StreetView.title",
      "description": "plugins.StreetView.description",
      "dependencies": [
        "SidebarMenu"
      ]
}

• 

• 

1. 

2. 



Find "Burger Menu" on the right side (enabled plugins) and move it to the left

column.

Save context

Note: "Burger Menu" has higher priority over the "Sidebar Menu", so it will

always be used if it's added to the list of enabled plugins of the context.

To update all contexts at once:

This is a sample SQL query that can be executed against the MapStore DB to

replace the Burger Menu with the new Sidebar for existing application contexts

previously created:

Note: Schema name could vary depending on your installation configuration.

Updating extensions

Please refer to the extensions documentation to know how to update your

extensions.

Using terrain  layer type to define 3D map elevation profile

A new terrain  layer type has been created in order to provide more options and

versatility when defining an elevation profile for the 3D map terrain. This terrain

layer will substitute the former wms  layer (with useForElevation  attribute) used to

define the elevation profile.

The wms  layer (with useForElevation  attribute) configuration is still needed to show

the elevation data inside the MousePosition plugin and it will display the terrain at

the same time. The terrain  layer type allows a more versatile way of handling

elevation but it will work only as terrain visualization in the 3D map viewer.

The additionalLayers  object on the localConfig.json  file should adhere now to the 

terrain layer configuration. Serve the following code as an example:

3. 

4. 

UPDATE geostore.gs_stored_data SET stored_data = 
regexp_replace(gs_stored_data.stored_data,'{"name":"BurgerMenu"},','{"name":"SidebarMenu"},'
FROM geostore.gs_resource
WHERE gs_stored_data.resource_id = gs_resource.id AND
        gs_resource.category_id = (SELECT id FROM geostore.gs_category WHERE name = 
'CONTEXT') AND
        gs_stored_data.stored_data ~ '.*{"name":"BurgerMenu"},.*';

Note



When using terrain  layer with wms  provider, the format option in layer

configuration is not needed anymore as Mapstore supports only image/bil  format

and is used by default

Migration from 2022.01.00 to 2022.01.01

MailingLists plugin has been removed

MailingLists  plugin has ben removed from the core of MapStore. This means you

can remove it from your localConfig.json  (if present, it will be anyway ignored by

the plugin system).

Migration from 2021.02.02 to 2022.01.00

This release includes several libraries upgrade on the backend side, in particular

the following have been migrated to the latest available versions:

{
    "name": "Map",
    "cfg": {
        "additionalLayers": [{
            "type": "terrain",
            "provider": "wms",
            "url": "https://host-sample/geoserver/wms",
            "name": "workspace:layername",  // name of the geoserver resource
            "littleendian": false,
            "visibility": true
        }]
    }
}

Note

Library Old New

Spring 3.0.5 5.3.9

Spring-security 3.0.5 5.3.10

CXF 2.3.2 3.4.4

Hibernate 3.3.2 5.5.0



This requires also the upgrade of Tomcat to at least version 8.5.x.

Updating projects configuration

Projects need the following to update to this MapStore release:

update dependencies (in web/pom.xml ) copying those in MapStore2/java/web/

pom.xml , in particular (where present):

update packagingExcludes in web/pom.xml  to this list:

upgrade Tomcat to 8.5 or greater

update your geostore-spring-security.xml  file to add the following setting, needed

to disable CSRF validation, that MapStore services do not implement yet:

Library Old New

JPA 1.0 2.1

hibernate-generic-dao 0.5.1 1.3.0-SNAPSHOT

h2 1.3.168 1.3.175

javax-servlet-api 2.5 3.1.0

• 

Dependency Version Notes

mapstore-services 1.3.0 Replaces mapstore-backend

geostore-webapp 1.8.0

• 

WEB-INF/lib/commons-codec-1.2.jar,
WEB-INF/lib/commons-io-1.1.jar,
WEB-INF/lib/commons-logging-1.0.4.jar,
WEB-INF/lib/commons-pool-1.3.jar,
WEB-INF/lib/slf4j-api-1.5*.jar,
WEB-INF/lib/slf4j-log4j12-1.5*.jar,
WEB-INF/lib/spring-tx-5.2.15*.jar

• 

• 

<security:http ... >
    ...
    <security:csrf disabled="true"/>



remove the spring log4j listener from web.xml

If one of the libraries updated is used in your project, you should align the

version with the newer one to avoid jar duplications

Some old project may define versions of spring and/or jackson in maven

properties. You can remove these definition and the dependency from main 

pom.xml  since they should be inherited from spring. In particular you may

need to remove these properties :

Upgrading CesiumJS

CesiumJS has been upgraded to version 1.90 (from 1.17) and included directly in

the mapstore bundle as async import.

Downstream project should update following configurations:

remove all executions related to the cesium library from the pom.xml

    ...
</security:http>

• 

 <!-- spring context loader
    <listener>
        <listener-class>org.springframework.web.util.Log4jConfigListener</listener-class>
    </listener>-->

• 

• 

-        <jackson.version>1.9.10</jackson.version>
-        <jackson.databind-version>2.2.3</jackson.databind-version>
-        <jackson.annotations-version>2.5.3</jackson.annotations-version>

• 

<execution>
    <id>html, configuration files and images</id>
    <phase>process-classes</phase>
    <goals>
        <goal>copy-resources</goal>
    </goals>
    <configuration>
        <outputDirectory>${basedir}/target/mapstore</outputDirectory>
        <encoding>UTF-8</encoding>
        <resources>
            <resource>
                <directory>${basedir}/../web/client</directory>
                <includes>
                    <include>**/*.html</include>
                    <include>**/*.json</include>
                    <include>**/img/*</include>
                    <include>product/assets/symbols/*</include>
                    <include>**/*.less</include>
                </includes>
                <excludes>



remove all the external script and css related to cesium and cesium-navigation

now included as packages

This step is needed only for custom project with a specific publicPath  different

from the default one. In this case you may need to specify what folder deliver

the cesium build ( by default dist/cesium ). To do that, you can add the 

cesiumBaseUrl  parameter in the webpack dev and prod configs to the correct

location of the cesium static assets, widgets and workers folder.

                    <exclude>node_modules/*</exclude>
                    <exclude>node_modules/**/*</exclude>
-                    <exclude>**/libs/Cesium/**/*</exclude>
                    <exclude>**/test-resources/*</exclude>
                </excludes>
            </resource>
        </resources>
    </configuration>
</execution>
-<execution>
-    <id>CesiumJS-navigation</id>
-    <phase>process-classes</phase>
-    <goals>
-        <goal>copy-resources</goal>
-    </goals>
-    <configuration>
-        <outputDirectory>${basedir}/target/mapstore/libs/cesium-navigation</
outputDirectory>
-        <encoding>UTF-8</encoding>
-        <resources>
-            <resource>
-                <directory>${basedir}/../web/client/libs/cesium-navigation</directory>
-            </resource>
-        </resources>
-    </configuration>
-</execution>

• 

-<script src="https://cesium.com/downloads/cesiumjs/releases/1.42/Build/Cesium/
Cesium.js"></script>
-<link rel="stylesheet" href="https://cesium.com/downloads/cesiumjs/releases/1.42/Build/
Cesium/Widgets/widgets.css" />
-<script src="libs/cesium-navigation/cesium-navigation.js"></script>
-<link rel="stylesheet" href="libs/cesium-navigation/cesium-navigation.css" />

• 



Migration from 2021.02.01 to 2021.02.02

Style parsers dynamic import

The style parser libraries introduced a dynamic import to reduce the initial bundle

size. This change reflects to the getStyleParser  function provided by the

VectorStyleUtils module. If a downstream project of MapStore is using 

getStyleParser  it should update it to this new version:

Migration from 2021.02.00 to 2021.02.01

This update contains a fix for a minor vulnerability found in log4j  library. For this

reason you may need to update the dependencies of your project

This vulnerability is not CVE-2021-44228 but only a couple of smaller ones, that

involve Log4J  ( CVE-2021-44228 is for Log4J2  ). Anyway MapStore is not prone to

these vulnerabilities with the default configuration. For more information, see the

dedicated blog post

here the instructions:

Align pom.xml  files

Here the changes in pom.xml  and web/pom.xml  to update:

Change mapstore-backend  into mapstore-services  and set the version to 1.2.2

// example

- // old use of parser
- const parser = getStyleParser('sld');

+ // new use of parser
+ getStyleParser('sld')
+     .then((parser) => {
+         // use parser
+     });

Note

• 

<!-- MapStore backend -->
    <dependency>
    <groupId>it.geosolutions.mapstore</groupId>
-      <artifactId>mapstore-backend</artifactId>
-      <version>1.2.1</version>

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://www.geosolutionsgroup.com/blog/geosolutions-lo4shell/


Set geostore-webapp  version to 1.7.1

Set http_proxy  version to 1.1.1  (should already be there)

Set print-lib  version geosolutions-2.0  to version geosolutions-2.0.1

Migration from 2021.01.04 to 2021.02.00

Theme updates and CSS variables

The theme of MapStore has been updated to support CSS variables for some

aspects of the style, in particular colors and font families. The web/client/themes/

default/variables.less  file contains all the available variables described under the 

@ms-theme-vars  ruleset. It is suggested to :

update the lesscss variables in the projects because the variables starting with 

@ms2-  will be deprecated soon:

+      <artifactId>mapstore-services</artifactId>
+      <version>1.2.2</version>
    </dependency>

• 

    <dependency>
    <groupId>it.geosolutions.geostore</groupId>
    <artifactId>geostore-webapp</artifactId>
-      <version>1.7.0</version>
+      <version>1.7.1</version>
    <type>war</type>
    <scope>runtime</scope>
    </dependency>

• 

    <dependency>
    <!-- ... -->
    <groupId>proxy</groupId>
    <artifactId>http_proxy</artifactId>
-      <version>1.1.0</version>
+      <version>1.1.1</version>
    <type>war</type>
    <scope>runtime</scope>
    </dependency>

• 

    <dependency>
        <groupId>org.mapfish.print</groupId>
        <artifactId>print-lib</artifactId>
-        <version>geosolutions-2.0</version>
+        <version>geosolutions-2.0.1</version>
    </dependency>

• 



@ms2-color-text  -> @ms-main-color  @ms2-color-background  -> @ms-main-bg  @ms2-

color-shade-lighter  -> @ms-main-border-color

@ms2-color-code  -> @ms-code-color

@ms2-color-text-placeholder  -> @ms-placeholder-color

@ms2-color-disabled  -> @ms-disabled-bg  @ms2-color-text-disabled  -> @ms-disabled-color

@ms2-color-text-primary  -> @ms-primary-contrast

@ms2-color-primary  -> @ms-primary  @ms2-color-info  -> @ms-info  @ms2-color-success  -

> @ms-success  @ms2-color-warning  -> @ms-warning  @ms2-color-danger  -> 

@ms-danger

The font family has been update to Noto Sans  so all the html need to be updated

removing the previous font link with:

if you are importing react-select  or react-widgets  inline css/less in your own

project, you have to remove the import. Now the stile of these libraries is

managed at project level

Project system

During this release MapStore we started an rewrite of the project system,

organized in different phases.

The first phase of this migration has been identified by this pull request. In this

phase we are supporting the backward compatibility as much as possible,

introducing the new project system in parallel with the new one (experimental). In

the future the current script will be deprecated in favor of the new one.

Here below the breaking changes introduced in this release to support this new

system:

This section will tell you how to migrate to support the following changes:

Minor changes to prod-webpack.config.js

Move front-end configuration files in configs  folder

Back-end has been reorganized

• 

<link rel="preconnect" href="https://fonts.gstatic.com">
<link href="https://fonts.googleapis.com/css2?family=Noto+Sans&display=swap" 
rel="stylesheet">

• 

• 

• 

• 

https://github.com/geosolutions-it/MapStore2/issues/6314
https://github.com/geosolutions-it/MapStore2/pull/6738


Minor changes to prod-webpack.config.js

Minor changes to prod-webpack.config.js :

diff --git a/project/standard/templates/prod-webpack.config.js b/project/standard/templates/
prod-webpack.config.js
index 175bf3398..6d97e2c0f 100644
--- a/project/standard/templates/prod-webpack.config.js
+++ b/project/standard/templates/prod-webpack.config.js
@@ -2,8 +2,8 @@ const path = require("path");

 const themeEntries = require('./MapStore2/build/themes.js').themeEntries;
 const extractThemesPlugin = require('./MapStore2/build/themes.js').extractThemesPlugin;
-const ModuleFederationPlugin = require('./MapStore2/build/moduleFederation').plugin;
 const HtmlWebpackPlugin = require('html-webpack-plugin');
+const ModuleFederationPlugin = require('./MapStore2/build/moduleFederation').plugin;

 const paths = {
     base: __dirname,
@@ -24,17 +24,19 @@ module.exports = require('./MapStore2/build/buildConfig')(
     paths,
     [extractThemesPlugin, ModuleFederationPlugin],
     true,
-    "dist/",
+    undefined,
     '.__PROJECTNAME__',
     [
         new HtmlWebpackPlugin({
             template: path.join(__dirname, 'indexTemplate.html'),
+            publicPath: 'dist/',
             chunks: ['__PROJECTNAME__'],
             inject: "body",
             hash: true
         }),
         new HtmlWebpackPlugin({
             template: path.join(__dirname, 'embeddedTemplate.html'),
+            publicPath: 'dist/',
             chunks: ['__PROJECTNAME__-embedded'],
             inject: "body",
             hash: true,
@@ -42,13 +44,15 @@ module.exports = require('./MapStore2/build/buildConfig')(
         }),
         new HtmlWebpackPlugin({
             template: path.join(__dirname, 'apiTemplate.html'),
+            publicPath: 'dist/',
             chunks: ['__PROJECTNAME__-api'],
-            inject: 'head',
+            inject: 'body',
             hash: true,
             filename: 'api.html'
         }),
         new HtmlWebpackPlugin({
             template: path.join(__dirname, 'geostory-embedded-template.html'),
+            publicPath: 'dist/',
             chunks: ['geostory-embedded'],
             inject: "body",



Move front-end configuration files in configs  folder

We suggest you to move them as well from root to configs folder, and align your 

app.jsx  configuration with the new standard (if you changed the location of

configs). This will allow to use the data dir in an easy way. So:

Move the following files in configs  directory:

localConfig.json

new.json

pluginsConfig.json

config.json

simple.json

If changed something in app.jsx  about configuration, align to get the files

moved in config.

To allow MapStore to copy the correct file in the final war, you have to change 

web/pom.xml  execution copy-resources  for id config files  this way (this only if you

didn't customized localConfig.json ):

             hash: true,
@@ -56,6 +60,7 @@ module.exports = require('./MapStore2/build/buildConfig')(
         }),
         new HtmlWebpackPlugin({
             template: path.join(__dirname, 'dashboard-embedded-template.html'),
+            publicPath: 'dist/',
             chunks: ['dashboard-embedded'],
             inject: 'body',
             hash: true,
@@ -63,6 +68,7 @@ module.exports = require('./MapStore2/build/buildConfig')(
         })
     ],
     {
+        "@mapstore/patcher": path.resolve(__dirname, "node_modules", "@mapstore", 
"patcher"),
         "@mapstore": path.resolve(__dirname, "MapStore2", "web", "client"),
         "@js": path.resolve(__dirname, "js")
     }

• 

• 

• 

• 

• 

• 

• 

• 

        <goal>copy-resources</goal>
                </goals>
                    <goal>copy-resources</goal>
                </goals>
                    <configuration>
-                        <outputDirectory>${basedir}/target/__PROJECTNAME__/MapStore2/web/
client</outputDirectory>
+                        <outputDirectory>${basedir}/target/__PROJECTNAME__/MapStore2/
web/client/configs</outputDirectory>
                        <encoding>UTF-8</encoding>
                        <resources>
                            <resource>



Back-end has been reorganized

In particular:

all the java code has been moved from web/src/  to the java/  and product/

directories (and release , already existing).

mapstore-backend  has been renamed into mapstore-services .

Some servlets have been added in order to provide native support to data dir

and make it work with the new configs  directory.

So you will have to:

Align the pom.xml  to the latest versions of the libs

Edit the web.xml  and change the *-servlet.xml  files to expose the new services

Future evolution of the project will avoid you to keep your own copies of the pom

files as much as possible, reducing the boilerplate and making migration a lot

easier. For this reasons these migration guidelines will change soon.

Here below the details of the changes.

ALIGN POM.XML  FILES TO LATEST VERSIONS OF THE LIBS

Here the changes in pom.xml  and `web/pom.xml to update:

Change mapstore-backend  into mapstore-services  and set the version to 1.2.1

Set geostore-webapp  version to 1.7.0

-                                <directory>${basedir}/../MapStore2/web/client</directory>
+                                <directory>${basedir}/../MapStore2/web/client/configs</
directory>
                                <includes>
                                    <include>localConfig.json</include>
                                </includes>

• 

• 

• 

• 

• 

Note

• 

<!-- MapStore backend -->
    <dependency>
    <groupId>it.geosolutions.mapstore</groupId>
-      <artifactId>mapstore-backend</artifactId>
-      <version>1.1.2</version>
+      <artifactId>mapstore-services</artifactId>
+      <version>1.2.1</version>
    </dependency>

• 



Set http_proxy  version to 1.1.0  (should already be there)

EDIT THE WEB.XML  AND CHANGE THE *-SERVLET.XML  FILES TO EXPOSE THE NEW SERVICES

Copy from mapstore to folder web/src/main/webapp/WEB-INF/  the files:

configs-servlet.xml

extensions-servlet.xml

loadAssets-servlet.xml

Remove the old dispatcher-servlet.xml  (it has been replaced by loadAssets-

servlet.xml  for backward compatibility)

Align web/src/main/webapp/WEB-INF/web.xml  with the new servlets as changes

below (remove dispatcher  entry in favour of the following).

    <dependency>
    <groupId>it.geosolutions.geostore</groupId>
    <artifactId>geostore-webapp</artifactId>
-      <version>1.6.0</version>
+      <version>1.7.0</version>
    <type>war</type>
    <scope>runtime</scope>
    </dependency>

• 

    <dependency>
    <!-- ... -->
    <groupId>proxy</groupId>
    <artifactId>http_proxy</artifactId>
-      <version>1.1.0</version>
+      <version>1.1-SNAPSHOT</version>
    <type>war</type>
    <scope>runtime</scope>
    </dependency>

• 

• 

• 

• 

• 

• 

@@ -1,6 +1,6 @@
 <?xml version="1.0" encoding="UTF-8"?>
 <web-app id="WebApp_ID" version="2.4"
-    xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
+    xmlns:javaee="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
     xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
web-app_2_4.xsd">

     <!-- pick up all spring application contexts -->
@@ -19,13 +19,16 @@

     <context-param>
       <param-name>proxyPropPath</param-name>
-      <param-value>/proxy.properties</param-value>
+      <param-value>/proxy.properties,${datadir.location}/proxy.properties</param-
value>



     </context-param>

-    <!-- spring context loader -->
-    <listener>
+    <!-- <context-param> <param-name>log4jConfigLocation</param-name> <param-
value>file:${config.dir}/log4j.xml</param-value>
+        </context-param> -->
+
+    <!-- spring context loader -->
+    <listener>
         <listener-class>org.springframework.web.util.Log4jConfigListener</listener-class>
-    </listener>
+    </listener>

     <!--
       - Loads the root application context of this web app at startup.
@@ -33,8 +36,8 @@
       - WebApplicationContextUtils.getWebApplicationContext(servletContext).
     -->
     <listener>
-        <listener-class>org.springframework.web.context.ContextLoaderListener</listener-
class>
-    </listener>
+        <listener-class>org.springframework.web.context.ContextLoaderListener</
listener-class>
+    </listener>

     <!-- Spring Security Servlet -->
     <filter>
@@ -46,7 +49,7 @@
         <url-pattern>/rest/*</url-pattern>
     </filter-mapping>

-  <!-- GZip compression -->
+    <!-- GZip compression -->
     <filter>
         <filter-name>CompressionFilter</filter-name>
         <filter-class>net.sf.ehcache.constructs.web.filter.GzipFilter</filter-class>
@@ -65,17 +68,38 @@
     </filter-mapping>

     <!--  Backend Spring MVC controllers -->
+    <!--  Backward compatibility -->
     <servlet>
-        <servlet-name>dispatcher</servlet-name>
+        <servlet-name>loadAssets</servlet-name>
         <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
         <load-on-startup>1</load-on-startup>
     </servlet>
     <servlet-mapping>
-        <servlet-name>dispatcher</servlet-name>
+        <servlet-name>loadAssets</servlet-name>
         <url-pattern>/rest/config/*</url-pattern>
     </servlet-mapping>
+    <!--  Configs -->
+    <servlet>
+        <servlet-name>configs</servlet-name>



Data directory has been reorganized and is now available also for product

The new organization of the data directory is:

configs  will contain all json files ( localConfig.json , new.json , pluginsConfig.json , ...)

and all the .patch  files applied to them.

extensions  folder contains all the data for the extensions, including 

extensions.json

The root contains the properties files to configure database, proxy and other

configs

To organize your old data directory accordingly to the new specification.

Move all .json  and .json.patch  files in configs  folder (except extensions.json )

Move the directory dist/extensions  to simply extensions .

The file extensions.json  have to be moved in extensions/extensions.json .

+        <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
+        <load-on-startup>2</load-on-startup>
+    </servlet>
+    <servlet-mapping>
+        <servlet-name>configs</servlet-name>
+        <url-pattern>/configs/*</url-pattern>
+    </servlet-mapping>
+    <!-- Extensions -->
+    <servlet>
+        <servlet-name>extensions</servlet-name>
+        <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
+        <load-on-startup>3</load-on-startup>
+    </servlet>
+    <servlet-mapping>
+        <servlet-name>extensions</servlet-name>
+        <url-pattern>/extensions/*</url-pattern>
+    </servlet-mapping>

-    <!-- CXF Servlet -->
+    <!-- CXF Servlet -->
     <servlet>
         <servlet-name>CXFServlet</servlet-name>
         <servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
@@ -97,7 +121,7 @@
       <url-pattern>/proxy/*</url-pattern>
     </servlet-mapping>

-   <!-- Printing Servlet -->
+    <!-- Printing Servlet -->
     <servlet>
        <servlet-name>mapfish.print</servlet-name>
        <servlet-class>org.mapfish.print.servlet.MapPrinterServlet</servlet-class>

• 

• 

• 

• 

• 

• 



Edit the file extensions/extensions.json  changing the paths from dist/extensions/

<Plugin-Name>/...  to <Plugin-Name>/...

You can set it up by configuring datadir.location  java system property. Changes to

paths or configuration files are not required anymore.

Configurations

Embedded now uses popup as default. Align localConfig.json plugins --> 

embedded --> Identify  with the latest one:

Migration from 2021.01.01 to 2021.01.03

Generally speaking this is not properly a breaking change, but more a fix to apply

to your installations. Certificate for 'cesiumjs.org' has expired at 2021.05.05, so to

continue using CesiumJS with MapStore you will have to replace all the URLs like 

https://cesiumjs.org/releases/1.17  in https://cesium.com/downloads/cesiumjs/releases/1.17 .

This is the main fix of this minor release. See this pull request on GitHub as a

sample to apply these changes to your project.

Migration from 2021.01.00 to 2021.01.01

Update embedded entry to load the correct configuration

Existing MapStore project could have an issue with the loading of map embedded

page due to the impossibility to change some configuration such as

localConfig.json or translations path in the javascript entry. This issue can be

solved following these steps: 1 - add a custom entry named embedded.jsx  in the js/

directory of the project with the content:

• 

• 

{
    "name": "Identify",
    "cfg": {
        "showInMapPopup":true,
        "viewerOptions": {
            "container": "{context.ReactSwipe}"
        }
    }
}

import {
    setConfigProp,
    setLocalConfigurationFile
} from '@mapstore/utils/ConfigUtils';

https://github.com/geosolutions-it/MapStore2/pull/6856


2 - update the path of the embedded entry inside the webpack.config.js  and prod-

webpack.config.js  files with:

Locate plugin configuration

Configuration for Locate plugin has changed and it is not needed anymore inside

the Map plugin

old localConfig.json configuration needed 'locate' listed as tool inside the Map

plugin and as a separated Locate plugin

new localConfig.json configuration removes 'locate' from tools array and it

keeps only the plugin configuration

// Add custom (overriding) translations
// example for additional translations in the project folder
// setConfigProp('translationsPath', ['./MapStore2/web/client/translations', './translations']);
setConfigProp('translationsPath', './MapStore2/web/client/translations');
// __PROJECTNAME__ is the name of the project used in the creation process
setConfigProp('themePrefix', '__PROJECTNAME__');

// Use a custom plugins configuration file
// example if localConfig.json is located in the root of the project
// setLocalConfigurationFile('localConfig.json');
setLocalConfigurationFile('MapStore2/web/client/localConfig.json');

// async load of the standard embedded bundle
import('@mapstore/product/embedded');

// __PROJECTNAME__ is the name of the project used in the creation process
'__PROJECTNAME__-embedded': path.join(__dirname, "js", "embedded"),

• 

// ...
{
    "name": "Map",
    "cfg": {
        "tools": ["locate"],
        // ...
    }
},
{
    "name": "Locate",
    // ...
}
// ...

• 

// ...
{
    "name": "Map",

"cfg": {
        // ...



Update an existing project to include embedded Dashboards and

GeoStories

Embedded Dashboards and GeoStories need a new set of javascript entries, html

templates and configuration files to make them completely available in an existing

project.

The steps described above assume this structure of the MapStore2 project for the

files that need update:

1) create the entries files for the embedded application named 

dashboardEmbedded.jsx  and geostoryEmbedded.jsx  in the js/ folder with the following

content (see links): - dashboardEmbedded.jsx - geostoryEmbedded.jsx

2) add the html files and templates in the root directory of the project with these

names and content (see links): - dashboard-embedded-template.html - dashboard-

embedded.html - geostory-embedded-template.html - geostory-embedded.html

3) update webpack configuration for development and production with the new

entries and the related configuration:

    }
},
{
    "name": "Locate",
    // ...
}
// ...

MapStore2Project/
|-- ...
|-- js/
|    |-- ...
|    |-- dashboardEmbedded.jsx (new)
|    |-- geostoryEmbedded.jsx (new)
|-- MapStore2/
|-- web/
|    |-- ...
|    |-- pom.xml
|-- ...
|-- dashboard-embedded-template.html (new)
|-- dashboard-embedded.html (new)
|-- ...
|-- geostory-embedded-template.html (new)
|-- geostory-embedded.html (new)
|-- ...
|-- prod-webpack.config.js
|-- ...
|-- webpack.config.js

https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/js/dashboardEmbedded.jsx
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/js/geostoryEmbedded.jsx
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/dashboard-embedded-template.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/dashboard-embedded.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/dashboard-embedded.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/geostory-embedded-template.html
https://github.com/geosolutions-it/MapStore2/blob/2021.01.xx/project/standard/templates/geostory-embedded.html


4) Add configuration to localConfig.json in the plugins section related to Share

functionalities (Only with custom localConfig.json in the project): - Dashboard

share configuration

- webpack.config.js

```js
module.exports = require('./MapStore2/build/buildConfig')(
 {
 // other entries...,
 // add new embedded entries to entry object
 "geostory-embedded": path.join(__dirname, "js", "geostoryEmbedded"),
 "dashboard-embedded": path.join(__dirname, "js", "dashboardEmbedded")
 },
 // ...
);
```

- prod-webpack.config.js

```js

module.exports = require('./MapStore2/build/buildConfig')(
 {
 // other entries...,
 // add new embedded entries to entry object
 "geostory-embedded": path.join(__dirname, "js", "geostoryEmbedded"),
 "dashboard-embedded": path.join(__dirname, "js", "dashboardEmbedded")
 },
 // ...
 [
 // new HtmlWebpackPlugin({ ... }),
 // add plugin to copy all the embedded html and inject the correct bundle
 new HtmlWebpackPlugin({
 template: path.join(__dirname, 'geostory-embedded-template.html'),
 chunks: ['geostory-embedded'],
 inject: "body",
 hash: true,
 filename: 'geostory-embedded.html'
 }),
 new HtmlWebpackPlugin({
 template: path.join(__dirname, 'dashboard-embedded-template.html'),
 chunks: ['dashboard-embedded'],
 inject: 'body',
 hash: true,
 filename: 'dashboard-embedded.html'
 })
],
 // ...
);
```



5) update the web/pom.xml to copy all the related resources in the final *.war file

with these new executions

```js
"dashboard": [
 // ...
 {
 "name": "Share",
 "cfg": {
 "showAPI": false,
 "advancedSettings": false,
 "shareUrlRegex": "(h[^#]*)#\\/dashboard\\/([A-Za-z0-9]*)",
 "shareUrlReplaceString": "$1dashboard-embedded.html#/$2",
 "embedOptions": {
 "showTOCToggle": false,
 "showConnectionsParamToggle": true
 }
 }
 },
 // ...
]
```

- Dashboard share configuration

```js
"geostory": [
 // ...
 {
 "name": "Share",
 "cfg": {
 "embedPanel": true,
 "showAPI": false,
 "advancedSettings": {
 "hideInTab": "embed",
 "homeButton": true,
 "sectionId": true
 },
 "shareUrlRegex": "(h[^#]*)#\\/geostory\\/([^\\/]*)\\/([A-Za-z0-9]*)",
 "shareUrlReplaceString": "$1geostory-embedded.html#/$3",
 "embedOptions": {
 "showTOCToggle": false
 }
 }
 },
 // ...
]
```

<!-- __PROJECTNAME__ should be equal to the one in use in the project, see other 
executions how they define the outputDirectory path  -->
<execution>
    <id>only dashboard-embedded.html</id>



Migration from 2020.02.00 to 2021.01.00

Update to webpack 5 - Module federation

MapStore migrated to webpack 5 and provided the extension system using

"Webpack Module Federation". Here the steps to update the existing files in your

project.

    <phase>process-classes</phase>
    <goals>
        <goal>copy-resources</goal>
    </goals>
    <configuration>
        <outputDirectory>${basedir}/target/__PROJECTNAME__</outputDirectory>
        <encoding>UTF-8</encoding>
        <resources>
            <resource>
                <directory>${basedir}/../dist</directory>
                <includes>
                    <include>dashboard-embedded.html</include>
                </includes>
                <excludes>
                    <exclude>MapStore2/*</exclude>
                    <exclude>MapStore2/**/*</exclude>
                </excludes>
            </resource>
        </resources>
    </configuration>
</execution>
<execution>
    <id>only geostory-embedded.html</id>
    <phase>process-classes</phase>
    <goals>
        <goal>copy-resources</goal>
    </goals>
    <configuration>
        <outputDirectory>${basedir}/target/__PROJECTNAME__</outputDirectory>
        <encoding>UTF-8</encoding>
        <resources>
            <resource>
                <directory>${basedir}/../dist</directory>
                <includes>
                    <include>geostory-embedded.html</include>
                </includes>
                <excludes>
                    <exclude>MapStore2/*</exclude>
                    <exclude>MapStore2/**/*</exclude>
                </excludes>
            </resource>
        </resources>
    </configuration>
</execution>



package.json:

dev server scripts changed syntax. now you need to use webpack serve  instead

of webpack-dev-server . Replace also all --colors  with --color  in your scripts that

use webpack / webpack-dev-server.

Align dependencies  and devDependencies  with MapStore's one, reading the 

package.json , as usual.

To support extensions in your project, you need to add ModuleFederationPlugin

to your prod-webpack.config.js  and webpack.config.js

Other the other changes required are applied automatically in buildConfig.js .

Eslint config

Now eslint configuration is shared in a separate npm module. To update your

custom project you have to remove the following files:

.eslintignore

.eslintconfig

And add to package.json  the following entry, in the root:

• 

• 

• 

const ModuleFederationPlugin = require('./MapStore/build/moduleFederation').plugin; // 
<-- new line
module.exports = require('./buildConfig')(
    assign({
        "mapstore2": path.join(paths.code, "product", "app"),
        "embedded": path.join(paths.code, "product", "embedded"),
        "ms2-api": path.join(paths.code, "product", "api")
    },
    require('./examples')
    ),
    themeEntries,
    paths,
    extractThemesPlugin,
    [extractThemesPlugin, ModuleFederationPlugin], // <-- this parameter has been 
changed, now it accepts also array of the plugins you want to add bot in prod and dev

• 

• 

        "eslintConfig": {
            "extends": [
                "@mapstore/eslint-config-mapstore"
            ],
            "parserOptions": {
                "babelOptions": {
                    "configFile": "./MapStore2/build/babel.config.js"
                }
            }
        },



If you have aproject that includes MapStore as a dependency, you can run 

npm run updateDevDeps  to finalize the update. Otherwise make you sure to include:

devDependencies:

add "@mapstore/eslint-config-mapstore": "1.0.1",

delete babel-eslint

dependencies:

update `"eslint": "7.8.1"

App structure review

From this version some base components of MapStore App ( StandardApp , 

StandardStore ...) has been restructured and better organized. Here a list of the

breaking change you can find in a depending project

web/client/product/main.jsx  has been updated to new import  and export  syntax

(removed require  and exports.module ). So if you are importing it (usually in

your app.jsx ) you have to use the import  syntax or use require(...).default  in

your project. The same for the other files.

New structure of arguments in web/client/stores/StandardStore.js

Moved standard epics, standard reducers and standard rootReducer function

from web/client/stores/StandardStore.js to a separated file web/client/stores/

defaultOptions.js

loading extensions functionalities inside StandardApp has been moved to an

specific withExtensions HOC, so if you are not using main.js  but directly 

StandardApp  and you need extensions you need to add this HOC to your

StandardApp

• 

• 

• 

• 

• 

• 

• 

const appStore = (
    {
        initialState = {
            defaultState: {},
            mobile: {}
        },
        appReducers = {},
        appEpics = {},
        rootReducerFunc = ({ state, action, allReducers }) => allReducers(state, action)
    },
    plugins = {},
    storeOpts = {}
) {
  ...

• 

• 



Migration from 2020.01.00 to 2020.02.00

New authentication rule for internal services

With this new version the support for uploading extensions has been introduced. A

new entry point needs administration authorization to allow the upload of new

plugins by the administrator. So:

In localConfig.json  add the following entry in the authenticationRules  array:

the final entry should look like this

Translation files

The translations file extension has been changed into JSON. Now translation

files has been renamed from data.<locale>  to data.<locale>.json . This change

makes the .json  extension mandatory for all translation files. This means that

depending projects with custom translation files should be renabled in the

same name. E.g. data.it-IT  have to be renamed as data.it-IT.json

Database Update

Database schema has changed. To update your database you need to apply this

SQL scripts to your database

Update the user schema run the script available here:

• 

{
    "urlPattern": ".*rest/config.*",
    "method": "bearer"
  }

 "authenticationRules": [{
        "urlPattern": ".*geostore.*",
        "method": "bearer"
      }, {
        "urlPattern": ".*rest/config.*",
        "method": "bearer"
      }, ...],

• 

• 

-- Update the geostore database from 1.4.2 model to 1.5.0
-- It adds fields to gs_security for external authorization

-- The script assumes that the tables are located into the schema called "geostore"
--      if you put geostore in a different schema, please edit the following search_path.
SET search_path TO geostore, public;

-- Tested only with postgres9.1

https://github.com/geosolutions-it/geostore/tree/master/doc/sql/migration/postgresql


Add new categories

Backend update

For more details see this commit

new files have been added:

web/src/main/webapp/WEB-INF/dispatcher-servlet.xml

web/src/main/resources/mapstore.properties

some files has been changed:

web/src/main/webapp/WEB-INF/web.xml

pom.xml

web/pom.xml

Migration from 2019.02.01 to 2020.01.00

With MapStore 2020.01.00 some dependencies that were previously hosted on

github, have now been published on the npm registry, and package.json has been

updated accordingly. Here is the PR that documents how to update local

package.json and local webpack if not using the mapstore buildConfig/testConfig

common files.

-- Run the script with an unprivileged application user allowed to work on schema geostore

alter table gs_security add column username varchar(255);
alter table gs_security add column groupname varchar(255);

create index idx_security_username on gs_security (username);

create index idx_security_groupname on gs_security (groupname);

• 

-- New CONTEXT category
INSERT into geostore.gs_category (id ,name) values ( 
nextval('geostore.hibernate_sequence'),  'CONTEXT') ON CONFLICT DO NOTHING;
-- New GEOSTORY category (introduced in 2020.01.00)
INSERT into geostore.gs_category (id ,name) values 
(nextval('geostore.hibernate_sequence'),  'GEOSTORY') ON CONFLICT DO NOTHING;
-- New TEMPLATE category
INSERT into geostore.gs_category (id ,name) values ( 
nextval('geostore.hibernate_sequence'),  'TEMPLATE') ON CONFLICT DO NOTHING;
-- New USERSESSION category
INSERT into geostore.gs_category (id ,name) values ( 
nextval('geostore.hibernate_sequence'),  'USERSESSION') ON CONFLICT DO NOTHING;

• 

• 

• 

• 

• 

https://github.com/geosolutions-it/MapStore2/commit/4aa7b917abcb09571af5b9999a38e96f52eac4f3#diff-ac81cff563b78256ef26eca8a5103392592c7138987392a6fb3d79167d11bdcfR66
https://github.com/geosolutions-it/MapStore2/pull/4598


After updating package.json run npm install Now you should be able to run

locally with npm start

For more info see the related issue

Moreover a new category has been added for future features, called GEOSTORY.

It is not necessary for this release, but, to follow the update sequence, you can add

it by executing the following line.

Migration from 2019.01.00 to 2019.01.01

MapStore 2019.01.01 changes the location of some of the build and test

configuration files. This also affects projects using MapStore build files, sp if you

update MapStore subproject to the 2019.01.01 version you also have to update

some of the project configuration files. In particular:

webpack.config.js and prod-webpack.config.js:

update path to themes.js from ./MapStore2/themes.js to ./MapStore2/build/

themes.js

update path to buildConfig from ./MapStore2/buildConfig to ./MapStore2/

build/buildConfig

karma.conf.continuous-test.js and karma.config.single-run.js: update

path to testConfig from ./MapStore2/testConfig to ./MapStore2/build/testConfig

Migration from 2017.05.00 to 2018.01.00

MapStore 2018.01.00 introduced theme and js and css versioning. This allows to

auto-invalidates cache files for each version of your software. For custom projects

you could choose to ignore this changes by setting version: "no-version" in your

app.jsx StandardRouter  selector:

INSERT into geostore.gs_category (id ,name) values 
(nextval('geostore.hibernate_sequence'),  'GEOSTORY') ON CONFLICT DO NOTHING;

• 

• 

• 

• 

//...
const routerSelector = createSelector(state => state.locale, (locale) => ({
    locale: locale || {},
    version: "no-version",
    themeCfg: {
        theme: "mythheme"
    },
    pages
}));

https://github.com/geosolutions-it/MapStore2/issues/4569


Support js/theme versioning in your project

Take a look to this pull request as reference. Basically versioning is implemented in

2 different ways for css and js files :

Add at build time the js files inclusion to the files, with proper hashes.

Load theme css files appending to the URL the ?{version} where version is the

current mapstore2 version The different kind of loading for css files is needed

to continue supporting the theme switching capabilities. For the future we

would like to unify these 2 systems. See this issue.

You have to:

Add the version file to the root ( version.txt ).

Create a template for each html file you have. These files will replace the html

files when you build the final war file. These files are like the original ones but

without the [bundle].js  file inclusion and without theme css.

Add HtmlWebpackPlugin  for production only, one for each js file. This plugin will

add to the template file the script inclusion (example).

if you have to include the script in the head (e.g. api.html  has some script that

need the js to be loaded before executing the inline scripts), use the option 

inject: 'head'

change each entry point ( app.jsx , api.jsx , embedded.jsx , 

yourcoustomentrypoint.jsx ) this way (example):

version  reducer in StandardRouter

loadVersion  action in initialActions

version  and loadAfterTheme  selectors to StandardRouter  state.

const StandardRouter = connect(routerSelector)(require('../MapStore2/web/client/
components/app/StandardRouter'));
//...

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

// Example
const {versionSelector} = require('../MapStore2/web/client/selectors/version');
const {loadVersion} = require('../MapStore2/web/client/actions/version');
const version = require('../MapStore2/web/client/actions/version');
//...
StandardRouter = connect ( state => ({
    locale: state.locale || {},
        pages,
        version : versionSelector(state),
        loadAfterTheme: loadAfterThemeSelector(state)
    }))(require('../MapStore2/web/client/components/app/StandardRouter'))
const appStore = require('../MapStore2/web/client/stores/StandardStore').bind(null, 
initialState, {

https://github.com/geosolutions-it/MapStore2/pull/2538/files
https://github.com/geosolutions-it/MapStore2/issues/2554
https://github.com/geosolutions-it/MapStore2/pull/2538/files#diff-9d452e0b96db9be8d604c4c9dde575b4
https://github.com/geosolutions-it/MapStore2/pull/2538/files#diff-3bea50c2662e64129704ae694b587042


Add to your pom.xml  some execution steps to replace html files with the ones

generated in 'dist' directory. (example). And copy version.txt

Override the version file in your build process (e.g. you can use the commit

hash)

Migration from 2017.05.00 to 2017.03.00 and
previews

In 2017.03.00 the createProject.js  script created only a custom project. From

version 2017.04.00 we changed the script to generate 2 kind of projects:

custom: the previous version

standard: mapstore standard

Standard project wants to help to generate a project that is basically the MapStore

product, where you can add your own plugins and customize your theme (before

this you had to create a project similar to MapStore on your own) Depending on

our usage of custom project, this may introduce some breaking changes. If you

previously included some file from product  folder, now app.jsx  has been changed

to call main.jsx . Please take a look on how the main product uses this to migrate

your changes inside your custom project.

Migration from 2017.01.00 to 2017.02.00

The version 2017.02.00 has many improvements and changes:

introduced redux-observable

updated webpack  to version 2

updated react-intl  to version 2.x

updated react  to [version 15.4.2] (https://facebook.github.io/react/blog/

2016/04/07/react-v15.html)

updated react-bootstrap  to version 0.30.7

    // ...
    version: version
});
// ...
const appConfig = {
    // ...
    initialActions: [loadVersion]
}

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/geosolutions-it/MapStore2/pull/2538/files#diff-eef89535a29b4a95a42d9de83cb53681
https://facebook.github.io/react/blog/2016/04/07/react-v15.html
https://facebook.github.io/react/blog/2016/04/07/react-v15.html


We suggest you to:

align your package.json with the latest version of 2017.02.00.

update your webpack files (see below).

update your tests to react 15 version. see upgrade guide

Update your react-bootstrap  custom components with the new one (see below).

Side Effect Management - Introduced redux-observable

To manage complex asynchronous operations the thunk middleware is not enough.

When we started with MapStore there was no alternative to thunk. Now we have

some options. After a spike (results available here) we chose to use redux-

observable. For the future, we strongly recommend to use this library to perform

asynchronous tasks.

Introducing this library will allow to :

remove business logic from the components event handlers

now all new actionCreators  should return pure actions. All async stuff will be

deferred to the epics.

avoid bouncing between components and state to trigger side effect

speed up development with rxjs  functionalities

Existing thunk integration will be maintained since all the thunks will be

replaced.

If you are using the Plugin system and the StandardStore, you may have only to

include the missing new dependencies in your package.json (redux-observable

and an updated version of redux).

Check the current package.json to get he most recent versions. For testing we

included also redux-mockup-store as a dependency, but you are free to test your

epics as you want.

For more complex integrations check this pull request to see how to integrate

redux-observable or follow the guide on the redux-observable site.

Webpack update to version 2

We updated webpack (old one is deprecated), check this pull request to find out

how to update your webpack files. here a list of what we had to update:

module.loaders are now module.rules

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://facebook.github.io/react/blog/2016/04/07/react-v15.html#upgrade-guide
https://github.com/geosolutions-it/MapStore2/issues/1420
https://github.com/geosolutions-it/MapStore2/pull/1471
https://redux-observable.js.org/
https://github.com/geosolutions-it/MapStore2/pull/1491


update your package.json with latest versions of webpack, webpack plugins

and karma libs and integrations (Take a look to the changes on package.json in

the pull request if you want a detailed list of what to update in this case).

change your test proxy configuration with the new one.

More details on the webpack site.

react-intl update to 2.x

See this pull request for the details. You should only have to update your

package.json

react update to 15.4.2

Check this pull request to see how to:

update your package.json

update your tests

React Bootstrap update

The version we are using is not documented anymore, and not too much

compatible with react 15 (too many warnings). So this update can not be

postponed anymore. The bigger change in this case is that the Input component do

not exists anymore. You will have to replace all your Input with the proper

components, and update the package.json . See this pull request for details.

• 

• 

• 

• 

https://webpack.js.org/migrate/
https://github.com/geosolutions-it/MapStore2/pull/1495/files
https://github.com/geosolutions-it/MapStore2/pull/1511




How to release

To create a new MapStore release, you need to:

Create an issue of type Mapstore Release  on GitHub by clicking here with the

title of the release.

Follow the checklist in the issue created.

Here below some details about changelog generation and naming conventions.

Changelog generation

Generate new changelog by running this:

Release Checklist

naming conventions

release and tag

vYYYY.XX.mm name of the release and tag. (e.g. v2022.01.01 )

YYYY is the year,

XX is the incremental number of the release for the current year (starting

from 01)

mm is an incremental value (starting from 00) to increment for minor releases

stable branch

YYYY.XX.xx name of stable branch (e.g. 2022.01.xx  )

YYYY is the year

XX is the incremental number of the release for the current year (starting

from 01)

xx is the fixed text xx

• 

• 

npm run generate:changelog <oldReleaseNumber>  <newReleaseNumber>

# usage
# generate:changelog 2022.01.00 2022.02.00

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/geosolutions-it/MapStore2/issues/new?assignees=&labels=internal&template=release_steps.md&title=


Developer Generic Guidelines

This guide wants to provide general information and suggestions about how to

write code for MapStore. It contains a practical guide to write plugins for

MapStore, then some general information about writing redux actions, reducers

and redux-observble epics, with some hints specific of MapStore.

Still to do:

Writing enhancers

Writing components

Using JS API

Work in progress:

Extensions

• 

• 

• 

• 





Creating a MapStore2 plugin

The MapStore2 plugins architecture allows building your own independent

modules that will integrate seamlessly into your project.

Creating a plugin is like assembling and connecting several pieces together into an

atomic module. This happens by writing a plugin module, a ReactJS JSX file

exporting the plugin descriptor.

Introduction

During this tutorial, you will learn how to create and configure plugins in a

MapStore project. If you don't know how to work with MapStore projects, please

read the Projects Guide. For this tutorial, a "standard project" is used.

A plugin example

js/plugins/Sample.jsx

Plugins are react component exported with the createPlugin function

Being a component with a name (Sample in our case) you can include it in your

project by creating a plugins.js file.

import React from "react";
import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Sample = () => {
    const style = {
        position: "absolute",
        top: 100,
        left: 100,
        zIndex: 2000
    };
    return (
        <div style={style}>
            Sample
        </div>
    );
};

export default createPlugin("Sample", {
    component: Sample
});

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/framework#createPlugin


js/plugins.js

Note The chosen component name is always suffixed with Plugin when imported

in the plugins.js file.

Include the plugin.js from your app.jsx either replacing the plugins import from

the product or extending it:

js/app.jsx

Then you have to configure it properly so that is enabled in one or more

application modes / pages:

localConfig.json

import SamplePlugin from "./plugins/Sample";

export const plugins = {
    // ...
    SamplePlugin,
    // ...
};

export default {
    plugins
};

...

import m2Plugins from "@mapstore/product/plugins";
import customPlugins from "./plugins";
import main from "@mapstore/product/main";

const allPlugins = {
    ...m2Plugins,
    plugins: {
        ...customPlugins.plugins,
        ...m2Plugins.plugins
    }
};

main(appConfig, allPlugins);

{
    ...
    "plugins": {
        "desktop": [{ "name": "Sample" }, ...],
        ...
    }
}



Note: to enable a plugin you need to do two things:

import it in the plugins.js file

configure it in localConfig.json (remove the Plugins suffix here)

If one is missing, the plugin won't appear. To globally remove a plugin from your

project the preferred way is removing it from plugins.js, because this will reduce

the global javascript size of your application.

You can also specify plugins properties in the configuration, using the cfg

property:

localConfig.json (2)

A store connected plugin example

A plugin component is a smart component (connected to the Redux store) so that

properties can be taken from the global state, as needed.

js/plugins/Sample.jsx (1)

• 

• 

{
    ...
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "cfg": {
                "myproperty": "myvalue"
            }
        }, ...],
        ...
    }
}

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const SampleComponent = ({
    style,
    zoom
}) => {
    return (
        <div style={style}>
            Zoom: {zoom}
        </div>
    );
};



A plugin can use actions to update the global state.

js/plugins/Sample.jsx (2)

SampleComponent.propTypes = {
    style: PropTypes.object,
    zoom: PropTypes.number
};

SampleComponent.defaultProps = {
    style: {
        position: "absolute",
        top: 100,
        left: 100,
        zIndex: 2000
    }
};

const Sample = connect((state) => {
    return {
        // connected property
        zoom: state?.map?.present?.zoom
    };
})(SampleComponent);

export default createPlugin("Sample", {
    component: Sample
});

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";
import { changeZoomLevel } from "@mapstore/actions/map";

const SampleComponent = ({
    style,
    zoom,
    onZoom
}) => {
    return (
        <div style={style}>
            Zoom: {zoom}
            <button onClick={() => onZoom(zoom + 1)}>
                Increase
            </button>
        </div>
    );
};

SampleComponent.propTypes = {
    style: PropTypes.object,
    zoom: PropTypes.number,
    onZoom: PropTypes.func



A plugin can define its own state fragments and the related reducers. You will also

be able to define your own actions.

js/actions/sample.js

js/reducers/sample.js

};

SampleComponent.defaultProps = {
    style: {
        position: "absolute",
        top: 100,
        left: 100,
        zIndex: 2000
    },
    onZoom: () => {}
};

const Sample = connect((state) => {
    return {
        zoom: state?.map?.present?.zoom
    };
}, {
    // connected action
    onZoom: changeZoomLevel
})(SampleComponent);

export default createPlugin("Sample", {
    component: Sample
});

export const UPDATE_SOMETHING = "SAMPLE:UPDATE_SOMETHING";
export const updateSomething = (payload) => ({
    type: UPDATE_SOMETHING,
    payload
});

import { UPDATE_SOMETHING } from "@js/actions/sample";
function sample(
    state = { text: "Initial Text" },
    action
) {
    switch (action.type) {
        case UPDATE_SOMETHING:
            return {
                text: action.payload
            };
        default:
            return state;
    }
}
export default sample;



js/plugins/Sample.jsx (3)

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

import { updateSomething } from "@js/actions/sample";
import sample from "@js/reducers/sample";

const SampleComponent = ({
    style,
    text,
    onUpdate
}) => {
    return (
        <div style={style}>
            Text: {text}
            <button
                onClick={() => onUpdate("Updated Text")}
            >
            Update
            </button>
        </div>
    );
};

SampleComponent.propTypes = {
    style: PropTypes.object,
    text: PropTypes.string,
    onUpdate: PropTypes.func
};

SampleComponent.defaultProps = {
    style: {
        position: "absolute",
        top: 100,
        left: 100,
        zIndex: 2000
    },
    text: "",
    onUpdate: () => {}
};

const Sample = connect((state) => {
    return {
        // connected property
        text: state?.sample?.text
    };
}, {
    // connected action
    onUpdate: updateSomething
})(SampleComponent);

export default createPlugin("Sample", {



Data fetching and side effects

Side effects should be limited as much as possible, but there are cases where a

side effect cannot be avoided. In particular we need to asynchronously load the

data from external web services or files.

To handle data fetching a plugin can define Epics. To have more detail about epics

look at the Epics developers guide section of this documentation.

js/actions/sample.js

js/reducers/sample.js

    component: Sample,
    reducers: {
        sample
    }
});

// custom action
export const LOAD_DATA = "SAMPLE:LOAD_DATA";
export const LOADED_DATA = "SAMPLE:LOADED_DATA";
export const LOAD_ERROR = "SAMPLE:LOAD_ERROR";
export const loadData = () => ({
    type: LOAD_DATA
});

export const loadedData = (payload) => ({
    type: LOADED_DATA,
    payload
});

export const loadError = (error) => ({
    type: LOAD_ERROR,
    error
});

import { LOADED_DATA, LOAD_ERROR } from "@js/actions/sample";
function sample(
    state = { text: "Initial Text" },
    action
) {
    switch (action.type) {
        case LOADED_DATA:
            return {
                text: action.payload
            };
        case LOAD_ERROR:
            return {
                error: action.error
            };
        default:

./writing-epics


js/epics/sample.js

js/plugins/Sample.jsx

            return state;
    }
}
export default sample;

import { Observable } from "rxjs";
import axios from "axios";

import {
    LOAD_DATA,
    loadedData,
    loadError
} from "@js/actions/sample";

export const loadDataEpic = (action$) =>
    action$.ofType(LOAD_DATA)
        .switchMap(() => {
            return Observable.defer(() =>
                axios.get("version.txt")
            )
                .switchMap((response) =>
                    Observable.of(
                        loadedData(response.data)
                    )
                )
                .catch(e =>
                    Observable.of(
                        loadError(e.message)
                    )
                );
        });

export default {
    loadDataEpic
};

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

import { loadData } from "@js/actions/sample";
import sampleEpics from "@js/epics/sample";
import sample from "@js/reducers/sample";

const SideEffectComponent = ({
    style,
    text,
    onLoad
}) => {



Plugin Containers

It is possible to define Container plugins, that are able to receive a list of items

from the plugins system automatically. Think of menus or toolbars that can

dynamically configure their items / tools from the configuration.

In addition to those "user defined" containers, there is always a root container.

When no container is specified for a plugin, it will be included in the root

container.

    return (
        <div style={style}>
            Text: {text}
            <button onClick={() => onLoad()}>
                Load
            </button>
        </div>
    );
};

SideEffectComponent.propTypes = {
    style: PropTypes.object,
    text: PropTypes.string,
    onLoad: PropTypes.func
};

SideEffectComponent.defaultProps = {
    style: {
        position: "absolute",
        top: 100,
        left: 100,
        zIndex: 2000
    },
    text: "",
    onLoad: () => {}
};

const Sample = connect((state) => {
    return {
        text: state?.sample?.text
    };
}, {
    // connected action
    onLoad: loadData
})(SideEffectComponent);

export default createPlugin("Sample", {
    component: Sample,
    reducers: {
        sample
    },
    epics: sampleEpics
});



js/plugins/Container.jsx

Plugins for other plugins

Since we have containers, we can build plugins that can be contained in one or

more container plugins.

js/plugins/Sample.jsx

import React from "react";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Container = ({
    style,
    items
}) => {
    return (
        <div style={style}>
            {items.map(item => {
                // item.plugin is the plugin ReactJS component
                const Item = item.plugin;
                return (
                    <Item
                        key={item.id}
                        id={item.id}
                        name={item.name}
                    />
                );
            })}
        </div>
    );
};

Container.propTypes = {
    style: PropTypes.object,
    items: PropTypes.array
};

Container.defaultProps = {
    style: {
        position: "absolute",
        top: 100,
        left: 100,
        zIndex: 2000
    },
    items: []
};

export default createPlugin("Container", {
    component: Container
});



Each section defines a possible container for the plugin, as the name of another

plugin (Container in the example). The properties in it define the plugin behaviour

in relation to the container (e.g. id of the item).

Containers will receive a list of items similar to this:

import React from "react";
import { connect } from "react-redux";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

import sample from "@js/reducers/sample";

const SampleComponent = ({
    text
}) => {
    return (
        <div>
            Text: {text}
        </div>
    );
};

SampleComponent.propTypes = {
    text: PropTypes.string
};

SampleComponent.defaultProps = {
    text: ""
};

const Sample = connect((state) => {
    return {
        text: state?.sample?.text
    };
})(SampleComponent);

export default createPlugin("Sample", {
    component: Sample,
    reducers: {
        sample
    },
    containers: {
        // we support the previously defined Container Plugin as a
        // possible container for this plugin
        Container: {
            name: "Sample",
            id: "sample-tool",
            priority: 1
        }
    }
});



Notice that also container related properties can be overridden in the application

configuration, using the override property:

localConfig.json

Plugins Configuration

We have already mentioned that plugins can be configured through the

localConfig.json file. The simplest configuration needed to include the plugin in a

particular application mode is accomplished by listing a JSON object specifying the

name property of the plugin in the plugins array of the chosen mode/page:

localConfig.json

It is possible to customize a plugin configuration adding a cfg property to the

plugin JSON object. All the cfg properties are passed as props to the main

component of the plugin.

items = [{ plugin: Sample, name: "Sample", id: "sample-tool", ... }]

{
    ...
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "override": {
                "Container": {
                    "name": "Another Sample"
                }
            }
        }, ...],
        ...
    }
}

{
    ...
    "plugins": {
        "desktop": [{ "name": "Sample" }, ...],
        ...
    }
}

{
    ...
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "cfg": {



Dynamic configuration

Configuration can also dynamically change when the application state changes.

This is accomplished by using expressions in configuration values. An expression

is a value of the following form:

The expression itself is javascript code (supported by the browser, babel

transpiled code is not supported here) where you can use the following variables:

request: request URL parsed by the url library

context: anything defined in plugins.js requires section

state: a function usable to extract values from the application state (e.g.

state('map.present.zoom' to get current zoom))

Note that not all the application state is available through the state function, only

the monitored state is. To add new fragments the monitored state, you can add the

following to localConfig.json:

The default monitored state is:

                "text": "my text"
            }
            ...
        }, ...],
        ...
    }
}

"property": "{expression}"

• 

• 

• 

{
    ...,
    "monitorState": [
        {"name": "router", "path": "router.location.pathname"},
        {"name": "browser", "path": "browser"},
        {"name": "featuregridmode", "path": "featuregrid.mode"}
    ],
    ...
}

{
    ...,
    "monitorState": [
        {"name": "router", "path": "router.location.pathname"},
        {"name": "browser", "path": "browser"},
        {"name": "geostorymode", "path": "geostory.mode"},
        {"name": "featuregridmode", "path": "featuregrid.mode"},
        {"name": "userrole", "path": "security.user.role"},
        {"name": "printEnabled", "path": "print.capabilities"}

https://www.npmjs.com/package/url


Example

Container configuration

Each plugin can define a list of supported containers, but it's the plugin system

that decides which ones will be used at runtime based on:

container existence: if a container is not configured, it will not be used

between the existing ones, the ones with the highest priority property value

will be chosen; note that a plugin can be included in more than one container if

they have the same priority

Example

    ],
    ...
}

{
    ...,
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "cfg": {
                "text": "{state('mapType') === 'leaflet' ? 'Leaflet Map' : 'OpenLayers Map'}"
            }
            ...
        }, ...],
        ...
    }
    ...
}

• 

• 

// ...

import { createPlugin } from "@mapstore/utils/PluginsUtils";

// ...

export default createPlugin("Sample", {
    component: Sample,
    containers: {
        Container1: {
            name: "Sample",
            id: "sample-tool",
            priority: 1,
            // ...
        },
        Container2: {
            name: "Sample",
            id: "sample-tool",
            priority: 2,



If all the containers exist, Container3 will be chosen, the one with highest priority,if

not Container2 will be used, and so on.

To explicitly configure plugins containment and introduce custom behaviours

(overriding default properties), the override configuration property is available.

Using it, you can override the relation between a plugin and its supported

containers.

We can change containers relation like this:

This will force the plugin system to choose Container1 instead of Container3, and

will override the name property.

There is also a set of options to (dynamically) add/exclude containers:

showIn: can be used to add a plugin to a container or more than one, in

addition to the default one (it is an array of container plugin names)

hideFrom: can be used to exclude a plugin from a given container or more

than one (it is an array of container plugin names)

doNotHide: can be used to show a plugin in the root container, in addition to

the default one

            // ...
        },
        Container3: {
            name: "Sample",
            id: "sample-tool",
            priority: 3,
            // ...
        }
    }
});

{
    ...,
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "override": {
                "Container1": {
                    "name": "custom name",
                    "priority": 4
                }
            }
            ...
        }, ...],
        ...
    }
    ...
}

• 

• 

• 



alwaysRender: can be used to always renders the component in the given

container, regardless the priority

Note that also these properties accept dynamic expressions.

js/plugins/Container.jsx

js/plugins/ContainerOther.jsx

• 

import React from "react";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Container = ({
    items
}) => {
    const style = {
        zIndex: 1000,
        border: "solid black 1px",
        width: "200px",
        height: "200px",
        position: "absolute",
        top: "100px",
        left: "100px"
    };
    return (
        <div style={style}>
            {items.map(item => {
                // item.plugin is the plugin ReactJS component
                const Item = item.plugin;
                return (
                    <Item
                        key={item.id}
                        id={item.id}
                        name={item.name}
                    />
                );
            })}
        </div>
    );
};

Container.propTypes = {
    items: PropTypes.array
};

Container.defaultProps = {
    items: []
};

export default createPlugin("Container", {
    component: Container
});



js/plugins/Sample.jsx

import React from "react";
import PropTypes from "prop-types";

import { createPlugin } from "@mapstore/utils/PluginsUtils";

const ContainerOther = ({
    items
}) => {
    const style = {
        zIndex: 1000,
        border: "solid red 1px",
        width: "200px",
        height: "200px",
        position: "absolute",
        top: "100px",
        left: "100px"
    };
    return (
        <div style={style}>
            {items.map(item => {
                // item.plugin is the plugin ReactJS component
                const Item = item.plugin;
                return (
                    <Item
                        key={item.id}
                        id={item.id}
                        name={item.name}
                    />
                );
            })}
        </div>
    );
};

ContainerOther.propTypes = {
    items: PropTypes.array
};

ContainerOther.defaultProps = {
    items: []
};

export default createPlugin("ContainerOther", {
    component: ContainerOther
});

import React from "react";
import { createPlugin } from "@mapstore/utils/PluginsUtils";

const Sample = () => {
    return (
        <div>Hello</div>
    );
};



With this configuration the sample plugin will be shown in both Container and

ContainerOther plugins (they have the same priority, so both are picked).

We can change this using showIn  or hideFrom  in localConfig.json :

localConfig.json - showIn  and hideFrom  examples

or

export default createPlugin("Sample", {
    component: Sample,
    containers: {
        Container: {
            name: "Sample",
            id: "sample-tool",
            priority: 1
        },
        ContainerOther: {
            name: "Sample",
            id: "sample-tool",
            priority: 1
        }
    }
});

{
    ...,
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "showIn": ["Container"]
            ...
        }, ...],
        ...
    }
    ...
}

{
    ...,
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "hideFrom": ["ContainerOther"]
            ...
        }, ...],
        ...
    }
    ...
}



We can also add the plugin to the root container, using the doNotHide property

(note that this is a container property, so we have to use an override for it):

localConfig.json - doNotHide  example

Conditionally disabling plugins

Dynamic expression can also be used to enable a plugin only when a specific

application state is met, using the disablePluginIf property.

The plugin will be disabled in 3D mode.

Lazy loading plugins

You can lazy load your plugins components using the react lazy and Suspense API.

This is especially useful for plugins that include components with big external

libraries.

{
    ...,
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "showIn": ["Container"],
            "override": {
                "Container": {
                    "doNotHide": true
                }
            }
            ...
        }, ...],
        ...
    }
    ...
}

{
    ...,
    "plugins": {
        "desktop": [{
            "name": "Sample",
            "cfg": {
                "disablePluginIf": "{state('mapType') === 'cesium'}"
            }
            ...
        }, ...],
        ...
    }

...
}



js/plugins/Sample.jsx

Testing plugins

As we already mentioned a plugin is a collection of entities that should already

have unit tests (components, reducers, actions, selectors, epics). We can limit

plugins testing to testing the interactions between these different entities, for

example:

connection of the redux state to the plugins properties

epics that are related to the plugin lifecycle

containment relations between plugins

To ease writing a plugin unit test, an helper is available (pluginsTestUtils) that can

be used to:

create a plugin connected with a redux store (getPluginForTest), initialized

with plugin's defined reducers and epics, and with a given initial state

import React, { useState, lazy, Suspense } from "react";
import { createPlugin } from "@mapstore/utils/PluginsUtils";
const LazySampleComponent = lazy(() => import("@js/components/
LazySampleComponent"));

const Sample = () => {
    // this local state could be moved to redux state
    // as explained in previous sections
    const [enabled, setEnabled] = useState(false);
    const style = {
        position: "absolute",
        top: 100,
        left: 100,
        zIndex: 2000
    };
    return (
        <div style={style}>
            <button onClick={() => setEnabled(enabled)}>Load plugin</button>
            {enabled
                ? <Suspense fallback="Loading...">
                    <LazySampleComponent />
                </Suspense>
                : null}
        </div>
    );
};

export default createPlugin("Sample", {
    component: Sample
});

• 

• 

• 

• 



get access to the redux store

get access to the list of actions dispatched to the store

get access to the list of containers plugins supported by the plugin (you can

limit this list by passing your plugins definitions to getPluginForTest)

Examples

js/plugins/__tests__/MyPlugin-test.js

• 

• 

• 

import expect from "expect";
import React from "react";
import ReactDOM from "react-dom";

import MyPlugin from "../MyPlugin";
import { getPluginForTest } from "@mapstore/plugins/__tests__/pluginsTestUtils";

const initialState = {};

describe("MyPlugin Test", () => {
    beforeEach((done) => {
        document.body.innerHTML = "<div id=\"container\"></div>";
        setTimeout(done);
    });

    afterEach((done) => {
        ReactDOM.unmountComponentAtNode(document.getElementById("container"));
        document.body.innerHTML = "";
        setTimeout(done);
    });

    it("creates MyPlugin with default configuration", () => {
        const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState);
        ReactDOM.render(<Plugin />, document.getElementById("container"));
        expect(document.getElementById("<my plugin id>")).toBeTruthy();
        expect(...);
    });
    // use pluginCfg to override plugins properties
    it("creates MyPlugin with custom configuration", () => {
        const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState);
        ReactDOM.render(<Plugin pluginCfg={{
            property: "value"
        }}/>, document.getElementById("container"));
        expect(document.getElementById("<my plugin id>")).toBeTruthy();
        expect(...);
    });

    // test connected epics looking at the actions array
    it("test plugin epics", () => {
        const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState);
        ReactDOM.render(<Plugin/>, document.getElementById("container"));
        store.dispatch({
            type: ACTION_CAPTURED_BY_AN_EPIC,
            payload



General Guidelines

Components

Define the plugin component(s) into dedicated JSX file(s), so that they can be

reused outside of the plugin

Connect the component(s) in the plugin JSX file

State

Define your own state fragment (and related actions and reducers) to handle

internal state, and use existing actions and state fragments from MapStore2 to

interact with the framework

Selectors

Use existing selectors when possible to connect the state, eventually using

reselect to compose them together or with your own selectors

General

Avoid as much as possible direct interactions between different plugins;

plugins are meant to be independent modules, so they should be able to work if

other plugins appear / disappear from the application configuration

Interact with other plugins and the application itself using actions and state

sharing

        });
        expect(actions.filter(action => action.type === 
ACTION_LAUNCHED_BY_AN_EPIC).length).toBe(1);
    });

    // test supported containers
    it("test containers", () => {
        const {Plugin, store, actions, containers } = getPluginForTest(MyPlugin, initialState, 
{
            MyContainerPlugin: {}
        });
        ReactDOM.render(<Plugin/>, document.getElementById("container"));
        expect(Object.keys(containers)).toContain("MyContainer");
    });
});

• 

• 

• 

• 

• 

• 



Creating side effects to make plugins interact in more strict ways should not be

done at the plugin level, orchestrating different plugins should be delegated at

the top (application) level

Use containers configuration to combine plugins in containers

• 

• 





Writing Epics

Most of the asynchronous operations we are doing in MapStore2 are implemented

using epics. This guide gives the developer the base concepts about epics and

provides the best practices to write and add your epics to a MapStore2 project.

Base Concepts

Epics are the core element of the redux middleware called redux-observable. 

redux-observable is based on RxJS.

RxJS is a library for reactive programming using Observables, to make it easier

to compose asynchronous or callback-based code.

stream The concept of stream is "sequence of data made available over time.".

Observable is the core entity of RxJS and, more generically, of the whole reactive

programming paradigm. Basically it is an entity that emits events and can be

subscribed to, so that subscribers can intercept the events emitted. This is the

entity that implements the concept of stream (so stream and Observable are

almost used as synonym).

Subscribing to observables can be hard, so RxJs provides a lot of operators to

help manipulating and combining observables (so, streams). Here an example of

how operators allow manipulating an event stream to count clicks:

The final stream can be finally subscribed to update, for instance, a counter on the

UI.

--a---b-c---d---X---|->

a, b, c, d are emitted values
X is an error
| is the 'completed' signal
---> is the timeline

clickStream:    ---c----c--c----c------c--> <-- Stream of clicks
                vvvvv map(c becomes 1) vvvv <-- operator that transforms each event into a 
`1`
                ---1----1--1----1------1--> <-- new stream returned by the operator
                vvvvvvvvv scan(+) vvvvvvvvv <-- operator that does the sum
counterStream:  ---1----2--3----4------5--> <-- click count stream returned by the operator

https://github.com/reduxjs/redux
https://redux-observable.js.org/


Versions

At the time of writing this documentation MapStore2 is using RxJS 5.1.1 and

redux-observable 0.19.0. So make you sure to check the correct documentation

about the current versions of these libraries.

What is an epic

An epic is basically nothing more than:

a function that returns a stream of redux actions to emit.

A simple epic in mapstore can be this one:

The epic function has 2 arguments:

action$ : the stream of redux actions. Every time an action is triggered through

redux, it is emitted as an event on the action$  stream.

store . A small version of the redux store, that contains essentially only one

important method called getState() . This method returns the current redux

state object.

This function must return a new stream that emits the actions we want to

dispatch to redux. The redux-observable middleware subscribes to the action

streams returned by the epics so the actions will be automatically triggered on

redux.

NOTE: redux-observable middleware is already added to the MapStore2's

StandardStore and StandardApp, so a developer should only take care of

creating his own epics and add them to MapStore.

Typically the stream returned by an epic is always listening for new actions and

dispatches other actions:

actions in, actions out.

Let's analyze the epic reported as first example:

const fetchUserEpic = (action$, store) => action$
    .ofType(MAP_CONFIG_LOADED)
    .filter(() => isMapLoadConfigurationEnabled(store.getState()))
    .map({
        type: NOTIFICATION,
        message: "Map Loaded"
    });
);

• 

• 



It returns a stream ( arrow function ( => ) implicit return) manipulating the action$

stream. It first filters out all the unwanted actions catching only the 

MAP_CONFIG_LOADED  action types, then another filter checks the state to verify

some condition (typically a selector  can be used to check the state).

NOTE: redux-observable adds an operator to rxjs called ofType  that simply

filters the actions of certain types, passed as argument, but it is not a part of

standard RxJS operators.

The events that passed the 2 filters then hit the map  operator. The map operator

simply returns the (action) object:

This object will be emitted on the returning stream and so the action will be

triggered in redux.

Of course instead of emitting the plain object, you can use an action creator, like

this:

Create complex data flows triggered by actions

Typical operators to start creating a complex data flow are:

switchMap

mergeMap

exhaustMap, forkJoin and many others...

The base concept of all these solutions is to create one or more new streams (using

a function passed as argument) and then emit the events on the final Observer.

Note: Creating Higher order observables (that are basically streams of streams)

and merging their events is a common pattern in RxJs, so, mergeMap and

{
    type: NOTIFICATION,
    message: "Map Loaded"
}

const notifyMapLoaded = (action$, store) => action$
    .ofType(MAP_CONFIG_LOADED)
    .filter(() => isMapLoadConfigurationEnabled(store.getState()))
    .map(info({
        message: "Map Loaded"
    }))
);

• 

• 

• 

http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-method-switchMap
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-method-mergeMap
https://gianttoast.gitbooks.io/rxjs-observables/content/higher-order-observables.html


switchMap are simpler shortcuts to increase readability and maintainability of

the code:

mergeMap() is just map() + mergeAll()

switchMap() is just map() + switch().

Example:

In this epic, every time START_COUNTDOWN  action is performed, the switchMap

operator's argument function will be executed. The argument function of 

switchMap  must return an Observable. Every value emitted on this stream will be

projected on the main flow.

So on the first START_COUNTDOWN  the timer starts ( Rx.Observable.interval(1000) ).

The timer will emit an incremental value (0, 1, 2, ...) every 1000 milliseconds. This

value is used to trigger another action to emit on redux (using an action creator

called updateTime , for instance).

At the end the stream will be closed after the n seconds because of the takeUntil:

.takeUntil(Rx.Observable.timer(seconds * 1000))  unsubscribes the observable when the

stream passed as function emits a value.

switchMap  operator unsubscribes its observable ( so stops getting events from it )

even if another event comes on the main stream (so in this case another 

START_COUNTDOWN  action).

If you don't want to stop listening you may need to use mergeMap  instead.

Imagine to have to modify the epic above to manage many countdowns, identified

by an id . In this case a START_COUNTDOWN event should not stop the ones

already started. You can do it using mergeMap .

• 

• 

const countDown = action$ => action$
    .ofType(START_COUNTDOWN)
    .switchMap( ({seconds}) =>
        Rx.Observable.interval(1000)
            .map( (value) => updateTime(seconds - value))
            .takeUntil(Rx.Observable.timer(seconds * 1000))
    );

---{seconds: 5}------------------------> action in
vv switchMap vvvvvvvvvvvvvvvvvvvvvvvvvv
--------------{5}--{4}--{3}--{2}--{1}--> action out

---{seconds: 5}------{seconds: 5}----------------------->   action in
vvvvvvvvvvvvvvvvv switchMap vvvvvvvvvvvvvvvvvvvvvvvvvvvv
--------------{5}-{4}----------{5}--{4}--{3}--{2}--{1}-->   action out



In this case the streams will look like this:

Doing AJAX

Ajax calls in MapStore should all pass by libs/ajax.js . This is an axios  instance that

adds the support for using proxies or CORS.

Axios is a library that uses ES6 Promises to do ajax calls. Luckily RxJs allows to use

Promises instead of streams in most of the cases. In the other cases, there is a

specific operator called defer  that you can use to wrap your Promise into a stream.

NOTE: It is perfectly normal to consider the concept of Promise as a special case

of a stream, that emit only one value, then closes.

So, every time you have to do an ajax call, you will need to use axios:

Example with defer :

Epic state: muted / unmuted

All the epics attached to plugins or extension will be registered once plugin is

loaded.

Each registered epic can be in one of two possible states:

const countDown = action$ => action$
    .ofType(START_COUNTDOWN)
    // mergeMap do not stops the flows already created.
    .mergeMap( ({seconds, id}) => // the id of the new countdown is in the action
        Rx.Observable.interval(1000)
            // emit an action that updates the coundown for the specific id
            .map( (value) => updateTime(seconds - value, id))
            .takeUntil(Rx.Observable.timer(seconds * 1000))
    );

---{sec: 5,id: A}----{sec: 5, id: B}----------------------------->   action in
vvvvvvvvvvvvvvvvvvvvvvvvvv switchMap vvvvvvvvvvvvvvvvvvvvvvvvvv
...............A....A....A....A...B...A...B....B....B....B........    id
--------------{5}--{4}--{3}--{2}-{5}-{1}-{4}--{3}--{2}--{1}------->   value

const axios = require('../libs/ajax');
const fetchDataEpic = (action$, store) => action$
    .ofType(FETCH_DATA)
    .switchMap(
        Rx.Observable.defer(() => axios.get("MY_DATA")) // defer gets a function
            map(response => dataFetched(response.data))
    );



muted: no reaction to the actions that comes in unmuted: reacting to the listed

actions

Whenever new epic is registered it will be in unmuted state by default.

Epic will become muted whenever there is no plugin/extension on the page

listing that specific epic in plugin definition. In other words, if there are 

Extension1  and Plugin2 , both are adding epic called testEpic  and both plugin

and extension are not added to the current page plugins in pluginsConfig, then

epic will become muted.

Muted epics: how to mute internal streams

MapStore will mute all the epics whenever corresponding plugin or extension is

not rendered on the page. Though, it might be the case that one of your epics will

return internal stream, like in example below:

In this case, internal stream should be muted explicitly.

Each epic receives third argument type of object, having property called 

pluginRenderStream$ . Combined with semaphore  it allows to mute internal stream

whenever epic is muted:

• 

• 

export const dummyEpic = (action$, store) => action$.ofType(ACTION)
    .switchMap(() => {
        return Rx.Observable.interval(1000)
            .switchMap(() => {
                console.log('TEST');
                return Rx.Observable.empty();
            });
    });

export const dummyEpic = (action$, store, { pluginRenderStream$ }) => 
action$.ofType(ACTION)
    .switchMap(() => {
        return Rx.Observable.interval(1000)
            .let(semaphore(pluginRenderStream$.startWith(true)))
            .switchMap(() => {
                console.log('TEST');
                return Rx.Observable.empty();
            });
    });





Writing Actions and Reducers

┻┳|

┳┻| _

┻┳| •.•)  "Hey, Checkout this awesome documentation for actions and

reducers!"

┳┻|⊂ﾉ ┻┳| 

What are actions?

Quoting the redux documentation they are:

Actions are payloads of information that send data from your application to your

store.

They are simply plain JavaScript objects

They must have type property, typically a constant with a string value, but any

other properties are optional

Why we use them

We need them to trigger changes to the application's store via reducers. To do that

we use Action Creators

Action Creators

They are simply function that returns actions objects

/* trigger the panning action of the map to a center point */
const center = [42.3, 36.5];
export const PAN_TO = 'MAP:PAN_TO';
{
    type: PAN_TO,
    center
}

const defaultValue = [42.3, 36.5];
/*
 * by convention, use an initial name (the action filename)
 * in order to describe better the action type, in this case MAP
 * separated by a colon : and the action constant name
*/

https://redux.js.org/basics/actions


Note: Stick to es6 import/export module system and when possible provide a

default value for the parameters

These action creators are used in the connected components or in MapStore2

plugins But actions by themselves are not enough we need Reducers that

intercepts those actions and change the state accordingly.

Note: Remember to put all the actions .js files in the web/client/actions folder or in

js/actions if you are working with custom plugins

Reducers

Again quoting redux documentation they are:

Reducers specify how the application's state changes in response to actions sent

to the store.

Reducers are pure functions that take the previous state and an action and return

a new state

(previousState, action) => newState

let's see an example:

As you can see we are changing the center of the map that triggers the panning

action of the mapping library

export const PAN_TO = 'MAP:PAN_TO';
export const panTo = (center = defaultValue) => ({
    type: PAN_TO,
    center
});

// @mapstore is an alias for dir_name/web/client (see webpack.config.js)
import {PAN_TO} from '@mapstore/actions/map';

export default function map(state, action) {
    switch (action.type) {
        case PAN_TO: {
            return {
                ...state,
                center: action.center
            };
        }
        default: return state;
    }
}

https://redux.js.org/basics/reducers


And that's it we have wrote an action and a reducers that make the map panning

around.

Note: Remember to put all the reducers .js files in the web/client/reducers folder

or in js/reducers if you are working with custom plugins

Advanced usage and tips

Sometimes you need to change a value of an item which is stored inside an array

or in a nested object.

Let's imagine we have this object in the store:

And we have created an action that holds the id of the object to change and some

properties

Then in the reducer we can have different implementations. Here we show the one

using arrayUpdate from @mapstore/utils/ImmutableUtils for updating objects in

array

layer: {
    features: [object_1, object_2, ...object_n]
}

export const UPDATE_LAYER_FEATURE = 'LAYER:UPDATE_LAYER_FEATURE'
export const updateFeature = (id, props = {}) => ({type: UPDATE_LAYER_FEATURE, id, 
props})

import {UPDATE_LAYER_FEATURE} from '@mapstore/actions/layer';
import {find} from 'lodash';
const defaultState = {
    features: [{ id: 1, type: "Feature", geometry: { type : "Point", coordinates: [1, 2]}}]
};

export default function layer(state = defaultState, action) {
    switch (action.type) {
        case UPDATE_LAYER_FEATURE: {
            // let's assume that action.props = {newProp: "newValue"}
            const feature = find(state.features, {id: action.id});
            // merging the old feature object with the new prop while replacing the existing 
element in the array
            const newFeature = {...feature, ...action.props};
            return arrayUpdate("features", newFeature, {id: action.id}, state);
            // after this you expect to find the new properties in the feature specified by the id
        }
        default: return state;
    }
}



Testing

Tests in mapstore are stored in __tests__  folder at the same level where actions/

reducer are. The file name is the same of the action/reducer with a '-test' suffix

We use expect as testing library, therefore we suggest to have a look there.

How to test an action

Typically you want to test the type and the params return from the action creator

let's test the mapTo action:

In order to speed up the unit test runner, you can:

change the path in tests.webpack.js (custom/standard project) or

build\tests.webpack.js (framework) to point to the folder parent of tests for

example '/js/actions'  for custom/standard project or '../web/client/actions'  for

framework

then run this command: npm run test:watch

This allows to run only the tests contained to the specified path. Note: When all

tests are successfully passing remember to restore it to its original value.

How to test a reducer

Here things can become more complicated depending on your reducer but in

general you want to test all cases

actions/map.js
actions/__tests__/map-test.js
or
reducers/map.js
reducers/__tests__/map-test.js

// copyright section
import expect from 'expect';
import {panTo, PAN_TO} from '@mapstore/actions/map';
describe('Test correctness of the map actions', () => {
    it('testing panTo', () => {
        const center = [2, 3];
        const returnValue = panTo(center);
        expect(returnValue.type).toEqual(PAN_TO);
        expect(returnValue.center).toEqual(center);
    });
});

• 

• 

https://github.com/mjackson/expect


Here for speedup testing you can again modify the tests.webpack.js (custom/

standard project) or build\tests.webpack.js (framework) in order to point to the

reducers folder and then running npm run test:watch

Actions and epics

Actions are not only used by redux to update the store (through the reducers), but

also for triggering side effects workflows managed by epics

For more details see Writing epics

// copyright section
import expect from 'expect';
import {panTo} from '@mapstore/actions/map';
import map from '@js/reducers/map'; // the one created before not the one present in 
@mapstore/reducers
describe('Test correctness of the map reducers', () => {
    it('testing PAN_TO', () => {
        const center = [2, 3];
        const state = map({}, panTo(center));

        // here you have to check that state has changed accordingly
        expect(state.center).toEqual(center);
    });
});





Configuring MapStore

MapStore (and every application developed with MapStore) allows customization

through configuration. To understand how to configure MapStore you have to

know that the back-end and the front-end of MapStore have two different

configuration systems.

This separation allows to:

Make mapstore configuration system live also as a front-end only framework

Keep the power of customization provided by spring on the back-end

Back-end Configuration Files

They are .properties  files or .xml  files, and they allow to configure the various

parts of the back-end. They are located in java/web/src/main/resources  and they will

be copied in MapStore.war  under the directory /WEB-INF/classes .

proxy.properties : configuration for the internal proxy (for cross-origin

requests). More information here.

geostore-datasource-ovr.properties : provides settings for the database.

log4j2.properties : configuration for back-end logging

sample-categories.xml : initial set of categories for back-end resources (MAP,

DASHBOARD, GEOSTORY...)

mapstore.properties : allow specific overrides to front-end files, See 

externalization system for more details

Except for mapstore.properties  and ldap.properties , all these files are simply

overrides of original configuration files coming from the included sub-applications

part of the back-end. In WEB-INF/classes  you will find also some other useful files

coming from the original application:

Back-end security configuration files

Back-end security can be configured to use different authentication strategies.

Maven profiles can be used to switch between these different strategies.

• 

• 

• 

• 

• 

• 

• 

https://github.com/geosolutions-it/http-proxy/wiki/Configuring-Http-Proxy


Depending on the chosen profile a different file will be copied from the product/

config  folder to override WEB-INF/classes/geostore-spring-security.xml  in the final

package. In particular:

default: db\geostore-spring-security-db.xml  (geostore database)

ldap: ldap\geostore-spring-security-ldap.xml  (LDAP source)

Specific configuration files are available to configure connection details for the

chosen profile.

For example, if using LDAP, look at LDAP integration.

Log4j2 configuration file

Below will be presented some basic pointers to configure logging through the 

log4j2.properties  file. For more informations see the official documentation page.

The following is the default MapStore log4j2.properties  file.

The first two properties defines the rootLogger level and appenders declarations.

• 

• 

rootLogger.level = INFO
appenders= console, file

appender.console.type = Console
appender.console.name = LogToConsole
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %p %d{yyyy-MM-dd HH:mm:ss.SSS} %c::%M:%L - 
%m%n
rootLogger.appenderRef.stdout.ref = LogToConsole
rootLogger.appenderRef.console.ref = LogToConsole

appender.file.type = File
appender.file.name = LogToFile
appender.file.fileName=${sys:catalina.base}/logs/mapstore.log
appender.file.layout.type=PatternLayout
appender.file.layout.pattern=%p   %d{yyyy-MM-dd HH:mm:ss.SSS}   %C{1}.%M() - %m 
%n
rootLogger.appenderRef.file.ref = LogToFile

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level=  INFO
logger.hibernate1.name=org.hibernate
logger.hibernate1.level=INFO
logger.trg1.name=com.trg
logger.trg1.level=INFO

https://logging.apache.org/log4j/2.x/manual/configuration.html


The following properties configure two appenders: one that writes log messages to

the console and the other to a log file. In both cases a pattern layout has been

configured through a conversion pattern strings to format the log messages (more

details about patterned layouts are available here). For the file appender we have

configured as well the location of the log file to which writing log messages

(property appender.file.fileName ). Note the ${sys:catalina.base}  variable, used as a

placeholder of the root folder of the tomcat instance where MapStore is deployed.

In the final section of the properties file the loggers for specific package name are

configured. In this case the syntax is logger.{a_name_of_choice}.name  to declare the

package to which the configured logger belongs and logger.{a_name_of_choice}.level

to declare the log level of that logger.

Front-end Configurations Files

They are JSON files that will be loaded via HTTP from the client, keeping most of

the framework working also in an html-only context (when used with different

back-ends or no-backend). These JSON files are located in web/client/configs

directory and they will be copied in the configs  of the war file.

rootLogger.level = INFO
appenders= console, file

appender.console.type = Console
appender.console.name = LogToConsole
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %p %d{yyyy-MM-dd HH:mm:ss.SSS} %c::%M:%L - 
%m%n
rootLogger.appenderRef.stdout.ref = LogToConsole
rootLogger.appenderRef.console.ref = LogToConsole

appender.file.type = File
appender.file.name = LogToFile
appender.file.fileName=${sys:catalina.base}/logs/mapstore.log
appender.file.layout.type=PatternLayout
appender.file.layout.pattern=%p   %d{yyyy-MM-dd HH:mm:ss.SSS}   %C{1}.%M() - %m 
%n
rootLogger.appenderRef.file.ref = LogToFile

logger.restsrv.name=it.geosolutions.geostore.services.rest
logger.restsrv.level=  INFO
logger.hibernate1.name=org.hibernate
logger.hibernate1.level=INFO
logger.trg1.name=com.trg
logger.trg1.level=INFO

https://logging.apache.org/log4j/2.x/manual/layouts.html


Several configuration files (at development and / or run time) are available to

configure all the different aspects of an application.

localConfig.json : Dedicated to the application configuration. Defines all general

settings of the front-end part, with all the plugins for all the pages. See 

Application Configuration for more information.

new.json  Can be customized to set-up the initial new map, setting the

backgrounds, initial position .. See Maps configuration for more information.

pluginsConfig.json : Allows to configure the context editor plugins list. See 

Context Editor Configuration for more information.

Externalize Configurations

Typically configuration customization should stay outside the effective application

installation directory to simplify future updates. Updates in fact are usually

replacement of the old application file package with the newer one. Changes

applied directly inside the application package may be so removed on every

update. For this reason MapStore provides a externalization system for both the

configuration systems. See Externalize Configuration section to learn how to do

this.

• 

• 

• 





Application configuration

The application will load by default it will load the localConfig.json  which is now

stored in the configs\ folder

You can load a custom configuration by passing the localConfig  argument in query

string:

The localConfig file contains the main information about URLs to load and plugins

to load in the various modes.

This is the main structure:

localhost:8081/?localConfig=myConfig#/viewer/openlayers/0

{
  // URL of geoStore
  "geoStoreUrl": "rest/geostore/",
  // printURL the url of the print service, if any
  "printUrl": "/geoserver-test/pdf/info.json",
  // a string or an object for the proxy URL.
  "proxyUrl": {
    // if it is an object, the url entry holds the url to the proxy
    "url": "/MapStore2/proxy/?url=",
    // useCORS array contains a list of services that support CORS and so do not need a 
proxy
    "useCORS": ["http://nominatim.openstreetmap.org", "https://
nominatim.openstreetmap.org"]
  },
  // JSON file where uploaded extensions are configured
  "extensionsRegistry": "extensions.json",
  // URL of the folder from where extensions bundles and other assets are loaded
  "extensionsFolder": "",
  // API keys for bing and mapquest services
  "bingApiKey",
  // force dates to be in this specified format. use moment js format pattern
  "forceDateFormat": "YYYY-MM-DD",
  // force time to be in this specified format. use moment js format pattern
  "forceTimeFormat": "hh:mm A",
  "mapquestApiKey",
  // list of actions types that are available to be launched dynamically from query param 
(#3817)
  "initialActionsWhiteList": ["ZOOM_TO_EXTENT", "ADD_LAYER", ...],
  // path to the translation files directory (if different from default)
  "translationsPath",
  // if true, every ajax and mapping request will be authenticated with the configurations if 
match a rule (default: true)
  "useAuthenticationRules": true
  // the authentication rules to match
  "authenticationRules": [



  { // every rule has a `urlPattern` regex to match
    "urlPattern": ".*geostore.*",
    // and a authentication `method` to use (basic, authkey, browserWithCredentials)
    "method": "basic"
  }, {
    "urlPattern": "\\/geoserver.*",
    "method": "authkey"
  }],
  // flag for postponing mapstore 2 load time after theme
  "loadAfterTheme": false,
  // if defined, WMS layer styles localization will be added
  "localizedLayerStyles": {
      // name of the ENV parameter variable that is needed for localization proposes
      "name": "mapstore_language"
  },
  // flag for abandon map edit confirm popup, by default is enabled
  "unsavedMapChangesDialog": false,
  // optional flag to set default coordinate format (decimal, aeronautical)
  "defaultCoordinateFormat": "aeronautical",
  // optionals misc settings
  "miscSettings": {
      // Use POST requests for each WMS length URL highter than this value.
      "maxURLLength": 5000,
      // Custom path to home page
      "homePath": '/home'
  },
  // optional state initializer (it will override the one defined in appConfig.js)
  "initialState": {
      // default initial state for every mode (will override initialState imposed by plugins 
reducers)
      "defaultState": {
          ...
          // if you want to customize the supported locales put here the languages you want 
and follow instruction linked below
          "locales": {
            "supportedLocales": {
              "it": {
                "code": "it-IT",
                "description": "Italiano"
              },
              "en": {
                "code": "en-US",
                "description": "English"
              }
          }
        }
      },
      // mobile override (defined properties will override default in mobile mode)
      "mobile": {
          ...
      }
  },
  // allows to apply map options configuration to all the Map plugins instances defined in 
the plugins configuration.
  // The mapOptions in the plugin configuration have priority so they will overrides this 
global config
  "defaultMapOptions": {



If you are building your own app, you can choose to create your custom modes or

force one of them by passing the mode  parameter in the query string.

For adding a new locale or configuring currently supported locales, go check this

out.

For configuring plugins, see the Configuring Plugins Section and the plugin

reference page

Explanation of some config properties

loadAfterTheme is a flag that allows to load mapstore.js after the theme

which can be versioned or not(default.css). default is false

    "openlayers": { ... },
    "leaflet": { ... },
    "cesium": { ... }
  },
  // allow to define the default visualization mode of the app and
  // which 2D or 3D map library should be used based on the device
  // the configuration below is the default one
  // note: this configuration does not support expressions
  "mapType": {
    // the default visualization mode of the app, it could be "2D" or "3D"
    "defaultVisualizationMode": "2D",
    // map library to use based on the visualization mode and device
    // structure -> { visualizationModes: { [visualizationMode]: { [deviceType]: 
mapLibrary } } }
    "visualizationModes": {
      "2D": {
        "desktop": "openlayers",
        "mobile": "leaflet"
      },
      "3D": {
        "desktop": "cesium",
        "mobile": "cesium"
      }
    }
  },
  "plugins": {
      // plugins to load for the mobile mode
      "mobile": [...]
      // plugins to load for the desktop mode
      "desktop": [...]
      // plugins to load for the embedded mode
      "embedded": [...]
      // plugins to load for the myMode mode
      "myMode": [...]
  }
}

• 



initialState is an object that will initialize the state with some default values

and this WILL OVERRIDE the initialState imposed by plugins & reducers.

projectionDefs is an array of objects that contain definitions for Coordinate

Reference Systems

initialState configuration

It can contain:

a defaultState valid for every mode

a piece of state for each mode (mobile, desktop, embedded)

Catalog Tool configuration

Inside defaultState you can set default catalog services adding the following key

• 

• 

1. 

2. 

"catalog": {
  "default": {
    "newService": {
      "url": "",
      "type": "wms",
      "title": "",
      "isNew": true,
      "editable": true,
      "autoload": false
    },
    "selectedService": "Demo CSW Service",
    "services": {

"Demo CSW Service": {
        "url": "https://demo.geo-solutions.it/geoserver/csw",
        "type": "csw",
        "title": "A title for Demo CSW Service",
        "autoload": true
      },
      "Demo WMS Service": {
        "url": "https://demo.geo-solutions.it/geoserver/wms",
        "layerOptions": {
          "tileSize": 512
          },
          "format": "image/png8"
        "type": "wms",
        "title": "A title for Demo WMS Service",
        "autoload": false
      },
      "Demo WMTS Service": {
        "url": "https://demo.geo-solutions.it/geoserver/gwc/service/wmts",
        "type": "wmts",
        "title": "A title for Demo WMTS Service",
        "autoload": false
      }
    }



Set selectedService  value to one of the ID of the services object ("Demo CSW

Service" for example). 

This will become the default service opened and used in the catalog panel. 

For each service set the key of the service as the ID.

CSW service 

filter  - For both static and dynamic filter, input only xml element contained within 

(i.e. Do not enclose the filter value in )

Example:

  }
}

"ID_CATALOG_SERVICE": {
  "url": "the url pointing to the catalog web service",
  "type": "the type of webservice used. (this need to be consistent with the web service 
pointed by the url)",
  "title": "the label used for recognizing the catalog service",
  "autoload": "if true, when selected or when catalog panel is opened it will trigger an 
automatic search of the layers. if false, search must be manually performed."
  "readOnly": "if true, makes the service not editable from catalog plugin"
  "titleMsgId": "optional, string used to localize the title of the service, the string must be 
present in translations",
  "format": "image/png8" // the image format to use by default for layers coming from this 
catalog (or tiles).
  "layerOptions": { // optional
      "format": "image/png8", // image format needs to be configured also inside layerOptions
      "serverType": "geoserver or no-vendor, depending on this some geoserver vendor 
extensions will be used for WMS requests.",
      "tileSize": 512 // determine the default tile size for the catalog, valid for WMS and 
CSW catalogs
  },
  "filter": { // applicable only for CSW service
      "staticFilter": "filter is always applied, even when search text is NOT PRESENT",
      "dynamicFilter": "filter is used when search text is PRESENT and is applied in `AND` 
with staticFilter. The template is used with ${searchText} placeholder to append search 
string"
  }
}



Be careful to use unique IDs 

Future implementations will try to detect the type from the url. 

newService is used internally as the starting object for an empty service.

projectionDefs configuration

Custom CRS can be configured here, at root level of localConfig.json file. For

example:

Explanation of these properties:

code - a code string that will identify the added projection

def - projection definition in PROJ.4 format

extent - projected bounds of the projection

worldExtent - bounds of the projection in WGS84

These parameters for a projection of interest can be found on epsg.io

CRS Selector configuration

CRS Selector is a plugin, that is configured in the plugins section. It should look

like this:

{
    "filter": { // Default filter values
        "staticFilter": "<ogc:Or><ogc:PropertyIsEqualTo><ogc:PropertyName>dc:type</
ogc:PropertyName><ogc:Literal>dataset</ogc:Literal></
ogc:PropertyIsEqualTo><ogc:PropertyIsEqualTo><ogc:PropertyName>dc:type</
ogc:PropertyName><ogc:Literal>http://purl.org/dc/dcmitype/Dataset</ogc:Literal></
ogc:PropertyIsEqualTo></ogc:Or>",
        "dynamicFilter": "<ogc:PropertyIsLike wildCard='%' singleChar='_' escapeChar='\
\'><ogc:PropertyName>csw:AnyText</ogc:PropertyName><ogc:Literal>%${searchText}
%</ogc:Literal></ogc:PropertyIsLike>"
    }
}

"projectionDefs": [{
  "code": "EPSG:3003",
  "def": "+proj=tmerc +lat_0=0 +lon_0=9 +k=0.9996 +x_0=1500000 +y_0=0 
+ellps=intl+towgs84=-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68 +units=m +no_defs",
  "extent": [1241482.0019, 973563.1609, 1830078.9331, 5215189.0853],
  "worldExtent": [6.6500, 8.8000, 12.0000, 47.0500]
}]

• 

• 

• 

• 

https://epsg.io


Configuration parameters are to be placed in the "cfg" object. These parameters

are:

additionalCRS - object, that contains additional Coordinate Reference

Systems. This configuration parameter lets you specify which projections,

defined in projectionDefs, should be displayed in the CRS Selector, alongside

default projections. Every additional CRS is a property of additionalCRS

object. The name of that property is a code of a corresponding projection

definition in projectionDefs. The value of that property is an object with the

following properties:

label - a string, that will be displayed in the CRS Selector as a name of the

projection

filterAllowedCRS - which default projections are to be available in the

selector. Default projections are:

EPSG:3857

EPSG:4326

allowedRoles - CRS Selector will be accessible only to these roles. By default,

CRS Selector will be available for any logged in user.

"plugins": {
  ...
  "desktop": [
    ...}, {
      "name": "CRSSelector",
      "cfg": {
        "additionalCRS": {
          "EPSG:3003": {
            label: "Monte Mario"
          }
        },
        "filterAllowedCRS": [
          "EPSG:4326",
          "EPSG:3857"
        ],
        "allowedRoles": [
          "ADMIN"
        ]
      }
    }, {
  ]
}

• 

• 

• 

• 

• 

• 



Search plugin configuration

The search plugin provides several configurations to customize the services

behind the search bar in the map:

Allow to configure more many services to use in parallel, in the services  array.

Natively supports nominatim and WFS protcols

Allows to register your own custom services to develop and use in your

custom project

Allows to configure services in cascade, typically when you have a hierarchical

data structures ( e.g. search for municipality, then for street name, than for

house number, or search state,then region, then specific feature, and so on...)

Following you can find some examples of the various configurations. For more

details about the properties, please check to plugin API documentation: https://

mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Search

Nominatim configuration:

WFS configuration:

• 

• 

• 

• 

{
   "type": "nominatim",
   "searchTextTemplate": "${properties.display_name}", // text to use as searchText when 
an item is selected. Gets the result properties.
   "options": {
     "polygon_geojson": 1,
     "limit": 3
}

"plugins": {
  ...
  "desktop": [
    ...}, {
      "name": "Search",
      "cfg": {
        "showCoordinatesSearchOption": false,
        "maxResults": 20,
        "searchOptions": {
          "services": [{
            "type": "wfs",

"priority": 3,
            "displayName": "${properties.propToDisplay}",
            "subTitle": " (a subtitle for the results coming from this service [ can contain 
expressions like ${properties.propForSubtitle}])",
            "options": {
              "url": "/geoserver/wfs",
              "typeName": "workspace:layer",
              "queriableAttributes": ["attribute_to_query"],
              "sortBy": "id",

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Search
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Search


WFS configuration with nested services:

              "srsName": "EPSG:4326",
              "maxFeatures": 20,
              "blacklist": ["... an array of strings to exclude from the final search filter "]
            }
        ]
        }
      }
    }, {
  ]
}

"plugins": {
  ...
  "desktop": [
    ...}, {
      "name": "Search",
      "cfg": {
        "showCoordinatesSearchOption": false,
        "maxResults": 20,
        "searchOptions": {
          "services": [{
            "type": "wfs",
            "priority": 3,
            "displayName": "${properties.propToDisplay}",
            "subTitle": " (a subtitle for the results coming from this service [ can contain 
expressions like ${properties.propForSubtitle}])",
            "options": {
              "url": "/geoserver/wfs",
              "typeName": "workspace:layer",
              "queriableAttributes": ["attribute_to_query"],
              "sortBy": "id",
              "srsName": "EPSG:4326",
              "maxFeatures": 20,
              "blacklist": ["... an array of strings to exclude from the final search filter "]
            },

            "nestedPlaceholder": "the placeholder will be displayed in the input text, after you 
have performed the first search",
            "then": [{
              "type": "wfs",
              "priority": 1,
              "displayName": "${properties.propToDisplay} ${properties.propToDisplay}",
              "subTitle": " (a subtitle for the results coming from this service [ can contain 
expressions like ${properties.propForSubtitle}])",
              "searchTextTemplate": "${properties.propToDisplay}",
              "options": {
                "staticFilter": " AND SOMEPROP = '${properties.OLDPROP}'", // will be 
appended to the original filter, it gets the properties of the current selected item (of the 
parent service)
                "url": "/geoserver/wfs",
                "typeName": "workspace:layer",
                "queriableAttributes": ["attribute_to_query"],
                "srsName": "EPSG:4326",
                  "maxFeatures": 10



Custom services configuration:

                }
            }]
  }

        ]
        }
      }
    }, {
  ]
}

{
  "type": "custom Service Name",
  "searchTextTemplate": "${properties.propToDisplay}",
  "displayName": "${properties.propToDisplay}",
  "subTitle": " (a subtitle for the results coming from this service [ can contain expressions 
like ${properties.propForSubtitle}])",
  "options": {
    "pathname": "/path/to/service",
    "idVia": "${properties.code}"
  },
  "priority": 2,
  "geomService" : {
    "type": "wfs",
    "options": {
      "url": "/geoserver/wfs",
      "typeName":  "workspace:layer",
      "srsName": "EPSG:4326",
      "staticFilter": "ID = ${properties.code}"
    }
  }
}





Configuring plugins

To configure the plugins used by your application, a dedicated section is available

in the localConfig.json configuration file:

Inside the plugins section, several modes can be configured (e.g. desktop or

mobile), each one with its own list of plugins:

Each plugin can be simply listed (and the default configuration is used):

or fully configured:

Dynamic configuration

Configuration properties of plugins can use expressions, so that they are

dynamically bound to the application state.

An expression is anything between curly brackets ({...}) that is a javascript

expression, where the monitored state of the application is available as a set of

variables.

"plugins": {
  ...
}

"plugins": {
  "mobile": [...],
  "desktop": [...]
}

"plugins": {
  ...
  "desktop": ["Map", "MousePosition", "Toolbar", "TOC"]
}

"plugins": {
  ...
  "desktop": [{
    "name": "Map",
       ...
    }
  },
  ...
  ]
}



To define the monitored state, you have to add a monitorState property in 

localConfig.json.

Where:

name is the name of the variable that can be used in expressions

path is a javascript object path to the state fragment to be monitored (e.g.

map.present.zoom)

When you have a monitored state, you can use it in configuration properties this

way: Be sure to write a valid javascript expression.

Expressions are supported in cfg properties and in hideFrom and showIn

sections.

In addition to monitored state also the page request parameters are available as

variables to be used in expressions.

Look at the plugin reference page for a list of available configuration properties.

{
  ...
  "monitorState": [{"name": "mapType", "path": "mapType.mapType"}]
  ...
}

• 

• 

"cfg": {
  ...
  "myProp": "{state('mapType') === 'openlayers' ? 1 : 2}"

...
}

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins




Map Configuration

By default MapStore is able to open maps with this path in the URL:

Where:

mapId  can be a number or a string.

A number represents standard maps, stored on the database.

A string instead represents a static json file in the root of the application.

The first case can be used to load a map from the maps database, using its id.

There is a special mapId, 0 (zero), that is used to load a basic OSM map for demo

purposes.

The configuration of this map is stored in the static config.json  file in the root of the

project.

The second case can be used to define standard map contexts.

This is used for the new map. If you're logged in and allowed to create maps,

when you try to create a new map you will see the the application will bring you to

the URL:

This page uses the new.json  file as a template configuration to start creating a new

map. You can find this file in web/client/configs  directory for standard MapStore or

in configs/  folder for a custom projects. You can edit new.json  to customize this

initial template. It typically contains the map backgrounds you want to use for all

the new maps (identified by the special property "group": "background" ).

If you have enabled the datadir, then you can externalize the new.json or

config.json files. (see here for more details)

new.json  and config.json  are special cases, but you can configure your own static

map context creating these json files in the root of the project, for instance 

mycontext.json  and accessing them at the URL:

http://localhost:8081/#viewer/<mapId>

• 

• 

• 

http://localhost:8081/#viewer/openlayers/0

http://localhost:8081/#viewer/openlayers/new



important note: new.json  and config.json  are special files and don't require the

version. For other map context, you must specify the version of the map file type

in the root of the json file:

These static map contexts are accessible by anyone. If you want to customize

standard maps (that are listed in home page and where you can define) manually,

you will have to edit the maps using the GeoStore REST API.

Map options

The following options define the map options (projection, position, layers):

projection: {string}  expressed in EPSG values

units: {string}  uom of the coordinates

center: [object]  center of the map with starting point in the bottom-left corner

zoom: {number}  level of zoom

resolutions: {number[]}  resolutions for each level of zoom

scales: {number[]}  scales used to compute the map resolutions

maxExtent: {number[]}  max bbox of the map expressed [minx, miny, maxx,

maxy]

layers: {object[]}  list of layers to be loaded on the map

groups {object[]} : contains information about the layer groups

visualizationMode: {string}  defines if the map should be visualized in "2D" or

"3D"

viewerOptions: {object}  could contain viewer specific properties, eg. camera

orientation and camera position for 3D visualization mode

i.e.

http://localhost:8081/#viewer/openlayers/mycontext

    {
        "version": 2,
        // ...
    }

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

{
    "version": 2,
    "projection": "EPSG:900913",
    "units": "m",
    "center": {"x": 1000000.000000, "y": 5528000.000000, "crs": "EPSG:900913"},
    "zoom": 15,

https://github.com/geosolutions-it/geostore/wiki/REST-API


The option to configure a list of scale denominators allow to have them in human

friendly format, and calculate the map resolutions from scales.

    "visualizationMode": "2D",
    "viewerOptions": {
      "cameraPosition": {
        "longitude": 0,
        "latitude": 0,
        "height": 0
      },
      "orientation": {
        "heading": 0,
        "pitch": 0,
        "roll": 0
      }
    },
    "mapOptions": {
      "view": {
        "scales": [175000, 125000, 100000, 75000, 50000, 25000, 10000, 5000, 2500],
        "resolutions": [
          84666.66666666688,
          42333.33333333344,
          21166.66666666672,
          10583.33333333336,
          5291.66666666668,
          2645.83333333334,
          1322.91666666667,
          661.458333333335000,
          529.166666666668000,
          396.875000000001000,
          264.583333333334000,
          132.291666666667000,
          66.145833333333500,
          39.687500000000100,
          26.458333333333400,
          13.229166666666700,
          6.614583333333350,
          3.968750000000010,
          2.645833333333340,
          1.322916666666670,
          0.661458333333335
        ]
      }
    },
    "maxExtent": [
        -20037508.34, -20037508.34,
        20037508.34, 20037508.34
    ],
    "layers": [{...},{...}]
}

Note



If the scales and resolutions property are declared, in the same json object, the

scales have priority. In the array, the values have be in descending order.

Actually the custom resolution values are valid for one single CRS. It's therefore

suggested to avoid to add this parameter when multiple CRSs in the same map

configuration are needed.

Layers options

Every layer has it's own properties. Anyway there are some options valid for every

layer:

title : {object|string}  the title of the layer, can be an object to support i18n.

type : {string}  the type of the layer. Can be wms , wmts , osm ...

name : {string}  the name is used as general reference to the layer, or as title, if

the title is not specified. Anyway, it's usage depends on the specific layer type.

group : {string} : the group of the layer (in the TOC). Nested groups can be

indicated using / . i.e. Group/SubGroup . A special group, background , is used to

identify background layers. These layers will not be available in the TOC, but

only in the background switcher, and only one layer of this group can be

visible.

thumbURL : {string} : the URL of the thumbnail for the layer, used in the

background switcher ( if the layer is a background layer )

visibility : {boolean} : indicates if the layer is visible or not

queriable : {boolean} : Indicates if the layer is queriable (e.g. getFeatureInfo). If

not present the default is true for every layer that have some implementation

available (WMS, WMTS). Usually used to set it explicitly to false, where the

query service is not available.

hideLoading : {boolean}. If true, loading events will be ignored ( useful to hide

loading with some layers that have problems or trigger errors loading some

tiles or if they do not have any kind of loading.).

minResolution : {number} : layer is visible if zoom resolution is greater or equal

than this value (inclusive)

Warning

Warning

• 

• 

• 

• 

• 

• 

• 

• 

• 



maxResolution : {number} : layer is visible if zoom resolution is less than this

value (exclusive)

disableResolutionLimits : {boolean} : this property disables the effect of

minResolution and maxResolution if set to true

i.e.

Localized titles: In these configuration files you can localize titles using an object

instead of a string in the title  entry. In this case the title  object has this shape:

The layers can belong to the background  group, in this case they will be available in

the background switcher, and only one layer of this group can be visible at the

same time.

In the case of the background the thumbURL  is used to show a preview of the layer

in the background switcher.

• 

• 

{
    "title": "Open Street Map",
    "name": "mapnik",
    "group": "background",
    "visibility": false,
    "hidden": true
}

title: {
      'default': 'Meteorite Landings from NASA Open Data Portal', // default title, used in 
case the localized entry is not present
      'it-IT': 'Atterraggi meteoriti', // one string for each IETF language tag you want to 
support.
      'en-US': 'Meteorite Landings',
      'fr-FR': 'Débarquements de météorites'
    },

    {
        "format": "image/jpeg",
        "name": "workspace:layername",
        "params": {},
        "singleTile": false,
        "title": "My WMS Background",
        "type": "wms",
        "group": "background",
        "thumbURL": "http://some.wms.service/geoserver/ows?
SERVICE=WMS&REQUEST=GetMap&VERSION=1.3.0&LAYERS=rv%3Arv1&STYLES=&FORMAT=image%2Fjpe
        "url": "http://some.wms.service/geoserver/ows",
        "visibility": false
    },



Layer types

wms : WMS - Web Mapping Service layers

osm : OpenStreetMap layers format

tileprovider : Some other mixed specific tile providers

wmts : WMTS: Web Map Tile Service layers

bing : Bing Maps layers

google : Google Maps layers

mapquest : MapQuest layers

graticule : Vector layer that shows a coordinates grid over the map, with

optional labels

empty : special type for empty background

3dtiles : 3d tiles layers

terrain : layers that define the elevation profile of the terrain

cog : Cloud Optimized GeoTIFF layers

WMS

i.e.

Details:

url : the URL of the WMS service

name : name of the layer

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

{
    "type": "wms",
    "url": "http..." // URL of the WMS Service
    "name": "TEST:TEST", // The name of the layer
    "format": "image/png8" // format
    "title": "Open Street Map",
    "name": "mapnik",
    "group": "background",
    "visibility": false,
    "params": {}, // can be used to add parameters to the request, or override the default 
ones
    "layerFilter": {} // a layer filter object, to filter the layer
    "search": {}, // object to configure the features URL in the layer
    "fields": [{"name": "attr1", "alias": "Attribute 1", "type": "string"},{...}] // array of fields
    "credits": { // optional
        "imageUrl": "somePic.png", // URL for the image to put in attribution
        "link": "http://someURL.org", // URL where attribution have to link to
        "title": "text to render" // title to show (as image title or as text)
    }
}

• 

• 



format : the format of the WMS requests to use

params : an object with additional parameters to add to the WMS request

layerFilter : an object to filter the layer. See LayerFilter for details.

search : an object to configure the search features service. It is used to link a

WFS service, typically with this shape: {url: 'http://some.wfs.service', type: 'wfs'} .

fields : if the layer has a wfs service configured, this can contain the fields

(attributes) of the features, with custom configuration (e.g. aliases, types, etc.).

See Fields for details.

credits : includes the information to show in attribution.( imageUrl , link , title ).

FIELDS

The fields  array is used to configure the attributes of the features of the layer.

They can be used in the Identify tool, in the FeatureGrid plugin, in the FeatureInfo

popup, etc. It is supported by wms  and wfs  layers. The supported attributes are:

name : the name of the attribute

alias : the alias of the attribute (used in the Identify tool, in the FeatureGrid

plugin, in the FeatureInfo popup, etc.). If not present, the name  will be used. It

can be an object to support i18n.

type : the type of the attribute. Supported types are: string , number , date , 

boolean . If not present, the default type is string .

filterRenderer : an object to configure the filter renderer in feature grid (for

custom projects)

name : the name of the filter renderer (for custom projects)

featureGridFormatter : an object to configure the feature grid formatter in

feature grid.

name : the name of the feature grid formatter .

config : the configuration of the feature grid formatter.

Example:

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

{
    "fields": [{
        "name": "attr1",
        "alias": "Attribute 1",
        "type": "string",
        "filterRenderer": {
            "name": "customFilterRenderer"
        },
        "featureGridFormatter": {
            "name": "customFeatureGridFormatter",
            "config": {

../LayerFilter/


MULTIPLE URLS

This feature is not yet fully supported by all the plugins, but OpenLayers supports

it so if you put an array of urls instead of a single string in the layer url. Some

other feature will break, for example the layer properties will stop working, so it is

safe to use only on background layers.

SPECIAL CASE - THE ELEVATION LAYER

This type of layer configuration is still needed to show the elevation data inside the

MousePosition plugin. The terrain  layer section shows a more versatile way of

handling elevation but it will work only as visualization in the 3D map viewer.

                "someConfig": "someValue"
            }
        }
    }, {
        "name": "attr2",
        "alias": {
            "default": "Attribute 2",
            "en-US": "Attribute 2",
            "it-IT": "Attributo 2"
        },
        "type": "number"
    }]
}

{
  "type": "wms",
  "url": [
    "https://a.maps.geosolutionsgroup.com/geoserver/wms",
    "https://b.maps.geosolutionsgroup.com/geoserver/wms",
    "https://c.maps.geosolutionsgroup.com/geoserver/wms",
    "https://d.maps.geosolutionsgroup.com/geoserver/wms",
    "https://e.maps.geosolutionsgroup.com/geoserver/wms",
    "https://f.maps.geosolutionsgroup.com/geoserver/wms"
  ],
  "visibility": true,
  "opacity": 1,
  "title": "OSM",
  "name": "osm:osm",
  "group": "Meteo",
  "format": "image/png8",
  "bbox": {
    "bounds": {"minx": -180, "miny": -90, "maxx": 180, "maxy": 90},
    "crs": "EPSG:4326"
  }
},

Note



WMS layers can be configured to be used as a source for elevation related

functions.

This requires:

a GeoServer WMS service with the DDS/BIL plugin

A WMS layer configured with BIL 16 bit output in big endian mode and 

-9999 nodata value

a static layer in the Map plugin configuration (use the additionalLayers

configuration option):

in localConfig.json

The layer will be used for:

showing elevation in the MousePosition plugin (requires showElevation: true in

the plugin configuration)

as a TerrainProvider if the maptype is Cesium

in localConfig.json

WMTS

The WMTS Layer configuration has a availableTileMatrixSets  object that lists all the

available tile matrix sets for the specific layer. Every entry of 

• 

• 

• 

{
    "name": "Map",
    "cfg": {
        "additionalLayers": [{
            "url": "http...",
            "format": "application/bil16",
            "type": "wms",
            ...
            "name": "elevation",
            "littleendian": false,

"visibility": true,
            "useForElevation": true
        }]
    }
}

• 

• 

{
    "name": "MousePosition",
    "cfg": {
        "showElevation": true,
        ...
    }
}

https://docs.geoserver.org/stable/en/user/community/dds/index.html


availableTileMatrixSets , identified by the ID of the tile matrix set, contains the crs

and one of tileMatrixSet  or tileMatrixSetLink . The first contains the definition of the

tile matrix set, while the second contain the path to the tile matrix set definition in

the JSON of the map configuration. This object can also optionally contain a limits

entry, containing the specific limits of the layer inside the tile matrix set.

The sources  entry of the map configuration usually contains the tile matrix sets

definitions of the layers of the map, stored by their capabilitiesURL  (if 

capabilitiesURL  is not present it will use the url  of the layer, in case of multiple

URLs, the first one.).

A WMTS layer has also a requestEncoding  entry that can be valued with RESTful  or 

KVP . In case of RESTful  the URL is a template where to place the request

parameters ( see the example below ), while in the KVP  case the request

parameters will be passed in the query string. See the WMTS standard for more

details.

e.g. (RESTful):

{
   "type": "wmts",
    "availableTileMatrixSets": {
          "google3857": {
            "crs": "EPSG:3857",
            "tileMatrixSetLink": "sources['https://sampleServer.org/wmts/1.0.0/
WMTSCapabilities.xml'].tileMatrixSet['EPSG:3857']"
          }
        }

{
  "version": 2,
  // ...
  "map": {
    // ...
    "layers": [
        // WMTS layer sample
        {
        "id": "bmapoberflaeche__11",
        "name": "layer_name",
        // ...
        "type": "wmts",
        "url": [ // MULTIPLE URLS are allowed
            "https://maps1.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
{TileCol}.jpeg",
            "https://maps2.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
{TileCol}.jpeg",
            "https://maps3.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
{TileCol}.jpeg",
            "https://maps4.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/
{TileCol}.jpeg",
            "https://maps.sampleServer/{Style}/{TileMatrixSet}/{TileMatrix}/{TileRow}/



{TileCol}.jpeg"
        ],
        "allowedSRS": {
          "EPSG:3857": true
        },
        "availableTileMatrixSets": {
          "google3857": {
            "crs": "EPSG:3857",
            "tileMatrixSetLink": "sources['https://sampleServer.org/wmts/1.0.0/
WMTSCapabilities.xml'].tileMatrixSet['EPSG:3857']"
          }
        },
        // KVP (By default) or RESTful
        "requestEncoding": "RESTful",
        // identifier for the source
        "capabilitiesURL": "https://sampleServer.org/wmts/1.0.0/WMTSCapabilities.xml",
      }
    ],
    "sources": {
      // source of the layer above
      "https://sampleServer.org/wmts/1.0.0/WMTSCapabilities.xml": {
        "tileMatrixSet": {
          "google3857": {
            "ows:Identifier": "google3857",
            "ows:BoundingBox": {
              "$": {
                "crs": "urn:ogc:def:crs:EPSG:6.18.3:3857"
              },
              "ows:LowerCorner": "977650 5838030",
              "ows:UpperCorner": "1913530 6281290"
            },
            "ows:SupportedCRS": "urn:ogc:def:crs:EPSG:6.18.3:3857",
            "WellKnownScaleSet": "urn:ogc:def:wkss:OGC:1.0:GoogleMapsCompatible",
            "TileMatrix": [
              {
                "ows:Identifier": "0",
                "ScaleDenominator": "559082264.029",
                "TopLeftCorner": "-20037508.3428 20037508.3428",
                "TileWidth": "256",
                "TileHeight": "256",
                "MatrixWidth": "1",
                "MatrixHeight": "1"
              },
              {
                "ows:Identifier": "1",
                "ScaleDenominator": "279541132.015",
                "TopLeftCorner": "-20037508.3428 20037508.3428",
                "TileWidth": "256",
                "TileHeight": "256",
                "MatrixWidth": "2",
                "MatrixHeight": "2"
              },
              // ...more levels
            ]
          }
        }
      }



e.g. (KVP)

    }
  }
}

{
  "version": 2,
  "map": {
    // ...
    "projection": "EPSG:900913",
    "layers": [
      // ...
      {
        // requestEncoding is KVP by default
        "id": "EMSA:S52 Standard__6",
        "name": "EMSA:S52 Standard",
        "description": "S52 Standard",
        "title": "S52 Standard",
        "type": "wmts",
        // if the capabilitiesURL is not present, the `url` will be used to identify the source.
        // (for retro-compatibility with existing layers)
        "url": "http://some.domain/geoserver/gwc/service/wmts",
        "bbox": {
          "crs": "EPSG:4326",
          "bounds": {
            "minx": "-180.0",
            "miny": "-79.99999999999945",
            "maxx": "180.0",
            "maxy": "83.99999999999999"
          }
        },
        // list of allowed SRS
        "allowedSRS": {
          "EPSG:4326": true,
          "EPSG:3857": true,
          "EPSG:900913": true
        },
        "availableTileMatrixSets": {
          "EPSG:32761": {
            "crs": "EPSG:32761",
            "tileMatrixSetLink": "sources['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:32761']"
          },
          "EPSG:3857": {
            "crs": "EPSG:3857",
            "tileMatrixSetLink": "sources['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:3857']"
          },
          "EPSG:4326": {
            "crs": "EPSG:4326",
            "tileMatrixSetLink": "sources['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:4326']"
          },
          "EPSG:32661": {
            "crs": "EPSG:32661",



            "tileMatrixSetLink": "sources['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:32661']"
          },
          "EPSG:3395": {
            "crs": "EPSG:3395",
            "tileMatrixSetLink": "sources['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:3395']"
          },
          "EPSG:900913": {
            "crs": "EPSG:900913",
            // these ranges limit the tiles available for the grid level
            "limits": [
              {
                "identifier": "EPSG:900913:0",
                "ranges": {
                  "cols": {
                    "min": "0",
                    "max": "0"
                  },
                  "rows": {
                    "min": "0",
                    "max": "0"
                  }
                }
              },
              {
                "identifier": "EPSG:900913:1",
                "ranges": {
                  "cols": {
                    "min": "0",
                    "max": "1"
                  },
                  "rows": {
                    "min": "0",
                    "max": "1"
                  }
                }
              },
              {
                "identifier": "EPSG:900913:2",
                "ranges": {
                  "cols": {
                    "min": "0",
                    "max": "3"
                  },
                  "rows": {
                    "min": "0",
                    "max": "3"
                  }
                }
              }
            ],
            "tileMatrixSetLink": "sources['http://some.domain/geoserver/gwc/service/
wmts'].tileMatrixSet['EPSG:900913']"
          }
        }
      }



e.g. (embed tileMatrixSet without link to sources)

    ],
    // ...
    "sources": {
      "http://some.domain/geoserver/gwc/service/wmts": {
        "tileMatrixSet": {
          "EPSG:32761": {/*...*/},
          "EPSG:3857": {/*...*/},
          "EPSG:4326": {/*...*/},
          "EPSG:32661": {/*...*/},
          "EPSG:3395": {/*...*/},
          "EPSG:900913": {
            "ows:Identifier": "EPSG:900913",
            // the supported CRS
            "ows:SupportedCRS": "urn:ogc:def:crs:EPSG::900913",
            "TileMatrix": [
              {
                "ows:Identifier": "EPSG:900913:0",
                "ScaleDenominator": "5.590822639508929E8",
                "TopLeftCorner": "-2.003750834E7 2.0037508E7",
                "TileWidth": "256",
                "TileHeight": "256",
                "MatrixWidth": "1",
                "MatrixHeight": "1"
              },
              {
                "ows:Identifier": "EPSG:900913:1",
                "ScaleDenominator": "2.7954113197544646E8",
                "TopLeftCorner": "-2.003750834E7 2.0037508E7",
                "TileWidth": "256",
                "TileHeight": "256",
                "MatrixWidth": "2",
                "MatrixHeight": "2"
              },
              {
                "ows:Identifier": "EPSG:900913:2",
                "ScaleDenominator": "1.3977056598772323E8",
                "TopLeftCorner": "-2.003750834E7 2.0037508E7",
                "TileWidth": "256",
                "TileHeight": "256",
                "MatrixWidth": "4",
                "MatrixHeight": "4"
              }
            ]
          }
        }
      }
    }
  }

{
  "version": 2,
  "map": {
    // ...
    "projection": "EPSG:900913",



    "layers": [
      // ...
      {
        // requestEncoding is KVP by default
        "id": "EMSA:S52 Standard__6",
        "name": "EMSA:S52 Standard",
        "description": "S52 Standard",
        "title": "S52 Standard",
        "type": "wmts",
        // if the capabilitiesURL is not present, the `url` will be used to identify the source.
        // (for retro-compatibility with existing layers)
        "url": "http://some.domain/geoserver/gwc/service/wmts",
        "bbox": {
          "crs": "EPSG:4326",
          "bounds": {
            "minx": "-180.0",
            "miny": "-79.99999999999945",
            "maxx": "180.0",
            "maxy": "83.99999999999999"
          }
        },
        // list of allowed SRS
        "allowedSRS": {
          "EPSG:3857": true,
          "EPSG:900913": true
        },
        "availableTileMatrixSets": {
          "EPSG:900913": {
            "crs": "EPSG:900913",
            "tileMatrixSet": {
              "ows:Identifier": "EPSG:900913",
              "ows:SupportedCRS": "urn:ogc:def:crs:EPSG::900913",
              "TileMatrix": [
                {
                  "ows:Identifier": "EPSG:900913:0",
                  "ScaleDenominator": "5.590822639508929E8",
                  "TopLeftCorner": "-2.003750834E7 2.0037508E7",
                  "TileWidth": "256",
                  "TileHeight": "256",
                  "MatrixWidth": "1",
                  "MatrixHeight": "1"
                },
                {
                  "ows:Identifier": "EPSG:900913:1",
                  "ScaleDenominator": "2.7954113197544646E8",
                  "TopLeftCorner": "-2.003750834E7 2.0037508E7",
                  "TileWidth": "256",
                  "TileHeight": "256",
                  "MatrixWidth": "2",
                  "MatrixHeight": "2"
                },
                {
                  "ows:Identifier": "EPSG:900913:2",
                  "ScaleDenominator": "1.3977056598772323E8",
                  "TopLeftCorner": "-2.003750834E7 2.0037508E7",
                  "TileWidth": "256",
                  "TileHeight": "256",



Bing

TODO

Google

The use of Google maps tiles in MapStore is not enabled and maintained due to

licensing reasons. If your usage conditions respect the google license, you can

enable the google layers by:

Adding <script src="https://maps.google.com/maps/api/js?v=3"></script>  to all html

files you need it.

Add your API-KEY to the request

Fix the code, if needed.

example:

OSM

example:

                  "MatrixWidth": "4",
                  "MatrixHeight": "4"
                }
              ]
            }
          }
        }
      }
    ]
  }

Note

• 

• 

• 

    {
        "type": "google",
        "title": "Google HYBRID",
        "name": "HYBRID",
        "source": "google",
        "group": "background",
        "visibility": false
    }

{
    "type": "osm",
    "title": "Open Street Map",
    "name": "mapnik",
    "source": "osm",
    "group": "background",



TileProvider

TileProvider is a shortcut to easily configure many different layer sources. It's

enough to add provider  property and 'tileprovider' as type property to the layer

configuration object. provider  should be in the form of ProviderName.VariantName .

i.e.

Options passed in configuration object, if already configured by TileProvider, will

be overridden.

Openlayers' TileProvider at the moment doesn't support minZoom  configuration

property and high resolution map.

In case of missing provider  or if provider: "custom" , the tile provider can be

customized and configured internally. You can configure the url  as a template,

than you can configure options add specific options ( maxNativeZoom , subdomains ).

PROVIDERS AND VARIANTS

This is a not maintained list of providers and variants. For the most updated list

check the code here

Some of them may need some additional configuration or API keys.

    "visibility": true
}

{
    "type": "tileprovider",
    "title": "Title",
    "provider": "Stamen.Toner", // "ProviderName.VariantName"
    "name": "Name",
    "group": "GroupName",
    "visibility": false
}

{
    "type": "tileprovider",
    "title": "Title",
    "provider": "custom", // or undefined
    "name": "Name",
    "group": "GroupName",
    "visibility": false,
    "url": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",
    "options": {
        "subdomains": [ "a", "b"]
    }
}

https://github.com/geosolutions-it/MapStore2/blob/master/web/client/utils/ConfigProvider.js


OpenStreetMap.Mapnik
OpenStreetMap.BlackAndWhite
OpenStreetMap.DE
OpenStreetMap.France
OpenStreetMap.HOT
Thunderforest.OpenCycleMap
Thunderforest.Transport
Thunderforest.TransportDark
Thunderforest.Landscape
Thunderforest.Outdoors
OpenMapSurfer.Roads
OpenMapSurfer.AdminBounds
OpenMapSurfer.Grayscale
Hydda.Full
Hydda.Base
Hydda.RoadsAndLabels
MapQuestOpen.OSM
MapQuestOpen.Aerial
MapQuestOpen.HybridOverlay
Stamen.Toner
Stamen.TonerBackground
Stamen.TonerHybrid
Stamen.TonerLines
Stamen.TonerLabels
Stamen.TonerLite
Stamen.Watercolor
Stamen.Terrain
Stamen.TerrainBackground
Stamen.TopOSMRelief
Stamen.TopOSMFeatures
Esri.WorldStreetMap
Esri.DeLorme
Esri.WorldTopoMap
Esri.WorldImagery
Esri.WorldTerrain
Esri.WorldShadedRelief
Esri.WorldPhysical
Esri.OceanBasemap
Esri.NatGeoWorldMap
Esri.WorldGrayCanvas
OpenWeatherMap.Clouds
OpenWeatherMap.CloudsClassic
OpenWeatherMap.Precipitation
OpenWeatherMap.PrecipitationClassic
OpenWeatherMap.Rain
OpenWeatherMap.RainClassic
OpenWeatherMap.Pressure
OpenWeatherMap.PressureContour
OpenWeatherMap.Wind
OpenWeatherMap.Temperature
OpenWeatherMap.Snow
HERE.normalDay
HERE.normalDayCustom
HERE.normalDayGrey
HERE.normalDayMobile
HERE.normalDayGreyMobile
HERE.normalDayTransit



HERE.normalDayTransitMobile
HERE.normalNight
HERE.normalNightMobile
HERE.normalNightGrey
HERE.normalNightGreyMobile
HERE.carnavDayGrey
HERE.hybridDay
HERE.hybridDayMobile
HERE.pedestrianDay
HERE.pedestrianNight
HERE.satelliteDay
HERE.terrainDay
HERE.terrainDayMobile
Acetate.basemap
Acetate.terrain
Acetate.all
Acetate.foreground
Acetate.roads
Acetate.labels
Acetate.hillshading
CartoDB.Positron
CartoDB.PositronNoLabels
CartoDB.PositronOnlyLabels
CartoDB.DarkMatter
CartoDB.DarkMatterNoLabels
CartoDB.DarkMatterOnlyLabels
HikeBike.HikeBike
HikeBike.HillShading
BasemapAT.basemap
BasemapAT.grau
BasemapAT.overlay
BasemapAT.highdpi
BasemapAT.orthofoto
NASAGIBS.ModisTerraTrueColorCR
NASAGIBS.ModisTerraBands367CR
NASAGIBS.ViirsEarthAtNight2012
NASAGIBS.ModisTerraLSTDay
NASAGIBS.ModisTerraSnowCover
NASAGIBS.ModisTerraAOD
NASAGIBS.ModisTerraChlorophyll
NLS.OS_1900
NLS.OS_1920
NLS.OS_opendata
NLS.OS_6inch_1st
NLS.OS_6inch
NLS.OS_25k
NLS.OS_npe
NLS.OS_7th
NLS.OS_London
NLS.GSGS_Ireland
PDOK.brtachtergrondkaart
PDOK.brtachtergrondkaartgrijs
PDOK.brtachtergrondkaartpastel
PDOK.brtachtergrondkaartwater
PDOK.luchtfotoRGB
PDOK.luchtfotoIR



Vector

The layer type vector is the type used for imported data (geojson, shapefile) or for

annotations. Generally speaking, any vector data added directly to the map. This is

the typical fields of a vector layer

features : features in GeoJSON format.

style : the style object of the layer. See vector style for details.

styleName : name of a style to use (e.g. "marker").

hideLoading : boolean. if true, the loading will not be taken into account.

WFS Layer

A vector layer, whose data source is a WFS service. The configuration has

properties in common with both WMS and vector layers. it contains the search

entry that allows to browse the data on the server side. The styling system is the

same of the vector layer.

This layer differs from the "vector" because all the loading/filtering/querying

operations are applied directly using the WFS service, without storing anything

locally.

{
    "type":"vector",
    "features":[
        {
            "type":"Feature",

"geometry":{
                "type":"Point",
                "coordinates":[
                12.516431808471681,
                41.89817370656741
                ]
            },
            "properties":{
            },
            "id":0
        }
    ],
    "style":{
        "weight":5,
        "radius":10,
        "opacity":1,
        "fillOpacity":0.1,
        "color":"rgba(0, 0, 255, 1)",
        "fillColor":"rgba(0, 0, 255, 0.1)"
    },
    "hideLoading":true
}

• 

• 

• 

• 

../vector-style/


name : the name of the layer in the WFS service.

style : the style object of the layer. See vector style for details.

url : the url of the WFS service.

fields : if the layer has a wfs service configured, this can contain the fields

(attributes) of the features, with custom configuration (e.g. aliases, types, etc.)

Graticule

i.e.

{
    "type":"wfs",
    "search":{
        "url":"https://myserver.org/geoserver/wfs",
        "type":"wfs"
    },
    "fields": [{"name": "attr1", "alias": "Attribute 1", "type": "string"}],
    "name":"workspace:layer",
    "styleName":"marker",
    "url":"https://myserver.org/geoserver/wfs"
}

• 

• 

• 

• 

{
    "type": "graticule",
    "labels": true,
    "frame": true, // adds a frame to the map, to better highlight labels
    "frameRatio": 0.07, // frame percentage size (7%)
    "style": { // style for the grid lines
        "color": "#000000",
        "weight": 1,
        "lineDash": [0.5, 4],
        "opacity": 0.5
    },
    "frameStyle": { // style for the optional frame
        "color": "#000000",
        "weight": 1,
        "fillColor": "#FFFFFF"
    },
    "labelXStyle": { // style for X coordinates labels
        "color": "#000000",
        "font": "sans-serif",
        "fontWeight": "bold",
        "fontSize": "20",
        "labelOutlineColor": "#FFFFFF",
        "labelOutlineWidth": 2
    },
    "labelYStyle": { // style for Y coordinates labels
        "color": "#000000",
        "font": "sans-serif",
        "fontWeight": "bold",
        "fontSize": "20",
        "labelOutlineColor": "#FFFFFF",

../vector-style/


3D tiles

This type of layer shows 3d tiles version 1.0 inside the Cesium viewer. This layer

will not be visible inside 2d map viewer types: openlayer or leaflet. See

specification for more info about 3d tiles here.

i.e.

The style body object for the format 3dtiles accepts rules described in the 3d tiles

styling specification version 1.0 available here.

Terrain

terrain  layer allows the customization of the elevation profile of the globe mesh in

the Cesium 3d viewer. Currently Mapstore supports three different types of 

terrain providers. If no terrain  layer is defined the default elevation profile for the

globe would be the ellipsoid that provides a rather flat profile.

The other two available terrain providers are the wms  (that supports DDL/BIL

types of assets) and the cesium  (that support resources compliant with the Cesium

terrain format).

In order to create a wms  based mesh there are some requirements that need to be

fulfilled:

a GeoServer WMS service with the DDS/BIL plugin

A WMS layer configured with BIL 16 bit output in big endian mode and 

-9999 nodata value

        "labelOutlineWidth": 2,
        "rotation": 90,
        "verticalAlign": "top",
        "textAlign": "center"
    }
}

{
    "type": "3dtiles",
    "url": "http..." // URL of tileset.json file
    "title": "3D tiles layer",
    "visibility": true,
    // optional
    "heightOffset": 0, // height offest applied to the complete tileset
    "style": {
      "format": "3dtiles",
      "body": { // 3d tiles style
        "color": "color('#43a2ca', 1)"
      }
    }
}

• 

• 

https://www.ogc.org/standards/3DTiles
https://github.com/CesiumGS/3d-tiles/tree/1.0/specification/Styling
https://cesium.com/learn/cesiumjs/ref-doc/TerrainProvider.html
https://cesium.com/learn/cesiumjs/ref-doc/EllipsoidTerrainProvider.html
https://docs.geoserver.org/stable/en/user/community/dds/index.html


BILTerrainProvider is used to parse wms  based mesh. Supports three ways in

parsing the metadata of the layer

Layer configuration with sufficient metadata of the layer. This prevents a

call to getCapabilities  eventually improving performance of the parsing of

the layer. Mandatory fields are url , name , crs .

Layer configuration of geoserver  layer with layer name prefixed with

workspace, then the getCapabilities  is requested only for that layer

Layer configuration of geoserver layer with layer name not prefixed with

workspace then getCapabilities  is requested in global scope.

With wms  as provider, the format option is not needed, as Mapstore supports only 

image/bil  format and is used by default

Generic layer configuration of type terrain  and provide wms  as follows. The layer

configuration needs to point to the geoserver resource and define the type of layer

and the type of provider, here all available properties:

• 

a. 

{
  "type": "terrain",
  "provider": "wms",

"url": "http://hot-sample/geoserver/wms",
  "name": "workspace:layername",
  "littleEndian": false,
  "visibility": true,
  "crs": "CRS:84" // Supports only CRS:84 | EPSG:4326 | EPSG:3857 | OSGEO:41001
}

b. 

{
"type": "terrain",
"provider": "wms",
"url": "https://host-sample/geoserver/wms", // 'geoserver' url
"name": "workspace:layername", // name of the geoserver resource with 
workspace prefixed
"littleEndian": false
}

c. 

{
  "type": "terrain",
  "provider": "wms",
  "url": "https://host-sample/geoserver/wms",
  "name": "layername",
  "littleEndian": false
}

Note



The terrain  layer of cesium  type allows using Cesium terrain format compliant

services (like Cesium Ion resources or MapTiler meshes). The options attributte

allows for further customization of the terrain properties (see available options on

the Cesium documentation for the cesium terrain provider)

In order to use these layers they need to be added to the additionalLayers  in 

localConfig.json . The globe only accepts one terrain provider so in case of adding

more than one the last one will take precedence and be used to create the

elevation profile.

{
  "type": "terrain",
  "provider": "wms",
  "url": "https://host-sample/geoserver/wms",
  "name": "workspace:layername", // name of the geoserver resource
  "littleEndian": false, // defines whether buffer is in little or big endian
  "visibility": true,
  // optional properties
  "crs": "CRS:84", // projection of the layer, support only CRS:84 | EPSG:4326 | EPSG:3857 | 
OSGEO:41001
  "version": "1.3.0", // version used for the WMS request
  "heightMapWidth": 65, // width  of a tile in pixels, default value 65
  "heightMapHeight": 65, // height of a tile in pixels, default value 65
  "waterMask": false,
  "offset": 0, // offset of the tiles (in meters)
  "highest": 12000, // highest altitude in the tiles (in meters)
  "lowest": -500, // lowest altitude in the tiles
  "sampleTerrainZoomLevel": 18 // zoom level used to perform sampleTerrain and get the 
height value given a point, used by measure components

}

{
  "type": "terrain",
  "provider": "cesium",
  "url": "https://terrain-provider-service-url/?key={apiKey}",
  "visibility": true,
  "options": {
    // requestVertexNormals, requestWatermask, credit...
  }
}

{
    "name": "Map",
    "cfg": {
        "additionalLayers": [{
            "type": "terrain",
            "provider": "wms",
            "url": "https://host-sample/geoserver/wms",
            "name": "workspace:layername",  // name of the geoserver resource
            "littleEndian": false,
            "visibility": true,

https://cloud.maptiler.com/tiles/terrain-quantized-mesh-v2/
https://cesium.com/learn/cesiumjs/ref-doc/CesiumTerrainProvider.html


Cloud Optimized GeoTIFF (COG)

i.e.

Layer groups

Inside the map configuration, near the layers  entry, you can find also the groups

entry. This array contains information about the groups in the TOC. A group entry

has this shape:

id : the id of the group.

expanded : boolean that keeps the status (expanded/collapsed) of the group.

title : a string or an object (for i18n) with the title of the group. i18n object

format is the same of layer's title.

i.e.

            "crs": "CRS:84"
        }]
    }
}

{
    "type": "cog",
    "title": "Title",
    "group": "background",
    "visibility": false,
    "name": "Name",
    "sources": [
        { "url": "https://host-sample/cog1.tif" }, 
        { "url": "https://host-sample/cog2.tif" }
    ]
}

• 

• 

• 

"title": {
        "default": "Root Group",
        "it-IT": "Gruppo radice",
        "en-US": "Root Group",
        "de-DE": "Wurzelgruppe",
        "fr-FR": "Groupe Racine",
        "es-ES": "Grupo Raíz"
      },

{
  "id": "GROUP_ID",
  "title": "Some default title"
  "expanded": true
}



Other supported formats

The JSON format above is the standard MapStore format. Anyway MapStore

allows to import/export different kinds of formats for maps.

Web Map Context

MapStore provides support for OGC Web Map Context(WMC) files. They can be

imported either using Import plugin functionality, or from within a context using

Map Templates plugin. MapStore maps can also be exported in WMC format

through Export plugin.

The important thing to remember when exporting MapStore maps to WMC format

is that it only supports WMS layers, meaning any non-WMS layers(such as tiled

OSM backgrounds for example) will not be preserved in the resulting WMC file.

The exact way in which the conversion happens is described in further detail

throughout this document.

WMC File Structure

WMC context file generated by MapStore is an XML file with the following

structure:

<?xml version="1.0" encoding="UTF-8"?>
<ViewContext xmlns="http://www.opengis.net/context" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" version="1.1.0" xsi:schemaLocation="http://www.opengis.net/
context http://schemas.opengis.net/context/1.1.0/context.xsd">
    <General>
        <Title>MapStore Context</Title>
        <Abstract>This is a map exported from MapStore2.</Abstract>
        <BoundingBox minx="-20037508.34" miny="-20037508.34" maxx="20037508.34" 
maxy="20037508.34" SRS="EPSG:900913"/>
        <Extension>
            <!--general extensions go here-->
        </Extension>
    </General>
    <LayerList>
        <Layer queryable="0" hidden="0">
        <Name>topp:states</Name>
        <Title>USA Population</Title>
        <Server service="OGC:WMS" version="1.3.0">
            <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple" 
xlink:href="https://demo.geo-solutions.it/geoserver/wms"/>
        </Server>
        <DimensionList>
            <Dimension name="elevation" units="EPSG:5030" unitSymbol="m" default="0.0" 
multipleValues="1">0.0,200.0,400.0,600.0</Dimension>
            <Dimension name="time" units="ISO8601" default="current" 
multipleValues="1">2016-02-23T03:00:00.000Z,2016-02-23T06:00:00.000Z</Dimension>
            <!--...other dimensions-->
        </DimensionList>



More information about each of the elements in the example above can be looked

up in OGC WMC implementation specification

Apart from standard WMC XML elements, MapStore provides support for various

extensions. These are placed inside Extension  tag, and are not gueranteed to be

supported outside MapStore, as they are not a part of OGC Web Map Context

specification. MapStore provides two types of extensions: openlayers and

mapstore-specific elements. WMC can have an Extension  element inside General ,

and each of the Layer  elements. Supported extensions in General  are:

Openlayers:

maxExtent  if present, it's attributes are used as map's bounding box, instead of

the values specified in BoundingBox  tag. The values are assumed to be in a

projection, specified in SRS attribute of BoundingBox

MapStore specific:

GroupList  defines a mapstore group list. Contains Group  elements that describe

a particular layer group:

        <FormatList>
            <Format current="1">image/png</Format>
            <!--...other formats-->
        </FormatList>
        <StyleList>
            <Style>
                <Name>population</Name>
                <Title>Population in the United States</Title>
                <LegendURL width="81" height="80" format="image/png">
                    <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink" 
xlink:type="simple" xlink:href="https://demo.geo-solutions.it:443/geoserver/topp/states/
ows?
service=WMS&amp;request=GetLegendGraphic&amp;format=image%2Fpng&amp;width=20&amp;height=20&am
>
                </LegendURL>
            </Style>
            <!--...other styles-->
        </StyleList>
        <Extension>
            <!--layer extensions go here-->
        </Extension>
        <!--...other layers-->
    </LayerList>
</ViewContext>

• 

<ol:maxExtent xmlns:ol="http://openlayers.org/context" minx="-20037508.34" 
miny="-20037508.34" maxx="20037508.34" maxy="20037508.34"/>

• 

<ms:GroupList xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context">
    <ms:Group xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context" 

http://portal.opengeospatial.org/files/?artifact_id=8618


center  defines a center of map view

zoom  map zoom level

Supported extensions for each Layer  element are:

Openlayers:

maxExtent  if present, used for the value of layer's bbox. Values are assumed to

be in a projection, specified in SRS attribute of "BoundingBox"

singleTile  specifies layer's "singleTile" property value

transparent  is layer transparent or not, true by default

isBaseLayer  if true, the layer is put into "backgrounds" group

opacity  layer's opacity value

Cesium:

tileDiscardPolicy  sets a policy for discarding (missing/broken) tiles (https://

cesium.com/learn/cesiumjs/ref-doc/TileDiscardPolicy.html). If it is not specified

the NeverTileDiscardPolicy will be used. If "none" is specified, no policy at all

will be set.

MapStore specific:

group  specifies to which group, among listed in "GroupList" element, the layer

belongs to

search  JSON describing a filter that is applied to the layer

id="Default" title="Default" expanded="true"/>
</ms:GroupList>

• 

<ms:center xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context" 
x="1.5" y="2.5" crs="EPSG:3857"/>

• 

<ms:zoom xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context">7</
ms:zoom>

• 

• 

• 

• 

• 

<ol:maxExtent xmlns:ol="http://openlayers.org/context" minx="-13885038.382960921" 
miny="2870337.130793682" maxx="-7455049.489182421" maxy="6338174.0557576185"/>
<ol:singleTile xmlns:ol="http://openlayers.org/context">false</ol:singleTile>
<ol:transparent xmlns:ol="http://openlayers.org/context">true</ol:transparent>
<ol:isBaseLayer xmlns:ol="http://openlayers.org/context">false</ol:isBaseLayer>
<ol:opacity xmlns:ol="http://openlayers.org/context">1</ol:opacity>

• 

• 

• 

https://cesium.com/learn/cesiumjs/ref-doc/TileDiscardPolicy.html
https://cesium.com/learn/cesiumjs/ref-doc/TileDiscardPolicy.html


DimensionList  contains Dimension  elements that describe dimensions that

cannot be described using standard "Dimension" tag. Currently supports

dimensions of multidim-extension type:

CatalogServices  contains Service  elements that describe services available for

use in Catalog.

Note, that during the exporting process, some sort of fallback for dimensions,

listed as extensions, is provided inside the standard DimensionList  tag whenever

possible, to ensure interoperability with other geospatial software. When such a

context is imported back into MapStore, the values of dimensions inside extensions

will override the ones specified inside the standard DimensionList  tag.

Also note, that the extension elements would be read correctly only if they belong

to appropriate XML namespaces:

http://openlayers.org/context  for openlayers extensions

• 

• 

<ms:DimensionList xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/
context">
    <ms:Dimension xmlns:ms="https://mapstore.geosolutionsgroup.com/mapstore/context" 
xmlns:xlink="http://www.w3.org/1999/xlink" name="time" type="multidim-extension"
xlink:type="simple" xlink:href="https://cloudsdi.geo-solutions.it/geoserver/gwc/service/
wmts"/>
</ms:DimensionList>
<ms:CatalogServices selectedService="gs_stable_csw">
    <ms:Service serviceName="gs_stable_csw">
        <ms:Attribute name="url" type="string">https://gs-stable.geosolutionsgroup.com/
geoserver/csw</ms:Attribute>
        <ms:Attribute name="type" type="string">csw</ms:Attribute>
        <ms:Attribute name="title" type="string">GeoSolutions GeoServer CSW</
ms:Attribute>
        <ms:Attribute name="autoload" type="boolean">true</ms:Attribute>
    </ms:Service>
    <ms:Service serviceName="gs_stable_wms">
        <ms:Attribute name="url" type="string">https://gs-stable.geosolutionsgroup.com/
geoserver/wms</ms:Attribute>
        <ms:Attribute name="type" type="string">wms</ms:Attribute>
        <ms:Attribute name="title" type="string">GeoSolutions GeoServer WMS</
ms:Attribute>
        <ms:Attribute name="autoload" type="boolean">false</ms:Attribute>
    </ms:Service>
    <ms:Service serviceName="gs_stable_wmts">
        <ms:Attribute name="url" type="string">https://gs-stable.geosolutionsgroup.com/
geoserver/gwc/service/wmts</ms:Attribute>
        <ms:Attribute name="type" type="string">wmts</ms:Attribute>
        <ms:Attribute name="title" type="string">GeoSolutions GeoServer WMTS</
ms:Attribute>
        <ms:Attribute name="autoload" type="boolean">false</ms:Attribute>
    </ms:Service>
</ms:CatalogServices>

• 



https://mapstore.geosolutionsgroup.com/mapstore/context  for mapstore specific

extensions

Usage inside MapTemplates plugin

As stated previously, WMC files can be used as map templates inside contexts.

New WMC templates can be uploaded in context creation tool, after enabling the

MapTemplates plugin for a context. When the context is loaded, for every template

inside MapTemplates there are two options available:

Replace map with this template  replace the currently loaded map with the one

described by the template. Upon loading, the map will zoom to the extent

specified in maxExtent  extension or in BoundingBox  tag. If the template has no

visible background layers available, the default empty background will be

added and set to be visible automatically.

Add this template to map  merges layers and groups inside the template with the

current map configuration. If the WMC template does not contain GroupList

extension, a new group with the name extracted from Title  tag of the template

will be created and will contain all the layers of the template. Zoom and

projection will remain unchanged.

Other considerations

Due to the limitations posed by WMC format the conversion process will not

preserve the map state in it's entirety. The only supported way to do this is to

export to MapStore JSON format. The WMC export option presumably should be

used in cases when the WMS layers inside a MapStore map need to be used in

some way with a different geospatial software suite, or to import such layers from

outside MapStore or if you already have WMC context files that you want to use.

Additional map configuration options

Map configuration also contains the following additional options:

catalogServices  object describing services configuration for Catalog

widgetsConfig  configuration of map widgets

mapInfoConfiguration  map info configuration options

dimensionData  contains map time information

currentTime  currently selected time; the beginning of a time range if offsetTime

is set

offsetTime  the end of a time range

timelineData  timeline options

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



selectedLayer  selected layer id; if not present time cursor will be unlocked

mapViews  map views options

mapViews

Example:

• 

• 

{
  "mapViews": {
    "active": true,
    "selectedId": "view.id.01",
    "views": [
      {
        "id": "view.id.01",
        "title": "Title",
        "description": "<p>Description</p>",
        "duration": 10,
        "flyTo": true,
        "center": {
          "longitude": 8.93690091201193,
          "latitude": 44.39522451776296,
          "height": -0.0022900843616703204
        },
        "cameraPosition": {
          "longitude": 8.93925651181738,
          "latitude": 44.38698231953802,
          "height": 655.705914040523
        },
        "zoom": 17.89659156734602,
        "bbox": [
          8.920925393119584,
          44.39084055670365,
          8.948118718933738,
          44.40554444092288
        ],
        "mask": {
          "enabled": true,
          "resourceId": "resource.id.01",
          "inverse": true,
          "offset": 10000
        },
        "terrain": {
          "clippingLayerResourceId": "resource.id.02",
          "clippingPolygonFeatureId": "feature.id.01",
          "clippingPolygonUnion": true
        },
        "globeTranslucency": {
          "enabled": true,
          "fadeByDistance": false,
          "nearDistance": 500,
          "farDistance": 50000,
          "opacity": 0.5
        },
        "layers": [



The mapViews properties

          {
            "id": "layer.id.01",
            "visibility": true,
            "opacity": 0.5
          },
          {
            "id": "layer.id.04",
            "visibility": true,
            "clippingLayerResourceId": "resource.id.02",
            "clippingPolygonFeatureId": "feature.id.01",
            "clippingPolygonUnion": false
          }
        ]
      }
    ],
    "resources": [
      {
        "id": "resource.id.01",
        "data": {
          "type": "vector",
          "name": "mask",
          "title": "Mask",
          "id": "layer.id.02"
        }
      },
      {
        "id": "resource.id.02",
        "data": {
          "type": "wfs",
          "url": "/service/wfs",
          "name": "clip",
          "title": "Clip",
          "id": "layer.id.03"
        }
      }
    ]
  }
}

Name Type Description

active boolean if true the map view tool will be active at initialization

selectedId string id of the selected view

views array array of views configurations (see below)

resources array resources configurations (see below)



View configuration object

Name Type Description

id string identifier of the view

title string title of the view

description string an html string to describe the

view

duration number when playing, duration in

seconds of the view

flyTo boolean enable animation transition

during navigation

center object center target position as

cameraPosition object point of view position as

zoom number zoom level

bbox array bounding box in WGS84 as

[minx, miny, maxx, maxy]

mask object optional configuration for the

3D tiles mask

mask.enabled boolean if true enables the mask

mask.resourceId string identifier of a resource

configuration in the resources

array

mask.inverse boolean if true enables the inverse

mask

mask.offset number offset in meters for the

inverse mask



Name Type Description

terrain object optional configurations for

terrain clipping

terrain.clippingLayerResourceId string identifier of a resource

configuration in the resources

array

terrain.clippingPolygonFeatureId string identifier of a polygonal

feature available in the

selected layer source to use

to apply the clipping

terrain.clippingPolygonUnion boolean if true it applies inverse

clipping

globeTranslucency object optional configuration for the

globe translucency

globeTranslucency.enabled boolean if true enables translucency

globeTranslucency.opacity number opacity of the globe

translucency, it should be a

value between 0 and 1 where

1 is fully opaque

globeTranslucency.fadeByDistance boolean if true the translucency is

visible only between the 

nearDistance  and farDistance

values

globeTranslucency.nearDistance number when fadeByDistance  is true it

indicates the minimum

distance to apply

translucency

globeTranslucency.farDistance number when fadeByDistance  is true it

indicates the maximum

distance to apply

translucency



Resource object configuration

Name Type Description

layers array array of layer configuration

overrides, default properties

override visibility  and opacity

Name Type Description

id string identifier for the resource

data object properties related to the layer used for the resource (wfs or

vector type)





Externalized Configuration

The data directory is a directory on the file-system, configured for an instance of

MapStore, that will be used to externalize configuration of MapStore.

Configuring this directory you will be able to:

Externalize database configuration

Externalize proxy configuration

Externalize JSON configs files for the application ( localConfig.json , new.json )

Apply patches to default JSON config files (e.g. to store only the differences)

Store extensions installed

All the configuration stored here will persist across MapSore updates.

Using a data directory

To use a data directory, this must be configured through a specific JVM system

property: datadir.location

The data-directory must exist, but all the files inside it are optional. Due to some

particular operations (e.g. installation of extensions), some files may be stored in

data-dir by the application itself.

The structure of the data-dir is the following:

• 

• 

• 

• 

• 

java -Ddatadir.location=/etc/mapstore/datadir

.
├── configs                  (JSON configs)
│   └── pluginsConfig.json.patch
├── extensions
│   ├── extensions.json      (extensions index)
|   └── SampleExtension      (One directory for each extension installed)
|       ├── index.js
|       ├── assets
|       └── translations
├── geostore-datasource-ovr.properties (database configuration)
├── ldap.properties



configs : files in this folder can override the files in configs  file of the application

( pluginsConfig.json , localConfig.json ).

If a file with the same name is present, it will be provided instead of the original

one

If a patch file is present,(e.g. localConfig.json.patch ) the patch will be applied to

the JSON (original or overridden) and provided patched to the client

extensions : this folder contains all the files for the installed extensions, one

folder for each installed extension

extensions.json : the index of the current extensions installed.

Multiple data directory locations

It is possible to specify more than one datadir location path, separated by commas.

This can be useful if you need to have different places for static configuration and

dynamic one. A dynamic configuration file is one that is updated by MapStore

using the UI, while static ones can only updated manually by an administrator of

the server. An example are uploaded extensions, and their configuration files.

MapStore looks for configuration resources in these places in order:

the first datadir.location path other datadir.location paths, if any, in order

the application root folder

Dynamic files will always be written by the UI in the first location in the list, so the

first path is for dynamic stuff.

Example:

Logging

Logging has not been externalized yet, You can manually do this change in WEB-

INF/web.xml  file to externalize also this file:

├── mapstore-ovr.properties
└── mapstore.properties

• 

• 

• 

• 

• 

• 

• 

-Ddatadir.location=/etc/mapstore_extensions,/etc/mapstore_static_config

<context-param>
    <param-name>log4jConfigLocation</param-name>
    <param-value>file:${datadir.location}/log4j2.properties</param-value>
</context-param>



Print Configuration

The config.yaml  is by default in the printing  folder of the webapp root. You can

externalize the path to this resource (and all relative files) by setting the system

variable mapfish-print-config . Make you sure the file exists and all the required files

(header, images ...) are also available (typically they are the same directory,

identified by relative paths. For more information, see mapfish-print

documentation ).

Example:

We suggest to put your customizations for printing inside the data directory in a

folder named printing , using the same structure of the printing  folder of the

application. ( config.yaml , images and so on...). Doing it this way makes the

application ready for future updates.

Database Connection

If you create a file in the datadir called geostore-datasource-ovr.properties  , it will be

used and override the current

Example:

NOTE: this file simply overrides the values in geostore-datasource-

ovr.properties  in the web-application, it will not replace it usually it is

configured by default to use h2 database, so configuring the database (h2,

postgreSQL or oracle) will override all the properties. Anyway if you changed this

file in your project, you may need to override more variables to make it work

-Dmapfish-print-config=/etc/mapstore/datadir/printing/config.yaml

geostoreDataSource.driverClassName=org.postgresql.Driver
geostoreDataSource.url=jdbc:postgresql://localhost:5432/geostore
geostoreDataSource.username=geostore
geostoreDataSource.password=geostore
geostoreVendorAdapter.databasePlatform=org.hibernate.dialect.PostgreSQLDialect
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=validate
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.default_schema]=geostore
geostoreVendorAdapter.generateDdl=true
geostoreVendorAdapter.showSql=false

http://www.mapfish.org/doc/print/


Overriding front-end configuration

Externalizing the whole localConfig.json  file allows to keep your configurations

during the various updates. Anyway keeping this long file in sync can become

hard. You can use patch files, and this is the first suggested option.

Anyway if you need to specify something in localConfig.json  that comes from your

Java application, MapStore gives you the possibility to override only some specific

properties of this big file and keep these changes separated from the application,

allowing an easier updates. This is particularly useful for example when you have

to change only a bunch of settings on a specific instance, and use the standard

configuration for everything else.

You can override one or more properties in the file using the following JVM flags:

overrides.config : the path of a properties file (relative to the datadir) where

override values are stored

overrides.mappings : comma limited list of JSONPath=property values to override

An example of overrides that will replace the default WMS service url:

In mapstore.properties :

In datadir_path/env.properties :

This allows to have in datadir_path/env.properties  a set of variables that can be used

in overrides (even in different places) that are indicated by overrides.mappings .

Note: env.properties  should not be placed in classpath folder

Patching front-end configuration

Another option is to patch the frontend configuration files, instead of overriding

them completely, using a patch file in json-patch format.

To patch one of the allowed resources you can put a file with a .patch extension in

the datadir folder (e.g. localConfig.json.patch) and that file will be merged with the

main localConfig.json to produce the final resource.

• 

• 

overrides.config=env.properties
overrides.mappings=initialState.defaultState.catalog.default.services.gs_stable_wms.url=geoserverUrl

geoserverUrl=https://demo.geo-solutions.it/geoserver/wms

http://jsonpatch.com/


This allows easier migration to a new MapStore version. Please notice that when

you use a patch file, any new configuration from the newer version will be applied

automatically. This can be good or bad: the good part is that new plugins and

features will be available without further configuration after the migration, the bad

part is that you won't be aware that new plugins and features will be automatically

exposed to the final user.

Example: adding a plugin to the localConfig.json configuration file:

Externalize front-end Configurations

From version 2021.02.xx, the externalization of the front-end files is automatic on

the back-end, as well as you configure the data-directory. Anyway for your custom

application you may want to customize the following paths to point your own

services for configuration, extensions, and so on. The paths can be customized by

adding the relative line in the app.jsx  :

Application ( localConfig.json ):

Static maps ( new.json  and config.json ):

Extensions configuration ( extensions.json ):

Context Editor ( pluginsConfig.json ):

Extensions folder ( folder where to get the extensions found in extensions.json ):

[{"op": "add", "path": "/plugins/desktop/-", "value": "MyAwesomePlugin"}]

• 

ConfigUtils.setLocalConfigurationFile("configs/localConfig.json");

• 

ConfigUtils.setConfigProp("configurationFolder", "configs/");

• 

ConfigUtils.setConfigProp("extensionsRegistry", "extensions/extensions.json");

• 

ConfigUtils.setConfigProp("contextPluginsConfiguration", "configs/pluginsConfig.json");

• 

ConfigUtils.setConfigProp("extensionsFolder", "extensions/");



Because in this case we are modifying the app.jsx  file, these changes can be

applied only at build time in a custom project. Future improvements will allow to

externalize these files also in the main product, without any need to rebuild the

application.

Note





Configuration of Application Context
Manager

The Application Context Manager can be configured editing the configs/

pluginsConfig.json  file.

The configuration file has this shape:

{
 "plugins": [
    {
        "name": "Map",
        "mandatory": true, // <-- mandatory should not be shown in editor OR not movable 
and directly added to the right list.
    }, {
        "name": "Notifications",
        "mandatory": true, // <-- mandatory should not be shown in editor OR not movable 
and directly added to the right list.
              "hidden": 
true, // some plugins are only support, so maybe showing them in the UI is superfluous.
    }, {
        "name": "TOC",
       "symbol": "layers",
        "title": "plugins.TOC.title",
        "description": "plugins.TOC.description",
        "defaultConfig": {},
        "children": ["TOCItemSettings", "FeatureEditor"]
    }, {
        "name": "FeatureEditor",
        "defaultConfig":  {}
    }, {
        "name": "TOCItemSettings",
        "...": "..."
    }, {
        "name": "MyPlugin", // <-- this is typically an extension,
        "docUrl": "https://domain.com/documentation"  // <-- custom documentation url
    }, {
       "name": "Footer",
       "children": ["MousePosition", "CRSSelector",  "ScaleBox"]
    }, {
       "name": "Widgets",
      "children": ["WidgetsBuilderPlugin", "WidgetsTrayPlugin"],
      "dependencies": ["WidgetsBuilderPlugin"], // some plugins may be mandatory only if 
parent is added.
    }, {
      "name": "WidgetsTrayPlugin"
    },  {
      "name": "WidgetsBuilderPlugin",
      "hidden": true // <-- This is a child. In this case it will be added automatically,
                     // without showing if the parent is added



The configuration contains the list of available plugins to display in the plugins

selector. Each entry of plugins  array is an object that describes the plugin, it's

dependencies and it's properties. These are the properties allowed for the plugin

entry object:

name : {string}  the name (ID) of the plugin

title : {string}  the title string OR messageId (from localization file)

description : {string} : the description string OR messageId (from localization

file)

docUrl : {string} : the plugin/extension specific documentation url

symbol : {string}`: icon (or image) symbol for the plugin

defaultConfig  {object} : optional object containing the default configuration to

pass to the context-creator.

mandatory  {boolean} : if true, the plugin must be added to the map, so not

possible to remove (but can be customized)

hidden  {boolean} : if true, the plugin should not be shown in UI. If mandatory, is

added without showing.

children  {string[]} : list of the plugins names (ID) that should be shown as

children in the UI

dependencies : The difference between mandatory and dependencies is the "if

the parent is present" condition.). Plugins that can not be disabled (or if are

hidden, added by default) and are added ONLY if the parent plugin is added.

(e.g. containers like toolbar, omnibar, footer or DrawerMenu, and other

dependencies like Widgets that must contain WidgetsBuilder and so on)

}]
}

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 





MapStore filters

Mapstore filtering system is trying to allow to accomplish the following goals:

Support for multiple filters standards (CQL, OGC)

Support for multiple filter types (spatial, temporal, attribute, etc.)

Support for future filter standards.

Allow to be handled independently from the data source (WFS, WMS, etc.)

Allow to leave the entry points to manage them programmatically.

For this reason, MapStore stores internally a filter object that is a JSON object that

can be serialized in different formats (CQL, OGC, etc.) and can be used to filter

data sources. This is the internal filtering system used by mapstore, that can be for

instance in layerFilters  in the layer object

Formats

mapstore  Format

This JSON object is a container that has this shape:

By default all the filters contained in the "filters" array are combined with an AND

operator. Every filter in the array is a JSON object that can be serialized in

different formats (CQL, OGC, etc.). Each of them is a JSON object that must have

the format  value, to be recognized and properly converted,

All the filters in filters  array will have at least a format  field and an optional id

attribute reserved, that can be used to identify the filter from a component that

wants to use it.

Filters in the filters  array can be combined with a logic operator ( AND , OR ), in

this case the filter object must have the logic  format. Moreover they can be of 

mapstore  format too.

• 

• 

• 

• 

• 

{
    "format": "mapstore",
    "version": "1.0.0",
    "filters": [],
    // ...other fields
}



For backward compatibility, the filter object without the "format" field is

considered as "mapstore" format, version "1.0.0".

For backward compatibility, the filters "mapstore" of version "1.0.0" can contain

also several other fields that will be deprecated in the future in favor of a 

mapstore-query-panel  format, that is the format used by the query panel, and

currently mostly supported in MapStore. So a filter like this is still valid:

logic  format

In order to allow to create complex filters, MapStore allows to combine filters with

a logic operator ( AND , OR ). The logic  format is a JSON object that has this shape:

Note

Note

```json
{
 "format": "mapstore",
 "version": "1.0.0",
 "groupFields": [],
 "spatialField": {
 "method": "BBOX",
 "attribute": "the_geom",
 "operation": "INTERSECTS",
 "geometry": {
 "type": "Polygon",
 "coordinates": [[[12.5,41.5], [12.5, 42.5], [13.5,42.5], [13.5, 41.5], [12.5,41.5]]]
 }
 },
 "filterFields": [{
 "attribute": "name",
 "operator": "=",
 "type": "string",
 "value": "test"
 }]
}
```

{
    "format": "logic",
    "version": "1.0.0",
    "logic": "AND",
    "filters": []
}



cql  format

The cql  format is a JSON object that has this shape:

!!! Note: MapStore actually supports only a subset of CQL, that is the one used by

GeoServer.

mapstore-query-panel  format

The mapstore-query-panel  format is a JSON object that has this shape:

Now it do not have an implementation yet, but this format will replace the old

legacy 'mapstore' fields in the future.

Supporting new formats

At the moment the filter conversion system is a work in progress. The API may

change in the future, keeping the canConvert  and getConverter  functions as

external API. We actually support cql  and ogc  as output formats (as strings), and 

cql  (partially, cannot parse spatial filters in cql yet), mapstore  and logic  as input

formats (as JSON objects with format  as written above). At the moment we don't

have an internal model for a filter to use as intermediate model, but a set of 

converters  in MapStore2/web/client/utils/filter/converters/index.js  file. The converter

object is an object that implements a method for each format that you want to

support, with the following signature:

{
    "format": "cql",
    "version": "1.0.0",
    "body": "..."
}

{
    "format": "mapstore-query-panel",
    "version": "1.0.0",
    "groupFields": [],
    "spatialField": {},
    "filterFields": [],
    "crossLayerFilter": {},

}

{
    [format]: (filter::Object, options) => filter
}



Example:

options  depends on the specific output format, but it can be used to pass additional

parameters to the converter. For instance the cql  convert has no options, but the 

ogc  converter has an options  object that can contain the nsFilter  field, that is the

srs of the geometry to be used in the filter. See the JSDoc of the ogc  converter for

more details.

These methods will translate the JSON objects received as input (or in same cases

the effective body of the filter) in the format specified in the method name. Future

converters (maybe with a more generic method) will be added to support other

formats, if needed.

Javascript API exposed by MapStore to manage filters is in 

MapStore2/web/client/utils/filter/converters .

the functions are:

The converter depends on the specific output format, but

Because there is not a generic converter, the from  parameter can be a string or an

object. If it is a string, it is considered as the format of the filter, otherwise it is

considered as the filter object.

Appendix A: mapstore  format legacy fields

mapstore-query-panel  will include all the legacy fields of the mapstore  format, that

will be deprecated in the future. For backward compatibility, the mapstore  format

will be still supported, but needs tp be converted into mapstore-query-panel  format.

Here a full example of the current content stored in layerFilter  object, with all the

legacy fields:

{
    ogc: (filter::Object, options) => filter::String,
    cql: (filter::Object, options) => filter::String
}

getConverter(format::String) // return the converter for the specified format

canConvert(from::Object|String, to::Object) // return true if the filter can be converted in 
the specified format

Note



"layerFilter": {
    "searchUrl": null,
    "featureTypeConfigUrl": null,
    "showGeneratedFilter": false,
    "attributePanelExpanded": true,
    "spatialPanelExpanded": true,
    "crossLayerExpanded": true,
    "showDetailsPanel": false,
    "groupLevels": 5,
    "useMapProjection": false,
    "toolbarEnabled": true,
    "groupFields": [
        {
            "id": 1,
            "logic": "OR",
            "index": 0
        },
        {
            "id": 1671785737915,
            "logic": "OR",
            "groupId": 1,
            "index": 1
        }
    ],
    "maxFeaturesWPS": 5,
    "filterFields": [
        {
            "rowId": 1671785736331,
            "groupId": 1,
            "attribute": "LAND_KM",
            "operator": ">",
            "value": 1000000,
            "type": "number",
            "fieldOptions": {
                "valuesCount": 0,
                "currentPage": 1
            },
            "exception": null
        },
        {
            "rowId": 1671785739355,
            "groupId": 1671785737915,
            "attribute": "STATE_NAME",
            "operator": "=",
            "value": "Alabama",
            "type": "string",
            "fieldOptions": {
                "valuesCount": 0,
                "currentPage": 1
            },
            "exception": null,
            "loading": false,
            "options": {
                "STATE_NAME": []
            },
            "openAutocompleteMenu": false
        },



        {
            "rowId": 1671785746696,
            "groupId": 1671785737915,
            "attribute": "STATE_NAME",
            "operator": "=",
            "value": "Arizona",
            "type": "string",
            "fieldOptions": {
                "valuesCount": 0,
                "currentPage": 1
            },
            "exception": null,
            "loading": false,
            "options": {
                "STATE_NAME": []
            },
            "openAutocompleteMenu": false
        }
    ],
    "spatialField": {
        "method": "BBOX",
        "operation": "INTERSECTS",
        "geometry": {
            "id": "aefadb00-829f-11ed-b555-8bd9209cf0fa",
            "type": "Polygon",
            "extent": [
                -13188750.608437454,
                3135752.6483710706,
                -8795761.718831802,
                4671831.168789972
            ],
            "center": [
                -10992256.163634628,
                3903791.908580521
            ],
            "coordinates": [
                [
                    [
                        -13188750.608437454,
                        4671831.168789972
                    ],
                    [
                        -13188750.608437454,
                        3135752.6483710706
                    ],
                    [
                        -8795761.718831802,
                        3135752.6483710706
                    ],
                    [
                        -8795761.718831802,
                        4671831.168789972
                    ],
                    [
                        -13188750.608437454,
                        4671831.168789972
                    ]



                ]
            ],
            "style": {},
            "projection": "EPSG:3857"
        },
        "attribute": "the_geom"
    },
    "simpleFilterFields": [],
    "crossLayerFilter": {
        "attribute": "the_geom",
        "collectGeometries": {
            "queryCollection": {
                "typeName": "gs:us_states",
                "filterFields": [
                    {
                        "rowId": 1671785795624,
                        "groupId": 1,
                        "attribute": "STATE_NAME",
                        "operator": "=",
                        "value": "Alabama",
                        "type": "string",
                        "fieldOptions": {
                            "valuesCount": 0,
                            "currentPage": 1
                        },
                        "exception": null,
                        "loading": false,
                        "openAutocompleteMenu": false,
                        "options": {
                            "STATE_NAME": []
                        }
                    },
                    {
                        "rowId": 1671785801840,
                        "groupId": 1,
                        "attribute": "STATE_NAME",
                        "operator": "=",
                        "value": "Arizona",
                        "type": "string",
                        "fieldOptions": {
                            "valuesCount": 0,
                            "currentPage": 1
                        },
                        "exception": null,
                        "loading": false,
                        "openAutocompleteMenu": false,
                        "options": {
                            "STATE_NAME": []
                        }
                    }
                ],
                "geometryName": "the_geom",
                "groupFields": [
                    {
                        "id": 1,
                        "index": 0,
                        "logic": "OR"



                    }
                ]
            }
        },
        "operation": "INTERSECTS"
    },
    "autocompleteEnabled": true
}





MapStore vector style

The vector  and wfs  layer types are rendered by the client as GeoJSON features

and it possible to apply specific symbolizer using the style  property available in

the layer options. The style object is composed by these properties

format  the format encoding used by style body

body  the actual style rules and symbolizers

example:

The default format used by MapStore is "geostyler" that is an encoding based on

the geostyler-style specification that could include some variations or limitations

related to the map libraries used by MapStore app. We suggest to refer to

following doc for the rule/symbolizer properties available in MapStore.

Ths style body  is composed by following properties:

name  style name

rules  list of rule object that describe the style

A rule  object is composed by following properties:

name  rule name that could be used to generate a legend

• 

• 

{
  "type": "vector",
  "features": [],
  "style": {
    "format": "geostyler",
    "body": {
      "name": "My Style",
      "rules": [
        {
          "name": "My Rule",
          "symbolizers": [
            {
              "kind": "Line",
              "color": "#3075e9",
              "opacity": 1,
              "width": 2
            }
          ]
        }
      ]
    }
  }
}

• 

• 

• 

https://github.com/geostyler/geostyler-style


filter  filter expression

symbolizers  list of symbolizer object that describe the rule (usually one per

rule)

The filter  expression define with features should be rendered with the

symbolizers listed in the rule

example:

Available logical operators:

Available comparison operators:

• 

• 

// simple comparison condition structure
// [operator, property key, value]
{
  "filter": ["==", "count", 10]
}

// mulitple condition with logical operato
// [logical operator, [condition], [condition]]
{
  "filter": [
    "||",
    [">", "height", 10],
    ["==", "category", "building"]
  ]
}

Operator Description

\|\| OR operator

&& AND operator

Operator Description

== equal to

*= like (for string type)

!= is not

< less than



The symbolizer  could be of following kinds :

Mark  symbolizer properties

Operator Description

<= less and equal than

> grater than

>= grater and equal than

Property Description 2D 3D

kind must be equal to Mark x x

color fill color of the mark x x

fillOpacity fill opacity of the mark x x

strokeColor stroke color of the mark x x

strokeOpacity stroke opacity of the mark x x

strokeWidth stroke width of the mark x x

strokeDasharray array that represent the dashed line

intervals

x x

radius radius size in px of the mark x x

wellKnownName rendered shape, one of Circle, Square,

Triangle, Star, Cross, X, shape://vertline,

shape://horline, shape://slash, shape://

backslash, shape://dot, shape://plus,

shape://times, shape://oarrow or shape://

carrow

x x



Icon  symbolizer properties

Property Description 2D 3D

msBringToFront this boolean will allow setting the 

disableDepthTestDistance value for the

feature. This would

x

msHeightReference reference to compute the distance of the

point geometry, one of none, ground or 

clamp

x

msHeight height of the point, the original geometry

is applied if undefined

x

msLeaderLineColor color of the leading line connecting the

point to the terrain

x

msLeaderLineOpacity opacity of the leading line connecting the

point to the terrain

x

msLeaderLineWidth width of the leading line connecting the

point to the terrain

x

Property Description 2D 3D

kind must be equal to Icon x x

image url of the image to use as icon x x

size size of the icon x x

opacity opacity of the icon x x

rotate rotation of the icon x x

anchor anchor point of the icon, one of: top-left,

top, top-right, left, center, right, bottom-

left, bottom or bottom-right

x x



Experimental: the image property support a custom expression called 

msMarkerIcon  to render default markers, here the expected structure:

Property Description 2D 3D

msBringToFront this boolean will allow setting the 

disableDepthTestDistance value for the

feature. This would

x

msHeightReference reference to compute the distance of the

point geometry, one of none, ground or 

clamp

x

msHeight height of the point, the original geometry

is applied if undefined

x

msLeaderLineColor color of the leading line connecting the

point to the terrain

x

msLeaderLineOpacity opacity of the leading line connecting the

point to the terrain

x

msLeaderLineWidth width of the leading line connecting the

point to the terrain

x

{
    "kind": "Icon",
    "image": {
        "name": "msMarkerIcon",
        "args": [
            {
                "color": "blue", // 'red', 'orange-dark', 'orange', 'yellow', 'blue-dark', 'blue', 'cyan', 
'purple', 'violet', 'pink', 'green-dark', 'green', 'green-light' or 'black'
                "shape": "circle", // 'circle', 'square', 'star' or 'penta'
                "glyph": "comment" // a Font Awesome v4.7.0 icon
            }
        ]
    },
    "opacity": 1,
    "size": 48,
    "rotate": 0,
    "anchor": "bottom"
}



Line  symbolizer properties

Fill  symbolizer properties

Property Description 2D 3D

kind must be equal to Line x x

color stroke color of the line x x

opacity stroke opacity of the line x x

width stroke width of the line x x

dasharray array that represent the dashed line

intervals

x x

msClampToGround this boolean will allow setting the 

clampToGround value for the feature. This

would only apply on Cesium maps.

x

Property Description 2D 3D

kind must be equal to Fill x x

color fill color of the polygon x x

fillOpacity fill opacity of the polygon x x

outlineColor outline color of the polygon x x

outlineOpacity outline opacity of the polygon x x

outlineWidth outline width of the polygon x x

outlineDasharray array that represent the dashed line

intervals

x x



Text  symbolizer properties

Property Description 2D 3D

msClassificationType allow setting classificationType value for

the feature. This would only apply on

polygon graphics in Cesium maps.

x

msClampToGround this boolean will allow setting the 

clampToGround value for the feature.

This would only apply on Cesium maps.

x

Property Description 2D 3D

kind must be equal to Text x x

label text to show in the label, the

{{propertyKey}} notetion allow to access

feature properties (eg. 'feature name is

{{name}}')

x x

font array of font family names x x

size font size of the label x x

fontStyle font style of the label: normal or italic x x

fontWeight font style of the label: normal or bold x x

color font color of the label x x

anchor anchor point of the label, one of: top-left,

top, top-right, left, center, right, bottom-

left, bottom or bottom-right

x x

haloColor halo color of the label x x

haloWidth halo width of the label x x

offset array of x and y values offset of the label x x



Model  symbolizer properties (custom symbolizer to
visualize 3D model as point geometries)

Property Description 2D 3D

msBringToFront this boolean will allow setting the 

disableDepthTestDistance value for the

feature. This would

x

msHeightReference reference to compute the distance of the

point geometry, one of none, ground or 

clamp

x

msHeight height of the point, the original geometry

is applied if undefined

x

msLeaderLineColor color of the leading line connecting the

point to the terrain

x

msLeaderLineOpacity opacity of the leading line connecting the

point to the terrain

x

msLeaderLineWidth width of the leading line connecting the

point to the terrain

x

Property Description 2D 3D

kind must be equal to Model x

model url of a 3D .glb file x

heading heading rotation x

pitch pitch rotation x

roll roll rotation x

scale scale factor x



Circle  symbolizer properties

Property Description 2D 3D

color color mixed with the mesh texture/

material

x

opacity color opacity x

msHeightReference reference to compute the distance of the

point geometry, one of none, ground or 

clamp

x

msHeight height of the point, the original geometry

is applied if undefined

x

msTranslateX move the model on the x axis with a value

in meters (west negative value, east

positive value)

x

msTranslateY move the model on the y axis with a value

in meters (south negative value, north

positive value)

x

msLeaderLineColor color of the leading line connecting the

point to the terrain

x

msLeaderLineOpacity opacity of the leading line connecting the

point to the terrain

x

msLeaderLineWidth width of the leading line connecting the

point to the terrain

x

Property Description 2D 3D

kind must be equal to Circle x x

color fill color of the circle x x

opacity fill opacity of the circle x x



Legacy Vector Style (deprecated)

The style  or styleName  properties of vector layers (wfs, vector...) allow to apply a

style to the local data on the map.

style : a style object/array. It can have different formats. In the simplest case it

is an object that uses some leaflet-like style properties:

weight : width in pixel of the border / line.

radius : radius of the circle (valid only for Point types)

opacity : opacity of the border / line.

color : color of the border / line.

fillOpacity : opacity of the fill if any. (Polygons, Point)

fillColor : color of the fill, if any. (Polygons, Point)

styleName : if set to marker , the style  object will be ignored and it will use the

default marker.

Property Description 2D 3D

outlineColor outline color of the circle x x

outlineOpacity outline opacity of the circle x x

outlineWidth outline width of the circle x x

outlineDasharray array that represent the dashed line

intervals

x x

radius radius in meter of the circle x x

gedesic if true draws a geodesic circle x x

msClassificationType allow setting classificationType value for

the feature. This would only apply on

polygon graphics in Cesium maps.

x

msClampToGround this boolean will allow setting the 

clampToGround value for the feature.

This would only apply on Cesium maps.

x

• 

• 

• 

• 

• 

• 

• 

• 



In case of vector  layer, style can be added also to the specific features. Other ways

of defining the style for a vector layer have to be documented.

Advanced Vector Styles (deprecated)

To support advanced styles (like multiple rules, symbols, dashed lines, start point,

end point) the style can be configured also in a different format, as an array of

objects and you can define them feature by feature, adding a "style" property.

This advanced style functionality has been implemented to support annotations, at

the moment this kind of advanced style options is supported only as a property of

the single feature object, not as global style.

SVG Symbol (deprecated)

The following options are available for a SVG symbol.

symbolUrl : a URL (also a data URL is ok) for the symbol to use (SVG format).

You can anchor the symbol using:

iconAnchor : array of x,y position of the offset of the symbol from top left corner.

anchorXUnits , anchorYUnits  unit of the iconAnchor  ( fraction  or pixels ).

size : the size in pixel of the square that contains the symbol to draw. The size is

used to center and to cut the original svg, so it must fit the svg.

dashArray : Array of line, space size, in pixels. ["6","6"] Will draw the border of

the symbol dashed. It is applied also to a generic line or polygon geometry.

Markers and glyphs (deprecated)

These are the available options for makers. These are specific of annotations for

now, so allowed values have to be documented.

iconGlyph : e.g. "shopping-cart"

iconShape : e.g. "circle"

iconColor : e.g. "red"

iconAnchor : [0.5,0.5]

Warning

• 

• 

• 

• 

• 

• 

• 

• 

• 



Multiple rules and filtering (deprecated)

In order to support start point and end point symbols, you could find in the style

these entries:

geometry : "endPoint"|"startPoint", identify how to get the geometry from

filtering : if true, the geometry filter is applied.

Example (deprecated)

Here an example of a layer with:

a point styled with SVG symbol,

a polygon with dashed style

a line with start-end point styles as markers with icons

• 

• 

• 

• 

• 

{
        "type": "vector",
        "visibility": true,
        "id": "styled-vector-layer",
        "name": "styled-vector-layer",
        "hideLoading": true,
        "features": [
          {
            "type": "Feature",
            "geometry": {
              "type": "Point",
              "coordinates": [2,0]
            },
            "properties": {},
            "style": [
              {
                "iconAnchor": [0.5,0.5],
                "anchorXUnits": "fraction",
                "anchorYUnits": "fraction",
                "opacity": 1,
                "size": 30,
                "symbolUrl": 
"data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='30' 
height='30'%3E%3Crect  x='5' y='5' width='20' height='20' style='fill:rgb(255,0,0);stroke-
width:5;stroke:rgb(0,0,0)' /%3E%3C/svg%3E",
                "shape": "triangle",
                "id": "c65cadc0-9b46-11ea-a138-dd5f1faf9a0d",
                "highlight": false,
                "weight": 4
              }
            ]
          },{
            "type": "Feature",
            "geometry": {
              "type": "Polygon",
              "coordinates": [[[0, 0],[1, 0],[1, 1],[0,1],[ 0,0]]]



            },
            "properties": {},
            "style": [
              {
                "color": "#d0021b",
                "opacity": 1,
                "weight": 3,
                "fillColor": "#4a90e2",
                "fillOpacity": 0.5,
                "highlight": false,
                "dashArray": ["6","6"]
              }
            ]
          },{
            "type": "Feature",
            "geometry": {
              "coordinates": [[0, 2],[ 0,3]],
              "type": "LineString"
            },
            "properties": {},
            "style": [
              {
                "color": "#ffcc33",
                "opacity": 1,
                "weight": 3,
                "editing": {
                  "fill": 1
                },
                "highlight": false
              },
              {
                "iconGlyph": "comment",
                "iconShape": "square",
                "iconColor": "blue",
                "highlight": false,
                "iconAnchor": [ 0.5,0.5],
                "type": "Point",
                "title": "StartPoint Style",
                "geometry": "startPoint",
                "filtering": true
              },
              {
                "iconGlyph": "shopping-cart",
                "iconShape": "circle",
                "iconColor": "red",
                "highlight": false,
                "iconAnchor": [ 0.5,0.5 ],
                "type": "Point",
                "title": "EndPoint Style",
                "geometry": "endPoint",
                "filtering": true
              }
            ]
          }
        ]
      }



Result:





Database Setup

MapStore can use 3 types of database:

H2

PostgreSQL

Oracle

MapStore uses an H2 in-memory DB as the default DBMS to persist the data. This

configuration is useful for development and test purposes, or to evaluate the

project but it is obviously NOT RECOMMENDED for production usage; moreover

the H2 DB cannot be used for the integration with GeoServer.

In the following guide you will learn how to configure MapStore to use an external

database.

Database recommendations are reported in the Requirements page.

Externalize properties files

MapStore has a file called geostore-datasource-ovr.properties . This file is on the

repository in the folder java/web/src/main/resources , in the final mapstore.war

package it will be copied into WEB-INF/classes  path. It contains the set-up for the

database connection. Anyway if you edit the file in WEB-INF/classes  this file will be

overridden on the next re-deploy. To preserve your configuration on every deploy

you can use an environment variable, geostore-ovr , to configure the path to an

override file in a different, external directory. In this file the user can re-define the

default configuration and so set-up the database configuration.

For instance using tomcat on linux you will have to do something like this to add

the environment variable to the JAVA_OPTS

where to add your JAVA_OPTS depends on your operating system. For instance

the file could be /etc/default/tomcat8 , or similar, in linux debian

• 

• 

• 

Note

# here the path to the ovr file
GEOSTORE_OVR_FILE=file:///var/lib/tomcat/conf/geostore-ovr.properties

https://www.h2database.com/html/main.html
https://www.postgresql.org/
https://www.oracle.com/database


So your file /var/lib/tomcat/conf/geostore-ovr.properties  will contain the overrides to the

database set-up.

Database creation Mode

By default MapStore automatically populates the database on it's own. If you want

to disable this functionality (e.g. if you don't want to allow the database user to

have permission to create tables) then you have to set-up the following property in

the ovr file to 'validate'

Options are:

validate : validate the schema, makes no changes to the database.

update : update the schema.

create : creates the schema, destroying previous data.

create-drop : drop the schema when the SessionFactory is closed explicitly,

typically when the > application is stopped.

In this case it is necessary to manually create the required tables using the scripts

available here for the needed DBMS.

The update  mode is usually discouraged in production. On production servers you

should always use validate  mode and apply SQL scripts and/or patches manually.

Anyway before every update a database backup is strongly suggested.

H2

If you download or build mapStore.war, it's default configuration will be this one:

This configuration creates a file called geostore  in the webapp folder. You can

change the geostoreDataSource.url  to set the path to the database you want to use.

Make you sure that the user of the project that executes Tomcat has write

permissions on the folder where you want to create the database.

# add the env. variable 'geostore-ovr' to JAVA_OPTS
JAVA_OPTS="-Dgeostore-ovr=$GEOSTORE_OVR_FILE [other opts]"

geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=validate

• 

• 

• 

• 

geostoreDataSource.url=jdbc:h2:./webapps/mapstore/geostore
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=update

https://github.com/geosolutions-it/geostore/tree/master/doc


PostgreSQL

All the following configurations will use geostore  as password of the user geostore .

Of course you can change it according to your needings.

Database Creation and Setup

To use postgreSQL DBMS as MapStore you have to create the "geostore" DB.

Log in as user postgres

Create the geostore DB:

Create users and schemas:

Here below the required part of the file 001_setup_db.sql , available here (creation of

test user and schema for geostore_test  in the original file is not strictly required for

MapStore)

Write the password you prefer instead of 'geostore'

If you need to create the database schema manually (validate mode), you have also

this script.

At the end, make you sure that the user geostore  has access to the database

from the address of MapStore application. You can give permission by editing 

pg_hba.conf

Connection to the Database

To configure MapStore to connect it to the new created database you have to edit

your override file like below (change the connection parameters accordingly):

• 

• 

createdb geostore

psql geostore < 001_setup_db.sql

-- CREATE SCHEMA geostore (set the password you prefer)
CREATE user geostore LOGIN PASSWORD 'geostore' NOSUPERUSER INHERIT 
NOCREATEDB NOCREATEROLE;

CREATE SCHEMA geostore;

GRANT USAGE ON SCHEMA geostore TO geostore ;
GRANT ALL ON SCHEMA geostore TO geostore ;

alter user geostore set search_path to geostore , public;

https://github.com/geosolutions-it/geostore/blob/master/doc/sql/001_setup_db.sql
https://github.com/geosolutions-it/geostore/blob/master/doc/sql/002_create_schema_postgres.sql
https://www.postgresql.org/docs/9.1/auth-pg-hba-conf.html


Migrate an existing H2 database to PostgreSQL

If you used an H2 database during development, and you want to deploy the

application in production, migrating the database to PostgreSQL is not that easy.

For this reason we have created a specific tool for this task, called 

H2ToPgSQLExport that is part of the GeoStore CLI.

More information on the migration tool is available in the GeoStore CLI

documentation page.

Oracle

Database Creation and Setup

Create a database geostore, a schema called GEOSTORE and a user geostore  that

has write access to them.

Use this SQL script to create the DB schema.

Connection to the Database

To configure MapStore to connect to the new created database you have to edit

your override file like reported below:

# Setup driver and dialect for PostgreSQL database
geostoreDataSource.driverClassName=org.postgresql.Driver
geostoreVendorAdapter.databasePlatform=org.hibernate.dialect.PostgreSQLDialect

# Connection parameters
geostoreDataSource.url=jdbc:postgresql://localhost:5432/geostore
geostoreDataSource.username=geostore
geostoreDataSource.password=geostore
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.default_schema]=geostore

# Automatic create-update database mode
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=update

# Other options
geostoreVendorAdapter.generateDdl=true
geostoreVendorAdapter.showSql=false

# Setup driver and dialect for Oracle Database
geostoreDataSource.driverClassName=oracle.jdbc.OracleDriver
geostoreVendorAdapter.databasePlatform=org.hibernate.dialect.Oracle10gDialect

# Connection parameters
geostoreDataSource.url=jdbc:oracle:thin:@localhost:1521/ORCL

https://github.com/geosolutions-it/geostore/tree/master/src/cli
https://github.com/geosolutions-it/geostore/tree/master/src/cli
https://github.com/geosolutions-it/geostore/blob/master/doc/sql/002_create_schema_oracle.sql


geostoreEntityManagerFactory.jpaPropertyMap[hibernate.default_schema]=GEOSTORE
geostoreDataSource.username=geostore
geostoreDataSource.password=geostore

# Automatic create-update database mode
geostoreEntityManagerFactory.jpaPropertyMap[hibernate.hbm2ddl.auto]=

# Other options
geostoreVendorAdapter.generateDdl=true
geostoreVendorAdapter.showSql=false





GeoServer integrations

MapStore/GeoServer users integration

MapStore can share users, groups an roles with GeoServer. This type of

integration allows to setup a fine grained access to the data and the services based

on MapStore groups and roles.

This guide explains how to share users, groups and roles between MapStore and

GeoServer. Applying this configurations will allow users logged in MapStore to be

recognized by GeoServer. So security rules about restrictions on services, layers

and so on can be correctly applied to MapStore users (also using GeoFence).

UserGroup Service/Role Service can be MapStore database or LDAP depending

on the setup you prefer.

Note

https://docs.geoserver.org/latest/en/user/extensions/geofence-server/index.html


With the suggested implementation the MapStore database will be also a

UserGroupService and a RoleService for GeoServer. This means that every user of

MapStore will be also a user in GeoServer, with the same attributes, the same roles

(ADMIN, USER) and the same user groups.

For every user-group assigned to a user GeoServer will see also a role of the

same name, from the role service, assigned to the members of the user-group (as

user-group derived roles).

Permission on GeoServer can be assigned using these roles or with more detailed

granularity using a custom Resource Access Manager (like GeoFence).

Limits of this solution

This solution partially degradates the functionalities of user management UI of

GeoServer (for users, groups and roles that belong to MapStore). If you want to

use this solution, you should use the MapStore's user manager and avoid the

GeoServer's one.

Requirements

GeoServer must have the Authkey Plugin Community Module installed

MapStore2 Database must be reachable by GeoServer (H2 will not work, use

PostgreSQL or Oracle)

MapStore2 must be reachable by GeoServer via HTTP

This example will focus on PostgreSQL database type I am assuming this is a new

installation, so no existing user or map will be preserved

Database preparation

Follow Geostore wiki to setup a postgresql database (ignore the geostore_test

part)

Start your Tomcat at least once, so mapstore.war will be extracted in the 

webapps  directory of tomcat instance.

Stop Tomcat.

Copy from the extracted folder ( <TOMCAT_DIR>/webapps/mapstore ) the file

located at WEB-INF/classes/db-conf/postgres.properties  to replace the file WEB-INF/

classes/geostore-database-ovr.properties .

1. 

2. 

3. 

1. 

2. 

3. 

4. 

https://docs.geoserver.org/latest/en/user/extensions/geofence-server/index.html
https://build.geoserver.org/geoserver/main/community-latest/
https://github.com/geosolutions-it/geostore/wiki/Building-instructions#building-geostore-with-postgres-support


Edit the new WEB-INF/classes/geostore-database-ovr.properties  file with your DB

URL and credentials.

Start Tomcat

Default user password couples are

admin:admin

user:user

GeoServer Setup

Follow this guide

Create the empty GeoStore database using scripts as described in GeoStore WIKI.

The following procedure will make GeoServer accessible to users stored in the

MapStore database. In case of the users on MapStore and GeoServer have the

same name, the users of MapStore will have precedence. At the end of the

procedure, if you access with the user admin , you will have to use the password of

the admin  user of MapStore ( admin  by default).

User Groups and Roles

Steps below reference user, group and role service configuration files, as needed

download the files from the geostore repository.

Setup User Group Service

In GeoServer, Open the page "Security" --> "User Groups Roles" (from the left

menu)

In the section "User Group Services" click on "add new" to a new user group

service

Select JDBC

name: geostore

Password encryption : Digest

password policy default

Driver org.postgresql.Driver  (or JNDI )

connection url jdbc:postgresql://localhost:5432/geostore  (or the one for your setup)

JNDI only: the JNDI resource name should look like this java:comp/env/jdbc/

geostore

5. 

6. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://github.com/geosolutions-it/geostore/tree/master/geoserver
https://github.com/geosolutions-it/geostore/wiki/Building-instructions#building-geostore-with-postgres-support
https://github.com/geosolutions-it/geostore/tree/master/geoserver


set username and password for the db (user geostore  with password geostore )

click on "Save" button

Then, in order to adapt the standard JDBC service to MapStore database, you

must place the provided files in the new directory (created by GeoServer for

this new user group service) inside the data directory at the following path 

<gs_datadir>/security/usergroup/geostore . ( geostore  is the name of the new user

group service)

Then go back to geostore  user group service page in GeoServer (the ddl  and 

dml  path should have values in them)

click on "Save" button again

Setup Role Service

In GeoServer Open the page "Security" --> "User Groups Roles" (from the left

menu)

In the section "Role Services" click on "add new" to a new role service

select JDBC

name geostore

db org.postgresql.Driver

connection url: jdbc:postgresql://localhost:5432/geostore  (or JNDI, same as above)

set user and password (user geostore  with password geostore )

click on "Save" button

add the provided files to the geostore directory under

/<gs_datadir>/security/role/geostore

click on "Save" button again

go Again in JDBC Role Service geostore

select Administrator role to ADMIN

select Group Administrator Role to ADMIN

Use these services as default

In GeoServer "Security" --> "Settings" section (from the left menu)

Set the Active role service to geostore

go to Authentication Section, scroll to Authentication Providers and Add a new

one.

select 'Username Password'

name it “geostore”

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



select “geostore” from the select box

Save.

Then go to "Provider chain" and move geostore on top in the right list.

Save again

Use the Auth key Module with GeoStore/GeoServer

These last steps are required to allow users logged in MapStore to be

authenticated correctly by GeoServer.

Configure GeoServer

Install the authkey module in GeoServer if needed (most recent versions of

GeoServer already include it).

Go to the authentication page and scroll into the 'Authentication Filters' section

Click 'Add new'.

Inside the 'New authentication Filter' page click on authkey module.

Insert the name (i.e. 'geostore').

Leave authkey as parameter name.

Select the Web Service as 'Authentication key user mapper'.

Select the created geostore's 'User/Group Service'.

Input the mapstore2 url: http://<your_hostname>:<mapstore2_port>/mapstore/rest/

geostore/session/username/{key} . Examples:

Save.

Go into the authentication page and open default filter chain.

Add 'geostore' into the 'Selected' filters and put it on top, and save.

in the User Groups and Roles Services available options there are "AuthKEY

WebService Body Response - UserGroup Service from WebService Response Body"

and "AuthKEY REST - Role service from REST endpoint". Ignore them as they are

not supported from MapStore2.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

http://localhost:36728/mapstore/rest/geostore/session/username/{key}
http://localhost/mapstore2/rest/geostore/session/username/{key}
http://mapstore.geosolutionsgroup.com/mapstore/rest/geostore/session/username/{key}

• 

• 

• 

Note



Configure MapStore

The last step is to configure MapStore to use the authkey with the configured

instance of GeoServer. You can do it by adding to localConfig.json  like this:

Verify that "useAuthenticationRules" is set to true

authenticationRules  array should contain 2 rules:

The first rule should already be present, and defines the authentication

method used internally in mapstore

The second rule (the one you need to add) should be added and defines

how to authenticate to GeoServer:

urlPattern : is a regular expression that identifies the request url where

to apply the rule

method : set it to authkey  to use the authentication filter you just created

in Geoserver.

authkeyParamName : is the name of the authkey parameter defined in

GeoServer (set to authkey  by default)

Advantages of user integration

Integrating the user/groups database with GeoServer you can allow some users

to:

Execute some processes (via WPS security)

Download data (setting up the WPS download extension to allow/deny certain

users to download data)

Edit Styles (by default allowed only to administrators, but you can change it

acting on /rest/  Filter Chains).

Access to layers based on users (using the standard GeoServer security)

Filter layers data based on users (GeoFence), see here

//...
"useAuthenticationRules": true,
  "authenticationRules": [{
    "urlPattern": ".*geostore.*",
    "method": "bearer"
  }, {
    "urlPattern": "\\/geoserver/.*",
    "authkeyParamName": "authkey",
    "method": "authkey"
  }],
//...

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://docs.geoserver.org/stable/en/user/services/wps/security.html
https://docs.geoserver.org/latest/en/user/extensions/geofence-server/index.html


Allow editing of layers to certain MapStore users (GeoServer Security). The

editing can be enabled in the plugin settings of MapStore

GeoServer Plugins and Extensions

MapStore supports several plugins for GeoServer. Installing them will expand the

functionalities of MapStore, allowing to navigate data with time dimension, styling

layers and so on.

Here a list of the extensions that MapStore can use:

WMTS Multidimensional despite the name, this service provides

multidimensional discovery services for GeoServer in general, not only for

WMTS, and it is required to use the timeline plugin of MapStore.

SLD Rest Service: This extension can be used by the MapStore styler to

classify Vector and Raster data. It can inspect the real layer data to apply

classification based on values contained in it. It allows to select various

classification types (quantile, equalInterval, standardDeviation…) and to

customize the color scales based on parameters

CSS Extension: With this extension the MapStore styler allows to edit styles

also in CSS format, in addition to the standard SLD format

WPS Extension: Provides several process that can be executed using the OGC

WPS Standard. IT contains some default services very useful for MapStore:

gs:PagedUnique: Provide a way to query layer attribute values with

pagination and filtering by unique values. It enables autocomplete of

attribute values for feature grid, attribute table, filter layer and other

plugins.

gs:Aggregate: Allows aggregation operation on vector layers. This can be

used by the charts (widgets, dashboards) to catch data

gs:Bounds: allows to calculate bounds of a filtered layer, used to

dynamically zoom in dashboards map, when filtering is active.

WPS download community module: This additional module allows to improve

the default download plugin, based on WFS, with more functionalities. The

advanced Download, activated when GeoServer provides the WPS service

above, allows to

Download also the raster data

Schedule download processes in a download list (and download them later,

when post processing is finished).

Select Spatial reference system

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://docs.geoserver.org/stable/en/user/security/webadmin/data.html
https://dev-mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.FeatureEditor
https://docs.geoserver.org/stable/en/user/community/wmts-multidimensional/index.html
https://docs.geoserver.org/latest/en/user/extensions/sldservice/index.html
https://docs.geoserver.org/latest/en/user/styling/css/install.html
https://docs.geoserver.org/stable/en/user/services/wps/install.html
https://docs.geoserver.org/stable/en/user/community/wps-download/index.html


Crop dataset to current viewport

For vector layers:

Filter the dataset (based on MapStore filter)

For raster layers:

Select Compression type and quality

Define width and height of internal tiles

CSW Extension: Activating this extension, MapStore can browse data of

GeoServer using the CSW protocol. This is particularly useful when GeoServer

contains hundreds or thousands of layers, so the WMS capabilities services

can be too slow.

Query Layer Plugin: This plugin allows the possibility to do cross-layer

filtering. Cross layer filtering is the mechanism of Filtering a layer using

geometries coming from another layer. The plugin allows this filtering to be

performed on the server side in an efficient way.

DDS/BIL Plugin: this plugin add to geoserver the possibility to publish raster

data in DDS/BIL format (World Wind). This particular plugin is useful if we

want to use a raster data as elevation model for MapStore. This elevation model

will be used in 3D mode or with the mouse coordinates plugin (displaying the

elevation of a point on the map, together with the coordinates).

• 

• 

• 

• 

• 

• 

• 

• 

• 

https://docs.geoserver.org/latest/en/user/services/csw/installing.html
https://docs.geoserver.org/stable/en/user/extensions/querylayer/index.html#installing-the-querylayer-module
https://docs.geoserver.org/stable/en/user/community/dds/index.html




LDAP integration with MapStore

The purpose of this guide is to explain how to configure MapStore to use an LDAP

repository for authentication and accounting (users, roles and user-groups)

instead of the standard database.

Overview

By default the MapStore backend users service (also known as GeoStore), uses a

relational database to store and fetch users details, implement authentication and

assign resource access rights to users and groups (for maps, dashboards, etc.).

If you already have your users on an LDAP repository you can anyway configure

MapStore to connect to your service and use it to authenticate users and associate

user groups and roles, instead of using the default database. In this case the

relational database will store only resources and accessory data (permissions,

attributes ...) referring the users of your service.

Notice that the LDAP storage is read-only. This means that the MapStore User/

Groups management UI cannot be used to manage users and groups. This makes

sense because an LDAP repository is considered an external source and should be

managed externally.

If this can create confusion, you can eventually fully disable the UI when using

LDAP, by removing the corresponding plugin from the MapStore configuration.

The LDAP storage can be configured in two different ways:

synchronized mode

direct connection mode (experimental)

Synchronized mode

In synchronized mode, user data (users, groups, roles) is read from LDAP on every

login and copied on the internal database.

Any other operation, for example getting user permissions on maps, always uses

the internal database.

Synchronized mode is faster for normal use, but data may disalign when users are

removed from the LDAP repository.

• 

• 

https://github.com/geosolutions-it/geostore


In general we suggest to use synchronized mode, since it is the most stable and

tested one.

Direct connection mode (experimental)

In direct connection mode, user data is always read from LDAP, for any operation,

so there is no risk of misaligned data.

Direct connection is still experimental and not tested in all the possible scenarios,

but will hopefully become the standard mode in an early future, because the

approach is simpler and avoids most the synchronized mode defects (e.g.

misalignments).

Configuration

Configuring MapStore to use the LDAP storage requires:

filling out the LDAP configuration properties in the java/web/src/main/

resources/ldap.properties file to match your LDAP repository structure

invoking the build with the ldap profile

Configuration properties

Configurable properties in the ldap.properties file include the following:

• 

• 

./build.sh <version> ldap

## name of the LDAP server host
ldap.host=localhost
## port of the LDAP server
ldap.port=10389
## root path for all searches
ldap.root=dc=acme,dc=org
## complete DN of an LDAP user, with browse permissions on the used LDAP tree 
(optional, if browse is available to anoymous users)
ldap.userDn=
## password of the userDn LDAP user (optional, if browse is available to anoymous users)
ldap.password=
## root path for seaching users 
ldap.userBase=ou=people
## root path for seaching groups
ldap.groupBase=ou=groups
## root path for seaching roles
ldap.roleBase=ou=groups
## LDAP filter used to search for a given username ({0} is the username to search for)
ldap.userFilter=(uid={0})
## LDAP filter used to search for groups membership of a given user ({0} is the full user 



Enabling direct connection mode

The default configuration enables the synchronized mode. To switch to direct

connection mode you have to manually edit the final geostore-spring-security.xml  to

uncomment the related section at the end of the file:

Testing LDAP support

If you don't have an LDAP repository at hand, a very light solution for testing is the

acme-ldap java server included in the GeoServer LDAP documentation here.

You can easily customize the sample data tree, editing the java code.

The sample MapStore LDAP configuration in the default ldap.properties  file works

seamlessly with acme-ldap.

DN)
ldap.groupFilter=(member={0})
## LDAP filter used to search for role membership of a given user ({0} is the full user 
DN)
ldap.roleFilter=(member={0})

## enables / disables support for nested (hierarchical) groups; when true, a user is 
assigned groups recursively if its groups belong to other groups
ldap.hierachicalGroups=false
## LDAP filter used to search for groups membership of a given group ({0} is the full 
group DN)
ldap.nestedGroupFilter=(member={0})
## max number of nested groups that are used
ldap.nestedGroupLevels=3

## if true, all the searches are recursive from the relative root path
ldap.searchSubtree=true
## if true, all users, groups and roles names are transformed to uppercase in MapStore
ldap.convertToUpperCase=true

<!-- enable direct connection mode -->
<bean id="ldapUserDAO" [...]>
        [...]
    </bean>
    <bean id="ldapUserGroupDAO" [...]>
        [...]
    </bean>
    <!-- -->

https://github.com/geoserver/geoserver/blob/master/doc/en/user/source/security/tutorials/ldap/acme-ldap/src/main/java/org/acme/Ldap.java


Advanced Configuration

More information about the MapStore backend storage and security service,

GeoStore, is available here.

In particular, more information about LDAP usage with GeoStore is in the following

Wiki page.

https://github.com/geosolutions-it/geostore
https://github.com/geosolutions-it/geostore/wiki/LDAP-Authentication




Integration with OpenID connect

MapStore allows to integrate and login using some common OpenID connect

services. Having this support properly configured, you can make MapStore users

able to login with the given OpenID service.

Customizing logo an text in Login Form

For details about the configuration for a specific service, please refer to the

specific section below. For details about authenticationProviders  optional values (e.g.

to customize icon and/or text to show), refer to the documentation of the 

LoginPlugin.

By default authenticationProviders  is {"type": "basic", "provider": "geostore"} , that

represents the standard login on MapStore with username and password. With

the default configuration, when the user try to login, MapStore will show the

classic login form.

It is possible to add other providers to the list (e.g. openid ) and they will be added

as options to the login window. You can remove the geostore  entry from 

authenticationProviders  list to remove the login form from the possible login systems.

If only one OpenID entry is present in authenticationProviders  (and no geostore  entry

available), clicking on login in the login menu will not show any intermediate

window and you will be redirected directly to the OpenID provider configured. If

more than one entry is present in authenticationProviders  list, the user will have to

choose one of them to be authenticated.

Supported OpenID services

MapStore allows to integrate with the following OpenID providers.

Google

Keycloak

For each service you want to add you have to:

properly configure the backend

Note

• 

• 

• 

https://openid.net/connect/
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/plugins#plugins.Login


modify localConfig.json  adding a proper entry to the authenticationProviders .

For the moment we can configure only one authentication per service type (only

one for google, only one for keycloak ...).

Google

Create Oauth 2.0 credentials on Google Console

In order to setup the openID connection you have to setup a project in Google API

Console to obtain Oauth 2.0 credentials and configure them.

Open Google developer console and, from credentials section, create a new

credential of type Oauth client ID

Set the Application Type to Web Application, name it as you prefer and

configure the root of the application as an authorized redirect URI. Then click

on Create

• 

Note

• 

• 



After creation you will obtain ClientID and Client Secret to use to configure

MapStore.

Please follow the Google documentation for any detail or additional configuration.

• 

https://developers.google.com/identity/protocols/oauth2/openid-connect


Configure MapStore back-end for Google OpenID

After the setup, you will have to:

create/edit mapstore-ovr.properties  file (in data-dir or class path) to configure the

google provider this way:

Configure MapStore front-end for Google OpenID

Add an entry for google  in authenticationProviders  inside localConfig.json  file.

Keycloak

Keycloak is an open source identity and access management application widely

used. MapStore has the ability to integrate with keycloak:

Using the standard OpenID Connect (OIDC) protocol to login/logout in

MapStore

• 

# enables the google OpenID Connect filter
googleOAuth2Config.enabled=true

#clientId and clientSecret
googleOAuth2Config.clientId=<the_client_id_from_google_dev_console>
googleOAuth2Config.clientSecret=<the_client_secret_from_google_dev_console>

# create the user if not present
googleOAuth2Config.autoCreateUser=true

# Redirect URL
googleOAuth2Config.redirectUri=https://<your-appliction-domain>/mapstore/rest/
geostore/openid/google/callback
# Internal redirect URI (you can set it to relative path like this `../../..` to make this config 
work across domain)
googleOAuth2Config.internalRedirectUri=https://<your-appliction-domain>/mapstore/

## discoveryUrl: contains all the information for the specific service.
googleOAuth2Config.discoveryUrl=https://accounts.google.com/.well-known/openid-
configuration

• 

{
    "authenticationProviders": [
      {
        "type": "openID",
        "provider": "google"
      },
      {
        "type": "basic",

"provider": "geostore"
      }
    ]
}

• 

https://www.keycloak.org/


Supporting Single Sign On (SSO) with other applications.

Mapping keycloak roles to MapStore groups, as well as for ldap.

In this section you can see how to configure keycloak as a standard OpenID

provider. For other advanced functionalities, you can see the dedicated section of

the documentation

Configure keycloak Client

Create a new Client on keycloak. In this guide we will name it mapstore-server

(because if you need to configure SSO, we may need another key to call mapstore-

client )

Configure it as Confidential  setting the Redirect-URL with your MapStore base

root, with a *  at the end (e.g. https://my.mapstore.site.com/mapstore/* )

• 

• 

• 





Click on Save button, then open the Installation tab, select the Keycloak OIDC 

JSON  format, and copy the JSON displayed below.

Configure MapStore back-end for Keycloak OpenID

Create/edit mapstore-ovr.properties  file (in data-dir or class path) to configure the

keycloak provider this way:

• 

# enables the keycloak OpenID Connect filter
keycloakOAuth2Config.enabled=false

# Configuration
keycloakOAuth2Config.jsonConfig=<copy-here-the-json-config-from-keycloak-removing-all-
the-spaces>

# Redirect URLs
# - Redirect URL: need to be configured to point to your application at the path <base-app-
url>/rest/geostore/openid/keycloak/callback
# e.g. `https://my.mapstore.site.com/mapstore/mapstore/rest/geostore/openid/keycloak/
callback`



keycloakOAuth2Config.jsonConfig : insert the JSON copied, removing all the spaces

keycloakOAuth2Config.redirectUri : need to be configured to point to your

application at the path <base-app-url>/rest/geostore/openid/keycloak/callback , e.g. 

https://my.mapstore.site.com/mapstore/rest/geostore/openid/keycloak/callback

keycloakOAuth2Config.internalRedirectUri  can be set to your application root, e.g. 

https://my.mapstore.site.com/mapstore/

keycloakOAuth2Config.autoCreateUser : true if you want MapStore to insert a

Keycloak authenticated user on the DB. UserGroups will be inserted as well

and kept in synch with the roles defined for the user in Keycloak. The option 

must be set to false if MapStore is using a read-only external service

for users and groups (i.e. Keycloak or LDAP).

keycloakOAuth2Config.forceConfiguredRedirectURI : optional, if true , forces the

redirect URI for callback to be equal to teh redirect URI. This is useful if you

have problems logging in behind a proxy, or in dev mode.

keycloakOAuth2Config.roleMappings : comma separated list of mappings with the

following format keycloak_admin_role:ADMIN,keycloak_user_role:USER . These

mappings will be used to map Keycloak roles to MapStore roles. Allowed values

USER  or ADMIN .

keycloakOAuth2Config.authenticatedDefaultRole : where the role has not been

assigned by the mappings above, the role here will be used. Allowed values 

USER  or ADMIN .

keycloakOAuth2Config.groupMappings : comma separated list of mappings with the

following format 

keycloak_role_name:mapstore_group_name,keycloak_role_name2:mapstore_group_name2 .

These mappings will be used to map Keycloak roles to MapStore groups.

keycloakOAuth2Config.redirectUri=https://my.mapstore.site.com/mapstore/rest/geostore/
openid/keycloak/callback
# - Internal redirect URL when logged in (typically the home page of MapStore, can be 
relative)
keycloakOAuth2Config.internalRedirectUri=https://my.mapstore.site.com/mapstore/

# Create user (if you are using local database, this should be set to true)
keycloakOAuth2Config.autoCreateUser=true

# Comma separated list of <keycloak-role>:<geostore-role>
keycloakOAuth2Config.roleMappings=admin:ADMIN,user:USER

# Comma separated list of <keycloak-role>:<geostore-group>
keycloakOAuth2Config.roleMappings=MY_KEYCLOAK_ROLE:MY_MAPSTORE_GROUP,MY_KEYCLOAK_ROLE2:MY

# Default role, when no mapping has matched
keycloakOAuth2Config.authenticatedDefaultRole=USER

• 

• 

• 

• 

• 

• 

• 

• 



keycloakOAuth2Config.dropUnmapped : when set to false, MapStore will drop

Keycloak roles that are not matched by any mapping role and group mapping.

When set to true all the unmatched Keycloak roles will be added as MapStore

UserGroups.

Configure MapStore front-end for Keycloak OpenID

Add an entry for keycloak  in authenticationProviders  inside localConfig.json  file.

• 

• 

{
    "authenticationProviders": [
      {
        "type": "openID",
        "provider": "keycloak"
      },
      {
        "type": "basic",
        "provider": "geostore"
      }
    ]
}





Keycloak Integrations

General

MapStore supports various Keycloak integration features:

OpenID support: Allows to login to MapStore using a keycloak account.

Single sign on: Enhances the OpenID support by detecting a session in the

keycloak realm and automatically login/logout from MapStore

Direct user integration: Enhances the OpenID support making MapStore

use keycloak as unique Identity Manager System (IdM), replacing the

MapStore DB with Keycloak REST API.

OpenID

Keycloak OpenID support allows to use a keycloak instance as Identity Provider

(IdP) via OpenID Connect (OIDC), so that the user can login to MapStore using an

existing account in keycloak.

You can find details about how to configure it in the dedicated "OpenID Connect"

page section dedicated to keycloak

Single sign on integration

MapStore provides an integration with the keycloak Single Sign On (SSO)

system, that allows to automatically login/logout in MapStore when you login/

logout from another application in the same keycloak realm, an vice-versa.

In order to enable the SSO in keycloak you have to:

Have already configured the openID for keycloak.

Create a keycloak client in the same realm of openID integration above.

Configure SSO in MapStore's localConfig.json

Configure the OpenID integration

See here openID integration.

• 

• 

• 

• 

• 

• 

• 



Configure keycloak client

After configuring the open openID integration, you will have a keycloak client

called mapstore-server . In order to enable SSO you have to create another new

Client on keycloak. In this guide we will name it mapstore-client .

Configure it as Public

Insert in "Valid Redirect URIs" your MapStore base root, with a *  at the end

(e.g. https://my.mapstore.site.com/mapstore/* )

Insert in "Web Origins" your MapStore base domain name. (e.g. https://

my.mapstore.site.com )

• 

• 

• 





Click on Save button, then open the Installation tab, select the Keycloak OIDC 

JSON  format, and copy the JSON displayed below.

Configure SSO in MapStore

After configuring the open openID integration, you will have an entry named 

keycloak  in authenticationProviders . In this entry, you will have to add "sso":

{"type":"keycloak"}  and config: "<configuration coped from keycloak>" .

e.g.

Here implementation details about keycloak login workflow.

• 

{
       "authenticationProviders": [
      {
        "type": "openID",
        "provider": "keycloak",
        "config": {
          "realm": "master",
          "auth-server-url": "http://localhost:8080/",
          "ssl-required": "external",
          "resource": "mapstore-client",
          "public-client": true,
          "confidential-port": 0
        },
        "sso": {
          "type": "keycloak"
        }
      }
    ],
}



Direct user integration

By default MapStore can integrate openID login with Keycloak and also supports

integration with Keycloak SSO.

By default users that login with Keycloak are created on the database and their

Keycloak roles inserted as MapStore UserGroup. Anyway MapStore can interact

with Keycloak REST API to provide a direct integration without persisting anything

on the MapStore's database. This provides a stricter integration between the

applications, allowing the assignment of roles and groups directly from keycloak,

and avoiding any synchronization issue.

In this scenario the integration MapStore replaces the user and user-group

database tables with the keycloak REST API.

This integration disables reading and writing to the users' and groups' database

and replaces it with the Keycloak REST API, with read-only support. For this

reason we suggest to disable the UserManager , GroupManager  plugins, and remove

the authenticationProviders  entry of type geostore , if any, because the standard login

with username and password is not allowed for the db users. In case of integration

with GeoServer, also GeoServer should be connected to Keycloak for users, and

not to the MapStore database.

Configure direct integration with keycloak

To enable the direct integration with keycloak you will have to:

Create a dedicated client for keycloak.

Configure mapstore-ovr.properties

Activate the functionality via system property

1. Create a dedicated client for keycloak

Create another client on keycloak, in the same realm of mapstore-server  and 

mapstore-client  (where present) called mapstore-users :

Note

1. 

2. 

3. 

• 



Configure it with:

Access Type: public

Implicit Flow Enabled Set to on On

Valid Redirect URIs with your app base URL, with an ending * , e.g. http://

localhost:8080/* .

• 

• 

• 

• 



And click on Save.

2. Configure mapstore-ovr.properties

The autoCreateUser  option must be set to false in mapstore-ovr.properties .

Moreover in mapstore-ovr.properties  you have to add the following information

(replacing <keycloak-base-url>  with your base keycloak base url):

keycloakOAuth2Config.autoCreateUser=false



Where:

serverUrl : URL of keycloak, (e.g. http://localhost:8080  or https://mysite.com/ )

realm : the realm where the client has been created

username , password : credentials of a user with the role to view-users .1

1 In order to query the keycloak REST API, you need to have in your realm at least

one user with realm-admin  role permission. Usually the administrator of the realm

has these permission. To associate these permissions to a new user dedicated to

this purpose, you have to open "Role Mappings" tab of keycloak and in "Client

Roles" select realm-management  (or in master realm select master-realm ) and add to

selected realm-admin . 

3. Activate the functionality via system property

In order to activate the integration in your instance, you will need to set the Java

System Property security.integration  with the value keycloak-direct .

## Keycloak as User and UserGroup repository
keycloakRESTClient.serverUrl=<keycloak-base-url>
keycloakRESTClient.realm=master
keycloakRESTClient.username=admin
keycloakRESTClient.password=admin
keycloakRESTClient.clientId=mapstore-users

• 

• 

• 

Note

https://www.ibm.com/docs/en/sdk-java-technology/7?topic=customization-how-specify-javalangsystem-property
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=customization-how-specify-javalangsystem-property


One easy and usual way to configure this system property in Tomcat is using the 

JAVA_OPTS . Like you do with datadir.location , you can set it by adding to JAVA_OPTS

variable the entry -Dsecurity.integration=keycloak-direct .

For old projects or in case you can not set the system property, you can anyway

configure it by adding this section to your geostore-spring-security.xml  file.

Note

    <bean
        id="keycloakUserGroupDAO"
        class="it.geosolutions.geostore.services.rest.security.keycloak.KeycloakUserGroupDAO">
        <constructor-arg ref="keycloakRESTClient"/>
        <property name="addEveryOneGroup" value="true"/>
    </bean>
    <alias name="keycloakUserDAO" alias="userDAO"/>
    <bean
        id="keycloakUserGroupDAO"
        class="it.geosolutions.geostore.services.rest.security.keycloak.KeycloakUserGroupDAO">
        <constructor-arg ref="keycloakRESTClient"/>
    </bean>
    <alias name="keycloakUserGroupDAO" alias="userGroupDAO" addEveryOneGroup="true"/
>
    <alias name="externalSecurityDAO" alias="securityDAO"/>





SSO Workflow in Keycloak

Here in this section some details about keycloak SSO integration

Desired workflow

If keycloak SSO is configured, we want to implement the following workflow.

The keycloakJS library implements the following workflow:

MapStore can:

Re-run init

Intercept onAuthLogout

Implement adapter methods login , logout .

Intercept init  promise resolve with .then

• 

• 

• 

• 



changed  is the variable emitted by an internal iframe managed by the keycloak JS

API. This technique allows to intercept logout events, anyway refreshing tokens or

intercepting login, after first attempt doesn't seem to work well and has some

limitations because of security reasons. In particular in the current implementation

with openID  sync with GeoStore we need to workaround partially the logic of the

library to make the tokens work in sync.

Implementation

The SSO integration in MapStore will reuse the entry points of the JS lib together

with the existing openID integration in keycloak, implementing the following

workflows:

Initialization

At the initial page load, we check if the authenticationProviders  contains a sso  entry

(only keycloak)

LoadJS : loads keycloak.js , that includes the JS support to keycloak, from

keycloak instance (only once)

Init  is initialized by MapStore with the current config, adding MapStore's 

access_token  and refresh_token , if present, from openID login.

Monitoring phase

After initialization, we may receive different events or cases. These are the

possible cases:

Case 1 - Login From MapStore

If MapStore is not logged in, the user can click on login button and be redirected

to keycloak login form. After that, the init flow will pass the MapStore tokens to the

JS interface. They will be used to check session logout.

Note

• 

• 



If MapStore user is logged in, the init , we may not initially have the token ready.

For this reason, on LOGIN_SUCCESS, we re-init the application, or sync operation

is triggered from Adapter.login  to refresh the tokens.

Case 2 - Login from keycloak

If MapStore is not logged in, the init  function do a check-sso  operation and finish.

In order to monitor the login on MapStore, we implemented a timer to re-init

trigger anytime the check-sso  resolves with not authenticated.

Implementation is using messageReceiveTimeout  as timeout, the same timeout

variable of the keycloak JS library for monitoring logout

Case 3 - Logout from keycloak

In this case the library that receives a valid keycloak token monitors the logout

autonomously.

Case 4 - Logout from MapStore

Logout from MapStore, a bug in keycloak API doesn't correctly check the internal

iframe ( changed  option event), and there is no possibility to trigger it, until you visit

the keycloak page. This condition after logout can not be distinguished from a

external login (from keycloak) detection. So refreshing the page before the token

on client is naturally expired will cause a redirect to Login page, because

MapStore find there is an active session on keycloak. In order to avoid this, an

hack is necessary. MapStore loads an iframe immediately after logout to allow the

cookie session to be catch and to apply the proper reset.

Note

Note



Refresh token

By default keycloak has 5 minutes long lifetime for token, 30 minutes for refresh

token. Anyway this can be configured. For this reason, the keycloak support

schedules a refresh based on the current token expiration, restarting from init ,

scheduling a refresh as half of time between expiring time and now. (e.g The token

expires 2 minutes from now, a refresh is scheduled in 1 minute).





MapStore Authentication -
Implementation Details

In this section you can see the implementation details about the login / logout

workflow implemented by MapStore.

Standard MapStore login

Configure session timeout

By default MapStore session token lives 24 hours and the refresh token last

forever. On application reboot anyway all the tokens are cancelled. In order to

change these default. the administrator can change these defaults by adding to 

mapstore-ovr.properties  file the following properties:

# Session timeout
restSessionService.sessionTimeout=60 #in seconds
restSessionService.autorefresh=false



Where:

restSessionService.sessionTimeout  refers to session token expiration time (by

default it’s 24 hours)

restSessionService.autorefresh  refers to flag configured to handle automatic

refresh process in the backend, enabling/disabling the refresh token usage:

when set to false , it avoids the use of refresh token after the session token has

expired, meaning, after the timeout the user will have to reconnect

when set to true , the refresh token is used and the session extends every time

the session timeout is met

sessionTimeout  and autorefresh  in mapstore.properties  are valid for the default session

storage. If you are using openID or keycloak, they will not be used.

Additionally, on the client side, in order to configure the interval in which is session

refresh  action is fired, one can use the tokenRefreshInterval  property. It can be

configured via localConfig.json -> tokenRefreshInterval , the value is in milliseconds.

When the above configured Session timeout  is in place, the client can exhibit two

behaviors based on the tokenRefreshInterval  configured on the client side, Disabling

the refresh token (setting restSessionService.autorefresh  to false ) the administrator

can use sessionTimeout  and tokenRefreshInterval  to limit the session duration this

way:

when tokenRefreshInterval  is less than sessionTimeout  configured (e.g 

tokenRefreshInterval  is 30 seconds and sessionTimeout  is 24 hours)

when application is in use, the client performs a refresh token call before the

expiring time and session is prolonged

when the application is closed (i.e for any reason) and reopened after 

sessionTimeout  configured, the client cannot perform refresh token call within

the timeout window and hence the session expires and the user is asked to

reconnect

when tokenRefreshInterval  is greater than sessionTimeout  configured

the session expires anyway before the refresh and the client is unable to

perform the refresh activity within the configured time interval. The user will

have to re-authenticate. In this case the two configuration should be nearly the

• 

• 

• 

• 

Note

  tokenRefreshInterval: 60000 // default 30 seconds

• 

• 

• 

• 

• 



same value, 30 seconds of difference, for example. This helps the client to

perform the refresh activity immediately after the session expires to log out the

user.

OpenID MapStore Login





Possible setups

Accordingly with your infrastructure, there are several setups you can imagine

with MapStore and GeoServer.

MapStore-GeoServer integration



MapStore-LDAP + MapStore-GeoServer



MapStore-GeoServer + MapStore-LDAP +
GeoServer-LDAP



MapStore-GeoServer + MapStore-LDAP (direct) +
GeoServer-LDAP





MapStore Projects

MapStore projects can be created using the Project Creation Script.

A MapStore project is a custom WebGis application that uses MapStore as a

framework.

The MapStore framework is linked as a git submodule in the MapStore2 project

subfolder.

Since MapStore is linked as a submodule, every project custom file should be

created outside of it. This allows updating MapStore to a newer version easily,

without conflicts. The general rule is: never add / update / modify files directly

in the MapStore2 subfolder.

Standard Projects

A Standard MapStore project is a project that is, initially, a perfect copy of the

standard MapStore product.

To create custom application using the standard projects template, you will start

from js/app.jsx that is the project entry point.

Editing app.jsx you can start using your own configuration files and add custom

behaviours and look and feel to your project, in particular:

You can add your own translation files. Setting an array of paths in the 

translationsPath , the resources will be loaded in cascade from every directory

of the array. So you can keep all the original translations from MapStore (first

element of the array) and add your own files in the directory translations ,

overriding original values of the json or adding new ones (for instance, for

your custom plugins). The files in the new directory must follow the same

naming convention of the files in the oridinal directory.

Use your own configuration file for plugins and other configurations. You

can copy the original localConfig.json  in the root of the project and configure

Note

• 

ConfigUtils.setConfigProp("translationsPath", ["./MapStore2/web/client/translations", "./
translations"]);

• 



the application to load it (instead of the default one, located in MapStore2/web/

client/localConfig.json ).

or you can apply some patch files defining an array of configurations, where the

first is the main json file, and the rest are the patch files which must end with

"patch.json" in the filename

the patch will be applied using this package

Configure your own pages:

Include the plugins you want in the app (either MapStore plugins or your

own):

Organizing your code

Our convention is to use the js folder to store your project code. You should

recreate inside it the usual folders to organize your code based on the source code

type:

components

actions

reducers

epics

plugins

Images and other static assets should be located in the assets folder instead.

ConfigUtils.setLocalConfigurationFile("localConfig.json");

ConfigUtils.setLocalConfigurationFile(["localConfig.json", "production.patch.json"]);

• 

import productAppConfig from "@mapstore/product/appConfig";
import MapViewer from "@mapstore/product/pages/MapViewer";

const appConfig = {
    ...productAppConfig,
    pages: [{
        name: "mapviewer",
        path: "/",
        component: MapViewer
    }]
};

• 

import plugins from "./plugins";

• 

• 

• 

• 

• 

https://github.com/geosolutions-it/Patcher




Create your own MapStore project

From version 2021.02.xx MapStore introduced a new project system. Take a look 

here to learn more about the new project system.

To create a new MapStore based project you can use the createProject script. First

of all, if you don't have done it before, clone the MapStore2 repository master

branch into a local folder:

Then, move into the folder that has just been created, containing MapStore2:

Choose from which branch you want the mapstore revision to be aligned, we

suggest to use latest release or latest stable available (if you know which is)

or

Install dependencies for MapStore:

Finally, to create the project, use the following command:

The command line will ask some questions about the project to create. (You can

press enter to accept the default value, indicated between parenthesis, or type a

new one):

projectName: short project name that will be used as the repository name on

github, webapp path and name in package.json

Note

git clone https://github.com/geosolutions-it/MapStore2

cd MapStore2

git checkout <stable-branch>

git checkout v2022.02.02

npm install

node ./createProject.js

• 

https://github.com/geosolutions-it/MapStore2/issues/6314


branch/tag: the base branch/tag to use for the project (e.g. v2022.02.02, or

master)

projectType: type of project to create, currently one type of projects is

supported:

standard: is a copy of the standard MapStore project, ready to be used and

customized

projectVersion: project version in package.json (X.Y.Z)

projectDescription: project description, used in sample index page and as

description in package.json

gitRepositoryUrl: full url to the github repository where the project will be

published

outputFolder: folder where the project will be created

Usage:

At the end of the script execution, the given outputFolder will be populated by all

the configuration files needed to start working on the project. Moreover, the local

git repository will be initialized and the MapStore sub-module added and

downloaded.

If you create a standard project, you can customize it editing js/app.jsx: look at

the comments for hints and the MapStore documentation for more details.

The following steps are:

npm install  to download dependencies

npm start  to test the project

./build.sh  to build the full .war

Create a new project type

If you are not happy with the available project types (standard), you can extend

them adding a new folder in project.

• 

• 

• 

• 

• 

• 

• 

node ./createProject.js

Project Type (standard):
MapStore base branch (master):v2023.01.01
Project Name: my_project
Project Version (1.0.0):
Project Description (Project Name):
Repository URL:
Output folder: ../my_project

• 

• 

• 



The folder will contain two sub-folders:

static: for static content, to be copied as is to the project folder

templates: for template files, containing project-dependent variables that will

be replaced by the createProject script. You can use the following variables:

__PROJECTNAME__: \<projectName> parameter value

__PROJECTDESCRIPTION__: \<projectDescription> parameter value

__PROJECTVERSION__: \<projectVersion> parameter value

__REPOURL__: \<gitRepositoryUrl> parameter value

In addition to static and templates, the following files from the root MapStore

folder will be copied:

.babelrc

.editorconfig

LICENSE.txt

Update MapStore2 version in a project

To update MapStore2 version enter the MapStore2 folder and pull desired git

version. If MapStore2 devDependencies have been changed you can manually

update these in the project package.json file or run the script updateDevDeps

The script will automatically copy the devDependencies from MapStore2

package.json to the project package.json file. All the project existing

devDependencies will be overwritten.

To sync MapStore2 dependencies just run npm install from project root folder.

Also make sure to follow the migration guidelines here.

• 

• 

• 

• 

• 

• 

• 

• 

• 

npm run updateDevDeps

npm install



MapStore API usage

You can include MapStore in your application and interact with it via its JavaScript

API

How to use

Create a map using the standard installation

Go to Share -> Embed

Copy the API html code and paste it in your application page

The map will now load inside your application

1. 

2. 

3. 

NOTE: If the map is using a Google Maps background you will have to provide your own 
API key.
Add `&key=YOUR_API_KEY` in the <script> src value

https://mapstore.geosolutionsgroup.com/mapstore/docs/api/jsapi
https://mapstore.geosolutionsgroup.com/mapstore/docs/api/jsapi




MapViewer query parameters

In this section we will describe the available MapViewer query parameters that

can be used when the map is loaded.

MapStore allows to manipulate the map by passing some parameters. This allows

external application to open a customized viewer generating these parameters

externally. With this functionality you can modify for instance the initial position of

the map, the entire map and even trigger some actions.

Passing parameters to the map

Get Request

The parameters can be passed in a query-string-like section, after the #<path>?  of

the request.

Example:

The parameters in the request should be URL encoded. In order to make them

more readable, the examples in this page will now apply the URL encoding.

POST Request

Sometimes the request parameters can be too big to be passed in the URL, for

instance when dealing with an entire map, or complex data. To overcome this kind

of situations, an adhoc POST  service available at <mapstore-base-path>/rest/config/

setParams  allows to pass the parameters in the request payload application/x-www-

form-urlencoded . The parameters will be then passed to the client (using a

temporary queryParams-{random-UUID}  variable in sessionStorage ). Near the

parameters, an additional page  value can be passed together with the params to

specify to which url be redirect. If no page attribute is specified by default

redirection happens to #/viewer/config . The UUID used in the queryParams-{random-

UUID}  variable name is being added to the redirect URL in a query parameter

named queryParamsID= . Assuming to use the default redirect value, the url will

then look like the following: #/viewer/config?queryParamsID={random-UUID} .

#/viewer/new?center=0,0&zoom=5

Note



Example application/x-www-form-urlencoded  request payload (URL encoded):

Here a sample page you can create to test the service:

page=..%2F..
%2F%23%2Fviewer%2Fopenlayers%2Fnew&featureinfo=&bbox=&center=1%2C1&zoom=4

<html><head><meta charset="UTF-8">
    <script>
        const POST_PATH = "rest/config/setParams";
        const queryParameters = {
            "page": '../../#/viewer/config',
            "map": {"version":2,"map":{"projection":"EPSG:900913","units":"m","center":{"x":
1250000,"y":5370000,"crs":"EPSG:900913"},"zoom":5,"maxExtent":
[-20037508.34,-20037508.34,20037508.34,20037508.34],"layers":
[{"type":"osm","title":"Open Street 
Map","name":"mapnik","source":"osm","group":"background","visibility":true}]}},
            "featureinfo": '',
            "bbox": '',
            "center": '',
            "zoom": 4,
            "actions": [],
        };
        let i = 0;
        function createIframe() {
            i++;
            const iframe = document.createElement('iframe');
            iframe.name = `_iframe-${i}`;
            iframe.id = `_iframe-${i}`;
            iframe.style.width = "100%";
            iframe.style.height = "400px";
            document.body.appendChild(iframe);
            return iframe.name;
        }
        window.onload = function(){
            Object.keys(queryParameters).forEach(function (key) {
                const element = document.getElementById(key);
                if (element) element.value = typeof queryParameters[key] === "object" || 
Array.isArray(queryParameters[key]) ? JSON.stringify(queryParameters[key]) : 
queryParameters[key];
            });
            const form = document.getElementById("post-form");
            form.addEventListener('submit', function() {
                const base_url = document.getElementById('mapstore-base').value.replace(/\/?
$/, '/');
                const method = document.getElementById("method").value;
                // handle GET URL
                if(method === "GET") {
                    event.preventDefault();
                    const page = document.getElementById("page")?.value;
                    const data = new FormData(event.target);
                    const values = Array.from(data.entries());
                    const queryString = values
                        .filter(([k, v]) => !!v)
                        .reduce((qs = "", [k, v]) => `${qs}&${k}=${encodeURIComponent(v)}`, 



"");
                    window.open(`${base_url}${page}?${queryString}`, "_blank");
                    return false;
                } else if (method === "GET_IFRAME") {
                    event.preventDefault();
                    const page = document.getElementById("page")?.value;
                    const data = new FormData(event.target);
                    const values = Array.from(data.entries());
                    const queryString = values
                        .filter(([k, v]) => !!v)
                        .reduce((qs = "", [k, v]) => `${qs}&${k}=${encodeURIComponent(v)}`, 
"");
                    const iframeName = createIframe();
                    const iframe = document.getElementById(iframeName);
                    iframe.src = `${base_url}${page}?${queryString}`;
                    return false;
                }
                // handle POST and POST_IFRAME
                if(method === "POST_IFRAME") {
                    const iframeName = createIframe();
                    form.target = iframeName;
                } else if(method === "POST") {
                    form.target = "_blank";
                }
                form.action = base_url + POST_PATH;
                return true;
            })
        }
    </script>
</head><body>
    <fieldset>
        <legend>Options:</legend>
        <label>method:</label><select id="method">
            <option value="POST">POST</option>
            <option value="GET">GET</option>
            <option value="GET_IFRAME">GET_IFRAME</option>
            <option value="POST_IFRAME">POST_IFRAME</option>
        </select>
    <br/>
    <label>MapStore Base URL:</label><input type="text" id="mapstore-base" 
value="http://localhost:8080/mapstore/">
</input><br/>
</fieldset>
<!-- Place the URL of your MapStore in "action" -->
<form id="post-form" action="http://localhost:8080/mapstore/rest/config/setParams" 
method="POST" target="_blank">
    <fieldset>
        <legend>Params:</legend>
        <label for="map">map:</label><br/><textarea id="map" name="map"></
textarea><br/>
        <label for="page">page:</label><br/><input type="text" id="page" name="page" 
value="../../#/viewer/config"></input><br/>
        <label for="featureinfo">featureinfo:</label><br/><textarea id="featureinfo" 
name="featureinfo"></textarea><br/>
        <label for="bbox">bbox:</label><br/><input type="text" id="bbox" 
name="bbox"></input><br/>
        <label for="center">center:</label><br/><input type="text" id="center" 



Available Parameters

Feature Info

Allows to trigger identify tool for the coordinates passed in "lat"/"lng" parameters.

Optional parameter "filterNameList" allows limiting request to the specific layer

names. It will be effectively used only if it's passed as non-empty array of layer

names. Omitting or passing an empty array will have the same effect.

GET: #/viewer/config?featureinfo={"lat": 43.077, "lng": 12.656, "filterNameList": []}

GET: #/viewer/config?featureinfo={"lat": 43.077, "lng": 12.656, "filterNameList": 

["layerName1", "layerName2"]}

Simplified syntax

GET: #/viewer/config?featureInfo=38.72,-95.625

Where lon,lat values are comma-separated respecting order.

Map

Allows to pass the entire map JSON definition (see the map configuration format of

MapStore).

GET:

It also allows partial overriding of existing map configuration by passing only

specific properties of the root object and/or the internal "map" object.

name="center"></input><br/>
        <label for="zoom">zoom:</label><br/><input type="text" id="zoom" 
name="zoom"></input><br/>
        <label for="marker">marker:</label><br/><input type="text" id="marker" 
name="marker"></input><br/>
        <label for="actions">actions:</label><br/><textarea id="actions" 
name="actions"></textarea><br/>
    </fieldset>
    <br/>
    <input id="submit-form" value="Submit" type="submit"><br/>
</form>
</body></html>

#/viewer/config?map={"version":2,"map":{"projection":"EPSG:900913","units":"m","center":
{"x":1250000,"y":5370000,"crs":"EPSG:900913"},"zoom":5,"maxExtent":
[-20037508.34,-20037508.34,20037508.34,20037508.34],"layers":[{"type":"osm","title":"Open 
Street Map","name":"mapnik","source":"osm","group":"background","visibility":true}]}}



Following example will override "catalogServices" and "mapInfoConfiguration":

Center / Zoom

GET: #/viewer/config?center=0,0&zoom=5

Where lon,lat values are comma-separated respecting order.

Marker / Zoom

GET: #/viewer/config?marker=0,0&zoom=5

Where lon,lat values are comma-separated respecting order.

Bbox

GET: #/viewer/config?bbox=8,8,53,53

Where values are minLongitude, minLatitude, maxLongitude, maxLatitude  respecting

order.

AddLayers

This is a shortened syntax for CATALOG:ADD_LAYERS_FROM_CATALOGS  action

described down below.

GET: #/viewer/config?

addLayers=layer1;service,layer2&layerFilters=attributeLayer1='value';attributeLayer2='value2'

addLayers  parameter is a comma separated list of <layerName>;<service>  ( service

is optional, and if present is separated from the layerName by a ; .

In the example above:

layer1  and layer2  are layer names;

service  is the service identifier of the catalog. If no service is provided, the

default service will be used.

layerFilters  is a list of cql filters to apply to the corresponding layer in the same

position of the addLayers  parameter, separated by ;

#/viewer/config?map={"mapInfoConfiguration":{"trigger":"click","infoFormat":"text/
html"},"catalogServices":{"services": {"wms": {"url": "http://example.com/geoserver/
wms","type": "wms","title": "WMS","autoload": true}},"selectedService": "wms"}}

• 

• 

• 



MapInfo

This is a shortened syntax for SEARCH:SEARCH_WITH_FILTER  action described

down below. In opposite to direct usage of action, mapInfo  parameter can work

with layers added by addLayers  parameter. In this case search execution will be

postponed up to the moment when layer is added to the map.

mapInfo  handler will check if addLayers  parameter is present and if it lists layer

name used in mapInfo  parameter. If so, it will postpone search to ensure that layer

is added to the map. Otherwise, in case of no matches, search will execute

immediately.

GET: #/viewer/new?addLayers=layer1;service&mapinfo=layer1&mapInfoFilter=BB='cc'

Where:

layer1  is layer name.

service  is the service name providing layer data. Service name is optional. If no

service is provided, the default service of the catalog will be used.

mapInfoFilter  is a cql filter applied to the layer.

Background

Allows to dynamically add background to the map and activate it. Supports default

backgrounds provided by static service defined in localConfig.json

( default_map_backgrounds ) as well as other layers:

#/viewer/new?background=Sentinel;default_map_backgrounds

#/viewer/new?background=layer1;service

#/viewer/new?background=layer2

Where:

Sentinel , layer1 , layer2  are layer names,

service , default_map_backgrounds  are the service names providing layer data.

Service name is optional. If no service is provided, the default service of the

catalog will be used.

According to the implementation of default_map_backgrounds  service, it is enough to

pass desired layer name even partially, e.g. background=Sen;default_map_backgrounds ,

it will use the closest layer name match in this case.

• 

• 

• 

• 

• 



Actions

To dispatch additional actions when the map viewer is started, the actions query

parameter can be used. Only actions from a configured whitelist can be

dispatched in this way (see the configuration section for more details).

The value of this parameter is a JSON string containing an array with an object per

action. The structure of the object consist of a property type and a bunch of other

properties depending on the action.

Available actions

Only the following actions can be used in the actions json string.

Zoom to extent

It zooms the map to the defined extent.

Example:

GET: 

#/viewer/config?actions=[{"type": "ZOOM_TO_EXTENT","extent": [1,2,3,4],"crs": "EPSG:

4326","maxZoom": 8}]

For more details check out the zoomToExtent in the framework documentation.

Map info

It performs a GetFeature request on the specified layer and then a GetFeatureInfo

by taking a point from the retrieved features's geometry. This action can be used

only for existing maps (map previously created).

With the GetFeature request it takes the first coordinate of the geometry of the

first retrieved feature; that coordinates are then used for an usual GFI (WMS

GetFeatureInfo) request by limiting it to the specified layer.

// list of actions types that are available to be launched dynamically from query param 
(#3817)
  "initialActionsWhiteList": ["ZOOM_TO_EXTENT", "ADD_LAYER", ...]

{
    "type": "ZOOM_TO_EXTENT",
    "extent": [1,2,3,4],
    "crs": "EPSG:4326",
    "maxZoom": 8
}

https://mapstore.geosolutionsgroup.com/mapstore/docs/#actions.map.zoomToExtent
https://docs.geoserver.org/stable/en/user/services/wfs/reference.html#getfeature
https://docs.geoserver.org/stable/en/user/services/wms/reference.html#getfeatureinfo


A cql_filter is also mandatory for that action to properly filter required data: that

filter will be used in both request (GetFeature and GFI). If you don't need to apply

a filter, you can use the standard INCLUDE clause (cql_filter=INCLUDE) so the

whole dataset will be queried.

Requirements:

The layer specified must be visible in the map

There must be a geometry that can be retrieved from the GetFeature request

Example:

GET: #/viewer/config?

actions=[{"type":"SEARCH:SEARCH_WITH_FILTER","cql_filter":"ID=75","layer":"WORKSPACE:LAYER_NAME"}]

The sample request below illustrates how two actions can be concatenated:

The MapStore invocation URL above executes the following operations:

Execution of a search request filtering by STATE_FIPS with value 34 on the 

topp:states layer

Execution of a map zoom to the provided extent

For more details check out the searchLayerWithFilter in the framework

documentation

Scheduled Map Info

It works similarly to the Map Info  action, but supports delaying of the search

execution up to the moment when layer is added to the map. This behavior is used

when search should be applied to the dynamically added layer (e.g. using 

addLayer  parameter) :

Example:

• 

• 

{
    "type": "SEARCH:SEARCH_WITH_FILTER",
    "cql_filter": "ID=75",
    "layer": "WORKSPACE:LAYER_NAME"
}

https://dev-mapstore.geosolutionsgroup.com/mapstore/#/viewer/4093?
actions=[{"type":"SEARCH:SEARCH_WITH_FILTER","cql_filter":"STATE_FIPS=34","layer":"topp:states"},
{"type":"ZOOM_TO_EXTENT","extent":
[-77.48202256347649,38.74612266051003,-72.20858506347648,40.66664704515103],"crs":"EPSG:
4326","maxZoom":8}]

• 

• 

https://mapstore.geosolutionsgroup.com/mapstore/docs/#actions.search.exports.searchLayerWithFilter


GET: #/viewer/config?

actions=[{"type":"SEARCH:SCHEDULE_SEARCH_WITH_FILTER","cql_filter":"ID=75","layer":"WORKSPACE:LAYER_NAME"},

{"type":"CATALOG:ADD_LAYERS_FROM_CATALOGS","layers":

["WORKSPACE:LAYER_NAME"],"sources":["catalog1"]}]

Add Layers

This action allows to add layers directly to the map by taking them from the

catalogs configured, or passed.

Requirements:

The number of layers should match the number of sources

The source name can be a string that must match a catalog service name

present in the map or an object that defines an external catalog (see example)

Supported layer types are WMS, WMTS, WFS, 3D Tiles and GeoJSON.

Example:

GET: 

#/viewer/config?actions=[{"type":"CATALOG:ADD_LAYERS_FROM_CATALOGS","layers":

["layer1", "layer2", "workspace:externallayername"],"sources":["catalog1", "catalog2", 

{"type":"WMS","url":"https://example.com/wms"}]}]

Data of resulting layer can be additionally filtered by passing "CQL_FILTER" into

the options array. Each element of array corresponds to the layer defined in

action:

{
    "type": "SEARCH:SCHEDULE_SEARCH_WITH_FILTER",
    "cql_filter": "ID=75",
    "layer": "WORKSPACE:LAYER_NAME"
}

• 

• 

{
    "type": "CATALOG:ADD_LAYERS_FROM_CATALOGS",
    "layers": ["workspace1:layer1", "workspace2:layer2", "workspace:externallayername"],
    "sources": ["catalog1", "catalog2", {"type":"WMS","url":"https://example.com/wms"}]
}

{
    "type": "CATALOG:ADD_LAYERS_FROM_CATALOGS",
    "layers": ["workspace1:layer1", "workspace2:layer2", "workspace:externallayername"],
    "sources": ["catalog1", "catalog2", {"type":"WMS","url":"https://example.com/wms"}],
    "options": [{"params":{"CQL_FILTER":"NAME='value'"}}, {}, {"params":
{"CQL_FILTER":"NAME='value2'"}}]
}



GET #/viewer/config?actions=[{"type":"CATALOG:ADD_LAYERS_FROM_CATALOGS","layers":

["layer1","layer2","workspace:externallayername"],"sources":["catalog1","catalog2",

{"type":"WMS","url":"https://example.com/wms"}],"options": [{"params":

{"CQL_FILTER":"NAME='value'"}}, {}, {"params":{"CQL_FILTER":"NAME='value2'"}}]}]

Number of objects passed to the options can be different to the number of layers,

in this case options will be applied to the first X layers, where X is the length of

options array.

The 3D tiles service endpoint does not contain a default property for the name of

the layer and it returns only a single record for this reason the name used in the

layers array will be used to apply the title to the added 3D Tiles layer:

GET: 

#/viewer/config?actions=[{"type":"CATALOG:ADD_LAYERS_FROM_CATALOGS","layers":["My 

3D Tiles Layer"],"sources":[{"type":"3dtiles","url":"https://example.com/tileset-pathname/

tileset.json"}]}]

For the 3D Tiles you can pass also the layer options, to customize the layer. Here

and example to localize the title:

GET: 

#/viewer/config?actions=[{"type":"CATALOG:ADD_LAYERS_FROM_CATALOGS","layers":["My 

3D Tiles Layer"],"sources":[{"type":"3dtiles","url":"https://example.com/tileset-pathname/

tileset.json"}],"options":[{"title":{"en-US":"LayerTitle","it-IT":"TitoloLivello"}}]}]

It is possible to add GeoJSON layer using the following configuration:

{
    "type": "CATALOG:ADD_LAYERS_FROM_CATALOGS",
    "layers": ["My 3D Tiles Layer"],
    "sources": [{ "type":"3dtiles", "url":"https://example.com/tileset-pathname/tileset.json" }]
}

{
    "type": "CATALOG:ADD_LAYERS_FROM_CATALOGS",
    "layers": ["My 3D Tiles Layer"],
    "sources": [{ "type":"3dtiles", "url":"https://example.com/tileset-pathname/
tileset.json" }],
    "options":[{ "title": { "en-US": "LayerTitle", "it-IT": "TitoloLivello" }}]
}

{
"type": "CATALOG:ADD_LAYERS_FROM_CATALOGS",
"layers": ["My GeoJSON Layer"],
"sources": [{ "type":"GEOJSON", "url":"https://example.com/example.geojson" }]
}



GET: 

#/viewer/config?actions=[{"type":"CATALOG:ADD_LAYERS_FROM_CATALOGS","layers":["My 

GeoJSON Layer"],"sources":[{"type":"GEOJSON","url":"https://example.com/

example.geojson"}]}]

This GeoJSON catalog will return a single record similar to the 3D Tiles catalog

and for this reason the name used in the layers array will be used to apply the title

to the added vector layer.


	MapStore
	Supported Browsers
	Quick Start
	Documentation

	Quick Start
	Binary package
	How to run
	Package Contents
	Demo Maps
	Demo accounts/groups
	WAR file

	Home Page
	Anonymous user
	Normal user
	Administrator user

	Managing Users and Groups
	Managing Users
	User ID
	Other information
	Group membership

	Managing Groups
	Group ID
	Members manager
	Attributes

	Managing Contexts
	Application Context
	General Settings
	Configure Map
	Configure Plugins
	Add extensions to MapStore
	Optional tools for enabled plugins
	How to update extensions

	Configure Theme
	Default Theme
	Dark Theme
	Custom Theme


	Extension Library
	Map Catalog
	Map Templates
	Enabling the Map templates in a context
	Uploading the template
	Customize the template


	Resource Properties
	Thumbnail
	Permission rules
	Details

	Sharing Resources
	Link
	Social
	Permalink
	Embed
	Advanced options
	Advanced options for sharing maps
	Advanced options for sharing 3D maps
	Advanced options for sharing GeoStories


	Exploring Maps
	MapStore WebGIS Portal Interface

	Table of Contents
	Add and remove layers and groups
	Search for layers
	Choose layers and groups position
	Display options in panel
	Toolbar options

	Layer Settings
	General information
	Display
	Fields
	Style
	Create a new style
	Edit an existing style
	Visual Editor Style
	Mark
	Icon
	Line
	Fill
	Text

	Style Methods
	Simple style
	Classification style
	Pattern mark style
	Patter icon style

	Styling on the 3D navigation
	Styling of 3D Tiles layer
	Styling of Vector layer


	Feature Info Form
	Text
	HTML
	Properties
	Templates


	Filtering Layers
	Filter types
	Layer Filter
	Advanced Search
	Quick Filter
	Quick Filter by attributes
	Quick Filter by map interaction
	Quick Filter by viewport


	Query Panel
	Attribute filter
	Region of interest
	Layer filter


	Attribute Table
	Manage records
	Create new features
	Create new geometry with Snapping

	Editing and removing existing features

	Set filters
	Download the grid data
	Customize Attribute table display

	Widgets
	Add a Widget
	Chart
	Color customization
	Classification Attribute of type String
	Classification Attribute of type Number
	Bar Chart Type
	Advanced Options

	Text
	Table
	Counter

	Manage existing widgets
	Access widgets menu


	Export Layer Data
	MapStore Toolbars
	Search Bar
	Search by location name
	Search by coordinates
	Configuring a search service
	Search by bookmark

	Side toolbar

	Printing a Map
	Print settings
	Layout
	Legend options

	Preview

	Import Files
	Export and Import map context files
	Import vector files

	Catalog Services
	Adding Layers from Remote Services
	Managing Remote Services
	General settings
	Advanced settings

	Catalog Types
	CSW Catalog
	Advanced Settings
	Metadata templates
	Static Filter and Dynamic Filter

	WMS/WMTS Catalog
	Advanced Settings

	TMS Catalog
	Custom TMS
	SAMPLE CUSTOM
	SAMPLE CUSTOM WITH ADVANCED OPTIONS

	TMS 1.0.0
	SAMPLE TMS 1.0.0 SERVICES
	TMS KNOWN SERVICES


	3D Tiles Catalog
	COG Catalog
	Advanced Settings



	Performing Measurements
	Measure distance
	Measure area
	Measure bearing
	Export the measure
	Add the measure as layer
	Add measure as annotation
	Measurement on the 3D navigation
	Measure distance on the 3D navigation
	Measure area on the 3D navigation
	Measure point coordinates
	Measure height from terrain
	Measure angle
	Measure slope


	Annotations
	Add new Annotation
	Styling Annotations
	Managing Annotations

	Map Views
	Add new view
	3D Views navigations

	Street View
	Longitudinal Profile
	Chart
	Information
	Setting Parameters

	GeoProcessing Tool
	Buffer tool
	Advanced Settings

	Intersection tool
	Advanced Settings


	Navigation Toolbar
	Geolocation tool
	Zooming tools
	3D Navigation
	Identify Tool
	Using the Coordinates Editor
	Identify Tool with more than one layer
	Floating Identify Tool


	Background Selector
	Add background
	Add WMTS background

	Edit background
	Remove background

	Timeline
	Timeline histogram
	Set a Time Range
	Reset timeline

	Show times available on map
	Animations
	Animation Settings

	Layers Setting

	Footer
	CRS Selector

	Exploring Dashboards
	Topbar
	Options Menu

	Sidebar
	Viewer

	Adding Widgets
	Map Widget
	Legend widget

	Connecting Widgets
	Connecting Map widgets with other widgets
	Maps with other Maps
	Maps with Charts, Tables and Counters
	Maps with Legends

	Connecting Table widgets with other widgets

	Exploring Story
	Edit Mode
	View Mode

	Story Settings
	Story Theme
	Story Header

	Title Section
	Content
	Background
	Images
	Videos
	Maps


	Banner Section
	Paragraph Section
	Text Content
	Media Content
	Images
	Videos
	Maps

	Web Page Content

	Immersive Section
	Content
	Background

	GeoCarousel Section
	Background
	Descriptive panel
	Carousel
	GeoCarousel section in View Mode

	Media Section
	Web Page Section
	Text Editor Toolbar
	Image Content Toolbar
	Video Content Toolbar
	Map Content Toolbar
	Web Page Content Toolbar
	Media Editor Window
	Images
	Videos
	Maps

	Configure the map
	Layers
	Setting
	Advanced map editor

	Requirements
	War Installation
	Debug / Build
	Running in Production
	System requirements
	Database


	Quick Setup and Run
	Other useful commands
	Quick Build and Deploy

	Main scripts
	npm scripts
	bash scripts

	Infrastructure
	Frontend
	Backend

	Developing with MapStore
	MapStore as an application
	MapStore as a Framework

	Folders structure
	Developing with MapStore
	Start developing
	Frontend
	Debugging
	Redux Dev Tools

	Unit tests

	Backend
	Defaults Users and Database
	Running Backend
	Embedded tomcat
	Local tomcat instance

	Debug
	Enable Remote Debugging
	Setup eclipse project
	Start Debugging with eclipse


	Building and deploying
	Building the documentation
	API and Plugins documentation (JSDoc)
	Users and developers documentation (MkDocs)

	Understanding frontend building tools
	Including the printing engine in your build

	Main Frontend Technologies
	ReactJS
	ReactJS component example
	Properties, State and Event handlers
	Lifecycle hooks

	Redux
	Actions
	Reducers
	Store
	Redux Middlewares
	Redux thunk
	Redux Observable and epics


	Redux and ReactJS integration

	Plugins Architecture
	Internationalization
	How MapStore chooses the current language
	Configuration files
	How to configure supported languages in MapStore
	How to add a new language

	Custom Dependencies
	Aliases
	More info

	Styling and Theming
	Theme Structure
	Structure of .less files
	ms-variables.less
	less/ directory
	inline styles

	Add New Theme
	Custom Theme for project
	Custom Theme for contexts
	Suggested ways to create a custom theme for a context
	Complete theme override
	Only css variables
	partial theme override

	Tips

	Working with Extensions
	Developing an extension
	An extension example
	Dynamic import of extension
	Distributing your extension as an uploadable module
	index.json

	Installing Extensions
	Updating Extensions
	Extensions and datadir
	Extensions for dependent projects
	Externalize the extensions configuration
	Externalize the context plugins configuration
	Externalize the extensions assets folder


	Managing drawing interactions conflict in extension
	Making another plugins aware of your extension starts drawing
	Making your extension aware of another plugin drawing

	Using "ResponsiveContainer" for dock panels
	Making other dock panels closed automatically when extension panel is open

	Printing Module
	Including the printing module in MapStore
	Building from the Source
	Adding to an existing MapStore

	Configuring the print
	MapStore
	Print Settings

	Troubleshooting
	I can not see the "Print" entry in the menu
	I have an error printing (using Reverse Proxy/HTTPS)
	Setting up your proxy
	Forcing PRINT_BASE_URL of printing module



	How to use a CDN
	FAQ
	Troubleshooting
	Autowatch doesn't work on Linux

	Other References

	Code conventions
	TL;DR
	Access to the state using state selectors
	Prefer plugin configuration over initialState
	Use custom axios version for async requests

	Documentation guidelines
	General Guidelines
	Internal links

	Building documentation
	1. Python installation
	2. Libraries installation
	3. Build the documentation
	4. Editing the documentation


	Migration Guidelines
	General update checklist
	Migration from 2023.02.xx to 2024.01.00
	Removing possibility to add custom fonts to the Map
	Fixing background config
	Adding spatial filter to dashboard widgets
	MapFish Print update
	Annotations plugin refactor

	Migration from 2023.01.02 to 2023.02.00
	About plugin cfg changes
	NodeJS/NPM upgrade
	Visualization mode in map configuration
	Clean up of old maven repositories
	New Permalink plugin
	Add Permalink plugin to localConfig.json
	Using Permalink in new contexts
	Database Update
	POSTGRESQL
	H2
	ORACLE



	Migration from 2022.02.02 to 2023.01.00
	Log4j update to Log4j2
	log4j2 properties file migration
	log4j2 dependencies and code update

	Update database schema

	Migration from 2022.02.00 to 2022.02.01
	Package.json scripts migration

	Migration from 2022.01.02 to 2022.02.00
	HTML pages optimization
	Update plugins.js to make upstream plugins use dynamic import
	Version plugin has been removed
	Support for OpenID
	Upgrading the printing engine
	Replacing BurgerMenu with SidebarMenu
	Using Sidebar Menu in new contexts
	Updating existing contexts to use Sidebar Menu

	Updating extensions
	Using terrain layer type to define 3D map elevation profile

	Migration from 2022.01.00 to 2022.01.01
	MailingLists plugin has been removed

	Migration from 2021.02.02 to 2022.01.00
	Updating projects configuration
	Upgrading CesiumJS

	Migration from 2021.02.01 to 2021.02.02
	Style parsers dynamic import

	Migration from 2021.02.00 to 2021.02.01
	Align pom.xml files

	Migration from 2021.01.04 to 2021.02.00
	Theme updates and CSS variables
	Project system
	Minor changes to prod-webpack.config.js
	Move front-end configuration files in configs folder
	Back-end has been reorganized
	ALIGN POM.XML FILES TO LATEST VERSIONS OF THE LIBS
	EDIT THE WEB.XML AND CHANGE THE *-SERVLET.XML FILES TO EXPOSE THE NEW SERVICES

	Data directory has been reorganized and is now available also for product

	Configurations

	Migration from 2021.01.01 to 2021.01.03
	Migration from 2021.01.00 to 2021.01.01
	Update embedded entry to load the correct configuration
	Locate plugin configuration
	Update an existing project to include embedded Dashboards and GeoStories

	Migration from 2020.02.00 to 2021.01.00
	Update to webpack 5 - Module federation
	Eslint config
	App structure review

	Migration from 2020.01.00 to 2020.02.00
	New authentication rule for internal services
	Translation files
	Database Update
	Backend update

	Migration from 2019.02.01 to 2020.01.00
	Migration from 2019.01.00 to 2019.01.01
	Migration from 2017.05.00 to 2018.01.00
	Support js/theme versioning in your project

	Migration from 2017.05.00 to 2017.03.00 and previews
	Migration from 2017.01.00 to 2017.02.00
	Side Effect Management - Introduced redux-observable
	Webpack update to version 2
	react-intl update to  2.x
	react update to 15.4.2
	React Bootstrap update


	How to release
	Changelog generation
	Release Checklist
	naming conventions
	release and tag
	stable branch



	Developer Generic Guidelines
	Creating a MapStore2 plugin
	Introduction
	A plugin example
	A store connected plugin example
	Data fetching and side effects
	Plugin Containers
	Plugins for other plugins
	Plugins Configuration
	Dynamic configuration
	Example

	Container configuration
	Example
	localConfig.json - showIn and hideFrom examples
	localConfig.json - doNotHide example

	Conditionally disabling plugins

	Lazy loading plugins
	Testing plugins
	Examples

	General Guidelines
	Components
	State
	Selectors
	General


	Writing Epics
	Base Concepts
	Versions

	What is an epic
	Create complex data flows triggered by actions
	Doing AJAX
	Epic state: muted / unmuted
	Muted epics: how to mute internal streams

	Writing Actions and Reducers
	What are actions?
	Why we use them
	Action Creators
	Reducers
	Advanced usage and tips
	Testing
	How to test an action
	How to test a reducer
	Actions and epics

	Configuring MapStore
	Back-end Configuration Files
	Back-end security configuration files
	Log4j2 configuration file

	Front-end Configurations Files
	Externalize Configurations

	Application configuration
	Explanation of some config properties
	initialState configuration
	Catalog Tool configuration

	projectionDefs configuration
	CRS Selector configuration
	Search plugin configuration


	Configuring plugins
	Dynamic configuration

	Map Configuration
	Map options
	Layers options
	Layer types
	WMS
	FIELDS
	MULTIPLE URLS
	SPECIAL CASE - THE ELEVATION LAYER

	WMTS
	Bing
	Google
	OSM
	TileProvider
	PROVIDERS AND VARIANTS

	Vector
	WFS Layer
	Graticule
	3D tiles
	Terrain
	Cloud Optimized GeoTIFF (COG)


	Layer groups
	Other supported formats
	Web Map Context
	WMC File Structure
	Usage inside MapTemplates plugin
	Other considerations


	Additional map configuration options
	mapViews


	Externalized Configuration
	Using a data directory
	Multiple data directory locations
	Logging
	Print Configuration
	Database Connection

	Overriding front-end configuration
	Patching front-end configuration
	Externalize front-end Configurations

	Configuration of Application Context Manager
	MapStore filters
	Formats
	mapstore Format
	logic format
	cql format
	mapstore-query-panel format

	Supporting new formats
	Appendix A: mapstore format legacy fields

	MapStore vector style
	Mark symbolizer properties
	Icon symbolizer properties
	Line symbolizer properties
	Fill symbolizer properties
	Text symbolizer properties
	Model symbolizer properties (custom symbolizer to visualize 3D model as point geometries)
	Circle symbolizer properties
	Legacy Vector Style (deprecated)
	Advanced Vector Styles (deprecated)
	SVG Symbol (deprecated)
	Markers and glyphs (deprecated)
	Multiple rules and filtering (deprecated)
	Example (deprecated)


	Database Setup
	Externalize properties files
	Database creation Mode
	H2
	PostgreSQL
	Database Creation and Setup
	Connection to the Database
	Migrate an existing H2 database to PostgreSQL

	Oracle
	Database Creation and Setup
	Connection to the Database


	GeoServer integrations
	MapStore/GeoServer users integration
	Limits of this solution
	Requirements
	Database preparation
	Default user password couples are

	GeoServer Setup
	User Groups and Roles
	Setup User Group Service
	Setup Role Service

	Use these services as default
	Use the Auth key Module with GeoStore/GeoServer
	Configure GeoServer
	Configure MapStore

	Advantages of user integration

	GeoServer Plugins and Extensions

	LDAP integration with MapStore
	Overview
	Synchronized mode
	Direct connection mode (experimental)

	Configuration
	Configuration properties
	Enabling direct connection mode

	Testing LDAP support
	Advanced Configuration

	Integration with OpenID connect
	Customizing logo an text in Login Form
	Supported OpenID services
	Google
	Create Oauth 2.0 credentials on Google Console
	Configure MapStore back-end for Google OpenID
	Configure MapStore front-end for Google OpenID

	Keycloak
	Configure keycloak Client

	Configure MapStore back-end for Keycloak OpenID
	Configure MapStore front-end for Keycloak OpenID



	Keycloak Integrations
	General
	OpenID
	Single sign on integration
	Configure the OpenID integration
	Configure keycloak client
	Configure SSO in MapStore

	Direct user integration
	Configure direct integration with keycloak
	1. Create a dedicated client for keycloak
	2. Configure mapstore-ovr.properties
	3. Activate the functionality via system property



	SSO Workflow in Keycloak
	Desired workflow
	Implementation
	Initialization
	Monitoring phase
	Case 1 - Login From MapStore
	Case 2 - Login from keycloak
	Case 3 - Logout from keycloak
	Case 4 - Logout from MapStore

	Refresh token


	MapStore Authentication - Implementation Details
	Standard MapStore login
	Configure session timeout

	OpenID MapStore Login

	Possible setups
	MapStore-GeoServer integration
	MapStore-LDAP + MapStore-GeoServer
	MapStore-GeoServer + MapStore-LDAP + GeoServer-LDAP
	MapStore-GeoServer + MapStore-LDAP (direct) + GeoServer-LDAP

	MapStore Projects
	Standard Projects
	Organizing your code

	Create your own MapStore project
	Create a new project type
	Update MapStore2 version in a project

	MapStore API usage
	How to use

	MapViewer query parameters
	Passing parameters to the map
	Get Request
	POST Request

	Available Parameters
	Feature Info
	Simplified syntax

	Map
	Center / Zoom
	Marker / Zoom
	Bbox
	AddLayers
	MapInfo
	Background
	Actions
	Available actions
	Zoom to extent
	Map info
	Scheduled Map Info
	Add Layers




